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ABSTRACT This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique
based on hierarchical learning combiningNonlinear Auto-RegressiveNeural Networkswith exogenous input
(NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data
to generate a residual error vector. Then, the stacked LSTM model, optimized by Tabu search algorithm,
uses the residual error correction associated with the original data to produce a point and interval PVPF. The
performance of the proposed PVPF technique was investigated using two real datasets with different scales
and locations. The comparative analysis of the NARX-LSTM with twelve existing benchmarks confirms
its superiority in terms of accuracy measures. In summary, the proposed NARX-LSTM technique has the
following major achievements: 1) Improves the prediction performance of the original LSTM and NARXNN
models; 2) Evaluates the uncertainties associated with point forecasts with high accuracy; 3) Provides a high
generalization capability for PV systems with different scales. Numerical results of the comparison of the
proposed NARX-LSTM method with two real-world PV systems in Australia and USA demonstrate its
improved prediction accuracy, outperforming the benchmark approaches with an overall normalized Rooted
Mean Squared Error (nRMSE) of 1.98% and 1.33% respectively.

INDEX TERMS Long short-term memory (LSTM), photovoltaic power forecasting, nonlinear
auto-regressive neural networks with exogenous input (NARXNN), Tabu Search Algorithm (TSA).

D1 Data set for the 1st case study
D2 Data set for the 2nd case study
P Station pressure (bar)
A Altimeter indication
ACE Average Coverage Error
Adam Adaptive Moment Estimation optimizer
AE Autoencoder
Cc Cloud coverage
CNN Convolutional Neural Network
DIr Diffuse horizontal radiation(W/m2)
Dp Dew point
EMD Empirical Mode Decomposition
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HO Hyperparameter Optimization
HT Hilbert Transformation
Ir Horizontal radiation (W/m2)
LSH Local Sensitive Hashing
LSTM Long-Short Term Memory
MAPE Mean Absolute Percentage Error
MARS Multivariate Adaptive Regression Spline
MSE Mean Square Error
NARXNN Non-linear Auto-regressive

exogenous Network
nRMSE normalized Rooted Mean Squared Error
PICP Prediction Interval Coverage Probability
PINAW Prediction Interval Normalized Average

Width
PINC Prediction Interval Nominal Confidence
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PM Persistence Model
PVPF Photovoltaic power forecasting
Rh Relative humidity (%)
RNN Recurrent Neural Network
SCA Sine Cosine Algorithm
SD Standard derivation
SVM Support Vector Machine
T Ambient temperature (◦C)
TCM Time Correlation Modification
TSA Tabu Search Algorithm
V Visibility
Wd Wind direction (Â◦)
WGPR Weighted Gaussian Process Regression
Ws Wind speed (m/s)

I. INTRODUCTION

Energy transition towards renewables is a global trend in
the twenty-first century. Solar energy is leading this transi-
tion due to its massive resources’ potential [1]. Photovoltaic
(PV) energy provides high availability and long durability
to stakeholders. However, PV energy has several limitations
in terms of low power stability and poor power quality. PV
plants are continuously disturbed by weather conditions such
as cloud cover, wind speed, and temperature variation [2].
Furthermore, the key stimulus for energy generation, namely,
the irradiation, is only available in the daytime. Therefore,
forecasting models have been widely employed for PV sys-
tems to estimate the generated PV power from one side and
load demand from the other side to ensure a smart demand
response and effective energy management [3], [4]. During
the last few years, Time Series Forecasting (TSF) becomes
a dynamic research area supported by the exponential use
of Big Data in all the research fields due to the explosive
development of information and communication technolo-
gies and significant hardware improvement [5]. Therefore,
the research community has been focusing on the develop-
ment of effective PV Power Forecasting (PVPF) techniques
to stabilize and secure the grid operation [6].
So far, Machine Learning (ML) techniques have been

proposed to interpret the behavior of the selected feature
patterns that continuously change over time to reconstitute
a clear vision about future values [7]. In simple words,
these techniques analyze the past (input data) to estimate the
future (system behavior). PVPF consists of direct and indirect
PVPF [8]. On one side, direct PVPF analyses the historical
weather data to predict PV power production [2], [8]. On the
other side, indirect PVPF uses a dual-stage methodology.
In the first stage, the solar irradiance is predicted as the
most dependent PV power feature. The second stage implies
the determination of the PV power based on mathematical
correlations [2]. According to the authors’ work in [9], it has
been proved that the second strategy is more accurate, ver-
satile, cheaper, and less computationally demanding. In [10],
the authors reported that hybrid models can achieve compet-
itive results compared to the-state-of-the-art techniques by
combining two or more single ML models.

In view of the latest progress on time series forecasting,
the time horizon is a fundamental taxonomy for PVPF appli-
cations. Typically, there are three major types for forecasting
horizons, namely, short, medium, and long-term forecast-
ing [5], [11]. Short-term forecasting includes an hourly to
weekly estimation to effectively manage sudden dispatching
and cope with operational outliers. Medium-term PVPF is
valid from a week up to months ahead which is mainly used
for preventive maintenance, planning, and asset utilization
management purposes. The last type is the long-term fore-
casting for a year up to several years ahead [12]. Long-term
PVPF is used for budget planning and feasibility studies
of large-scale PV projects. It has been reported from the
literature that the most popular and useful form of PVPF is
the short-term PVPF [12].

Moreover, with the increasing penetration of PV power,
two types of PVPF are introduced: point and interval forecast-
ing. Point forecasting, named also single-valued forecasting,
predicts single values of PV power, while interval forecasting
quantifies the uncertainties associated with PVPF. Despite
the huge research work dedicated to enhance the accuracy
of point PVPF techniques, the increased unpredictability
of weather conditions represents a significant limitation for
these techniques [13]. A detailed comparison of the recent
related works in PVPF is reported in Table 1.

For point forecasting, the authors in [27] succeeded to
predict the PV power with high accuracy using a Recurrent
Neural Network (RNN) technique where a historical database
is used in the training process. However, it has been con-
cluded that the vanishing gradient limits the forecasting time
horizon of the RNN due to the gradient explosion and disap-
pearance [5]. It is worth mentioning that RNN suffers from a
high computational burden in the training phase. Moreover,
these methods require a complete database for the training
where a poor-quality database has a major impact on the
output accuracy. Long-Short Term Memory (LSTM) algo-
rithm is commonly employed as an elegant variation of the
RNN model to overcome the information loss in depth. Deep
Learning (DL) models were proposed to extract significant
information from data representations to effectively track the
feature patterns and improve the forecasting system capabil-
ities. In [28], the authors proved that LSTM outperforms the
existing benchmarks in terms of lower Rooted Mean Square
Error (RMSE) and Mean Absolute Error (MAE). Unlike
the poor effectiveness of conventional statistical models
in tracking nonlinear variations, Nonlinear Auto-Regressive
with Exogenous inputs Neural Network (NARXNN) is an
improved version of RNN to manage the stochastic weather
parameters [29]. In [30], a Dual-stage Attention mechanism-
based RNN (DA-RNN) technique was investigated. The DA-
RNN mechanism concept pays attention to the input series
using NARXNN and then LSTM investigates time instances.
The DA-RNN model achieves a MAE = 7.14 10−2% and
an RMSE = 1.97 10−2%. However, the NARXNN could
miss the interpretation for local spatial attention in the first-
level attention with the high variation of weather conditions

36572 VOLUME 9, 2021



M. Massaoudi et al.: Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting

TABLE 1. A detailed comparison of PVPF methods with previous research work.

in sequential processing. Furthermore, the encoder-decoder
architecture is computationally extensive due to the contin-
uous calculation of the pre-weighted input obtained from
the encoder or an additional RNN in every iteration of the
sequential architecture.
For interval forecasting, quantile regression and bootstrap

method were proposed for PV power point uncertainty quan-
tification [31]. In that work, the authors examined the use-
fulness of wavelet transform and radial basis function neural
network to generate uncertainties with PV forecasts. From
the results reported in [31], it has been noticed that multi-
step multivariate PVPF was not reported. In [32], the authors
proposed an improved interval PVPF using the Bayesian the-
ory. The proposed model in [32] employs correlated weather
scenario generation and ensemble models. The work pre-
sented in [33] introduced a Convolutional Neural Network
(CNN)-based wavelet transform for point and interval fore-
casting. The proposed model can generate interval and point
PVPF results for different experimental conditions. Despite
the inherent potential of LSTM model for time series point
forecasting, LSTM is usually losing sight of significance in
interval forecasting. In order to tackle the above problems,
this paper aims to further supplement the existing studies
by proposing a highly accurate model for point and interval
forecasting using a virtue of prepossessing blocks. The per-
formance of the proposed model is demonstrated at different
seasons of the year, different PV power locations, and several

forecasting horizons. The main contributions of this paper are
summarized as follows:

1) A hybrid method for nonlinear time series forecasting
composed of LSTM and NARXNN models is com-
prehensively explained. Despite the large popularity
of LSTM model, the high variability of environmental
conditions restricts the LSTM model from achieving
accurate forecasts. The proposed technique not only
enhances the LSTM performance but also supplements
the proposed integrated point forecasts by the uncer-
tainties qualification to reduce the operational risks in
PV systems.

2) A novel PVPF paradigm is deeply analyzed. The eval-
uation of the new approach is performed using two
real datasets. Small-scale and large-scale PV plants
are employed to demonstrate the model performance
generalization for point and interval forecasting with
single and multi-step prediction.

3) A comparative study with twelve benchmarks has been
conducted to reveal the high reliability of the pro-
posed NARX-LSTM model as a competitive model
in capturing time dependencies with a high exacti-
tude. Additionally, the proposed approach improves
the prediction performance of the original LSTM and
NARXNN models.

The remainder of the paper is organized as follows: Section II
proposed a comprehensive presentation of the components
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employed in the simulation process with a mathematical and
architectural overview. In Section III, a case study is provided
and the simulation results are presented and interpreted to
validate the proposed model. Finally, Section IV concludes
the paper.

II. FORECASTING MODELS AND

PROPOSED ARCHITECTURE

In this section, the NARXNN Network and LSTM neural
network model and Tabu Search algorithm are first presented.
Then, the proposed NARX-LSTMmodel is comprehensively
explained.

A. NARX NEURAL NETWORK

NARXNN is introduced as an improved form of Nonlinear
Auto-Regressive Neural Network (NARNN). NARNN uses a
single delayed feedback loop of the output regressor. On the
other side, NARXNN involves two tapped-delay lines from
the input-output signals [34]. The exogenous input values are
integrated into the parametric equation of NARXNN as [35]:

y(n) = f [x(n); ū(n); ȳ(n− 1)] (1)

y(n) = f [x(n), . . . , x(n− dE + 1); x̂(n), . . . , x̂(n− dy + 1)]

(2)

where ū(n) ∈ R and ȳ(n) ∈ R denote the model input and
output at the discrete timestep n, dE ≥ 1 and dy ≥ 1 rep-
resent the input and output memory orders respectively with
{dE , dy} ∈ N

∗. The feedback loop improves the sensitivity
of the NARXNN predictor to the historical data. Fig. 1 illus-
trates the underlining working mechanism of the NARXNN
algorithm.

FIGURE 1. Three-layered NARXNN with dE ≥ 1 delayed inputs and dy ≥ 1

delayed outputs with z−1 presenting the unit time delay.

As shown in Fig.1, the NARXNN algorithm consists of a
two-layer feed-forward network, with a linear transfer func-
tion in the output layer and a sigmoid function (σ ) in the
hidden layer calculated as [36]:

σ (x) =
1

1 + exp(−σ )
(3)

This network has the specific feature of involving
tapped delay lines to store previous values of u(n) and

y(n) sequences. The output of the NARXNN, y(n), is fed
back to the input of the network (with a delay). Two different
modes for the training of NARXNNmodel are depicted [35]:

• Series-Parallel (SP) Mode: This method takes the feed-
back delayed information from the real values.

• Parallel (P) mode: where the estimated outputs are set
for the output’s regressor.

However, for better accuracy and effective training,
the NARX-SP feedback makes use of an on open-loop
then the parallel feedback is switched in the evaluation part
to a closed-loop. In [36], the simulations proved that the
NARXNN provides better accuracy in discovering the behav-
ior of the sequential output compared to conventional meth-
ods such as Feed-forward and ElmanNetworks [37]. The high
performance is since the input vectors are inserted through
two tapped-delay lines from the input-output signals. These
delays present a jump-ahead connection in the time-unfolded
network to provide the ability for the gradient descent to
propagates back in a shorter path.

Nevertheless, the elimination of output memory for
NARXNN significantly reduces its computational resour-
ces [35]. Moreover, NARXNN as part of the RNN faces, to a
certain degree, the vanishing gradient problem. RNN after a
specific input number stops learning and negatively affects
the prediction accuracy. This challenge appears when the
gradient descent shrinks in long-range dependencies which
causes a fading memory issue [35].

B. LONG SHORT-TERM MEMORY

The LSTM network has been introduced to tackle the vanish-
ing gradient problem in RNN architecture causing training
failures [5]. The LSTM model fully exploits the long depen-
dencies through a distinguished gate control and specialized
memory mechanism. The whole mechanism is conducted by
a series of LSTM cells presented in Fig. 2.

FIGURE 2. The internal chain structure of an LSTM unit: ⊗ and ⊕ present
the pointwise scalar multiplication and the sum function respectively.

According to Fig. 2, the exploding and the vanishing gra-
dient effects are mitigated by employing four gates in the
LSTM architecture, specifically the input gate It , the for-
get gate ft , the output gate ot , and the self-recurrent unit.
These gates are responsible for managing the interactions
among the memory units where the gate selection is achieved
according to hyperbolic tangent (tanh) function, Sigmoid
function, or matrix multiplication. The input gate verifies
the ability of the input signal in modifying the state of the
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memory cell. Additionally, the ft gate discards the irrelevant
status that misleads the forecasting process and keeps only the
important information to be forwarded to the hidden layers.
The ft values are between 0 and 1 where a higher value means
that the information is of utmost importance and a result
of 0 leads to completely discarding the information. Here,
contrary to the input gate, the output gate checks its effect
on the state of other memory cells. The LSTM gates, hidden
outputs, and cell states are given as follows [5]:

It = σ (WI xt + Uiht−1 + bI ) (4)

ft = σ (Wf xt + Uf ht−1 + bf ) (5)

ot = σ (Woxt + Uoht−1 + bo) (6)

c̃ = ft ⊙ ct−1 (7)

ht = ot ⊙ tanh(ct ) (8)

where xt and ct denote the input sample at time t and themem-
ory unit respectively. (bf ,bI ,bo),(Wf ,WI ,Wo), and (Uf ,UI ,Uo)
stands for the biases, recurrent weights, and input weights for
each gate respectively. The function ⊙ is the corresponding
multiplication of the elements. ht−1 is the hidden layer for
the respective gates x in the current timestamp. To improve
the cognition using a DL approach, the recurrent connections
could be a chain of stacked LSTM fully connected to form
a sequence base model. Let x = [x1, . . . , xt ] be the input
sequence for LSTM cells with xt ∈ R

k . Here, K denotes the
dimensional vector of the original data set at the t th timestep.
Firstly, the ht−1, ct−1, and xt pass the input information to

The LSTM unit. The LSTM gates interact with the inputs to
generate an action based on a logic function. After passing by
ft , a new cell state ct is built. xt and ht−1 move to the forget
layer to quantify the importance of the information between
0 and 1. At this stage, the ft gate takes a decision whether
if the information has to be stored, maintained, or removed.
Then, the forget gate will update the cell state ct with the
new important information based on the proportion of the
information occupied by the actual and the previous cell state.
The final hidden layer of the LSTM is computed to obtain the
remaining state value.

C. TABU SEARCH ALGORITHM

The identification of the most suitable configuration for DL
models is essential to meet the optimal performance for a
specific dataset [38]. To solve complex optimization prob-
lems, TSA is widely adopted as a global stepwise meta-
heuristic algorithm. The key idea of the TS algorithm consists
of employing a tabu table to memorize the movements that
happened in the previous iterations in order to avoid cycles.
This is conducted by blocking the overlook of the traced
movements registered in the tabu table [39]. The optimal
solution in the neighborhood is chosen. The mechanism of
TSA is illustrated in Fig. 3:

Referring to the flowchart in Fig. 3, define A =

{a1, . . . , aM } where M is the cardinality of A. Let a set
S(aq), q ∈ {1, . . . ,M}, a fixed subset A\aq. aq denote the
symbol-neighborhood of aq. define wv(aq), v = 1, . . . ,N as

FIGURE 3. Flowchart of the standard TSA.

the vth symbol-neighbor of aq. Assuming xm = [xm1 , xmnt ] with
xmi ∈ A a solution candidate in the mth iteration. The (u, v)th
neighborhood vector zm(u, v) of xm, u = 1, nt , v = 1, . . . ,N
based on Euclidean distance can be written as [40]:

zm(u, v) = [zm1 (u, v), z
m
2 (u, v) . . . , . . . , z

m
nt
(u, v)] (9)

The (u, v)th neighbor satisfies the following condition [40]:

zmi (u, v) =

{
xmi for i 6= u

wv(xmu ) for i = u
(10)

In the solution space, ntN vectors are generated from a
defined vector in a specific coordinate. Next, the TSA passes
to the best vector among the neighborhood while satisfying
the non-move back towards the previous schemes. The Tabu
matrix (T ) of size ntM × N and t coordinates representing
the tabu values of moves is computed as:

T =



t1,1 t1,(nt−1)M+1 · · · t1,ntM
...

...
. . .

...

tN ,1 tN ,(nt−1)M+1 · · · tN ,ntM


 (11)

Define gm the vector with the maximum-likelihood perfor-
mance cost generate until the mth operation of TSA. The
shift (u1, v1) is accepted if one of the following conditions
is respected [40]:

ϕ(zm(u1, v1)) ≤ ϕ(gm) (12)

T (u1 − 1)M + q, v1 = 0 (13)

where the term q is defined as aq = xu1m, aq ∈ A. The next
move is calculated as [40]:

(u2, v2) = arg
u,v;u6=u1,v 6=v1

ϕ(zm(u, v)) (14)

The computing work is repeated until the optimal solution
is met. TSA is advantageous in terms of adaptability, robust-
ness, and accuracy. Particularly, the strong neighborhood
local search ability of TSA and its super-fast searching speed
is found to be very suitable in case of high dimensions of the
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hyperparameters [39]. This justifies its usefulness for LSTM
tuning operation.

D. PROPOSED NARX-LSTM ARCHITECTURE

The proposed model (NARX-LSTM) is a vigorous combina-
tion of NARXNN and LSTM models. NARX-LSTM model
merges the properties of individual predictors to achieve bet-
ter results. In the proposed system architecture, NARXNN is
associated with embedded memories that make jump-ahead
connections in the time-unfolded network. The embedded
memory of NARXNN consists of simple tapped delayed val-
ues to neurons. The NARXNN is used hereinafter to calculate
the residual error correction. The residual error correction
is implemented to reduce the sensitivity of the network to
time dependencies.We assume that the additional tapped time
delays from NARXNN improve the accuracy of the predic-
tion engine using the error Hankel matrix to increase the
weight of the residual error correction. Let En = [e1, . . . , en]
is the error vector between the real values Yt = [y1, . . . , yn]
and the forecasted values of NARXNN Ŷt = [ŷ1, . . . , ŷn].
The residual error is calculated as follows:

En = Yt − Ŷt = yit −

n∑

i=1

wiFit , (t = 1, . . . , n) (15)

where F and w denote the nonlinear mapping function of
NARXNN and the corresponding weight value. A Hankel
matrix is built from the expansion of the error vector into
a multi-dimensional data matrix in order to capture the
dynamic change of the model variation as:

E∗
n = [e∗1, . . . , e

∗
L] =



e1 e2 · · · eL
...

...
. . .

...

eK eK+1 · · · eK+L−1


 (16)

where L ∈ [2 6 L 6 L(n/2)] is the window length and K =

n− L + 1 is the number of overlapping segments. Next, two
types of transformations are computed for the Hankel error
matrix: MinMax transformation and Hilbert transformation
(HT) [41], [42]. The MinMax transformation is calculated as
follows [42]:

xn =
xr − xmin

xmax − xmin
(17)

where xn denotes the normalized value, xr is the real value.
Here, xmin and xmax are the minimum and maximum values.
Let f (x) be the error function and H () the Hilbert transform
operator. The HT g(x) of f (x) is defined and altered as fol-
lows [41]:

g(y) = H (f (x)) =
1

π

∫ ∞

−∞

f (x)dx

x − y

=
1

π

∫ ∞

−∞

f (x − y)dx

x
(18)

The HT can be reformulated as a convolution by:

g(y) =
1

πX
f (x) (19)

A fast algorithm based on convolution theorem is employed
to develop the HT as [41]:

g(y) = ifft[fft(
1

πx
)fft(f (x)))] (20)

where fft() and ifft() denote the fast Fourier transform and the
inverse fast Fourier transform respectively satisfying [41]:.

fft(
1

πx
) = −jsgn(freq) (21)

where freq and sgn denote the frequency and the sign func-
tion respectively. From Eq.20, the product fft( 1

πx )fft(f (x)))
presents special filtering of Fourier transform and the input
signal. This operation transforms the frequency components
by computing a phase shift of −90 ◦ for positive fre-
quency and 90◦ for negative frequency. The calculation of
the inverse Fourier transform on the product leads to generate
the HT of the error vector. HT is characterized by a good
multi-resolution for signals analysis. The proposed NARX-
LSTM model is built from two stages: In the first stage,
the NARXNN receives the weather information to primarily
predict the PV power Ŷ = [ŷ1, ŷ2, . . . , ŷn]. The temporary
PV power forecasts from NARXNN are used to calculate
the error values and compute the vector error correction. The
vector error correction is calculated by the association of the
MinMax transform and HT of the error values vector gener-
ated by NARXNN. The vector error correction function (V )
is fed with the original database to LSTM model optimized
by TSA as:

X (t) = xi(t) + V [y(t); xi(t)] (22)

By adopting this methodology, the LSTM network acquires
the learning potential of NARXNN to improve the pattern
recognition of the forecasting system. The LSTM gates use
the processed data as follows:

i′t = σ (WI (xt + V [yt ; xt ]) + UIht−1 + bI ) (23)

f ′
t = σ (Wf (xt + V [yt ; xt ]) + Uf ht−1 + bf ) (24)

o′
t = σ (Wo(xt + V [yt ; xt ]) + Uoht−1 + bo) (25)

c̃′ = ft ⊙ c′t−1 (26)

h′
t = o′

t ⊙ tanh(c′t ) (27)

where (i′t , f
′
t , o

′
t ) denote the improved input, forget, and out-

put gates respectively. c̃′ and c′ denote the cell state and
the memory unit for NARX-LSTM respectively. The reason
behind the selection of NARXNN is due to its success-
ful implementation in handling the latching problem and
nonlinear system identification. On the other hand, LSTM
memories decrease the vanishing gradient. Adding to LSTM
architecture, a general class of regression model with time
delay has been given the main importance in this investi-
gation. The forecasting system could be stabilized or desta-
bilized by certain stochastic inputs. Hence, it is significant
to consider stochastic effects on the steadiness property of
the delayed information. For a better understanding of the
proposedmodel, the data processing is resumed in four stages
as shown in Fig. 4.
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FIGURE 4. Proposed NARX-LSTM architecture for PVPF.

In the first stage, data preprocessing and feature engi-
neering is computed starting from data acquisition to store
useful information about the state of the PV system. Then,
data cleaning from missing and invalid samples and feature
importance evaluation are conducted to avoid its adverse
impact on the forecasting system accuracy. Finally, the data
is normalized with a magnitude range of [0, 1] using Min-
Max method [42]. This normalization prevents the features
from getting affected by the bad influence of the outliers
and data scale while increasing the convergence speed and
the performance of the model. In the second stage, a typ-
ical data separation procedure between inputs and outputs
from the training and testing folds is computed in the object
determination stage. Then, the training data is fed firstly to
NARXNNmodel to generate the PV power, then the output is
used to calculate the vector error correction to be fed to LSTM
model optimized by TSA. The output of the model con-
struction stage is the PV power point forecasts and its asso-
ciated uncertainties. From this explanation, NARX-LSTM
could be described as an association of two module types:
(1) NARXNN that receives the sequence of external inputs
as well as the recurrent output layer state; (2) LSTM cells
that receive corrective information with the original features
to generate the final outputs. Thus, the residual information
fed from the NARXNN output is reused for feeding LSTM
model as an additional source of information apart from the
standard training data. The flowchart of the proposed model
is shown in Fig. 5.

III. CASE STUDY AND SIMULATION RESULTS

In this section, the feature engineering process is conducted
based on the Australian weather parameters. Then, the sim-
ulation results are presented. Finally, a comparative study is
deployed to assess the performance of the proposed model.

FIGURE 5. Flowchart of the proposed forecast method.

The objective is to demonstrate the capabilities of NARX-
LSTM for tackling TSF with high accuracy.

A. FEATURE ENGINEERING

To evaluate the performance of the proposed NARX-LSTM
model using a real dataset, the experimental study employs
two PV power plants from different locations in order to val-
idate the generalization capabilities of the proposed model.

D1: the public data from Desert Knowledge Alice
Springs Center (DKASC) in Central Australia (23.7618◦ S,
133.8749◦ E) is used for the first case study [43]. Starting
in September 2008, the DKASC consists of a demonstration
facility of 38 sites to build a high confidence level of PV tech-
nologies with different manufactures and stakeholders [43].
These sites consist of real-life monitoring of PV technologies
from various types, models, and configurations as presented
in Table 2-3. The specific characteristics of the two years
from DKASC’s public-facing repository were deeply ana-
lyzed to target the PV power output from DKASC online
portal (DKASC 2019). The inputs of our system comprise
ambient temperature Celsius (T in (◦C)), Wind direction
(Wd in Â◦), Horizontal Radiation (Ir in (W/m2)), Diffuse
horizontal radiation (DIr in (W/m2)), and Relative humidity
(Rh in (%)) while the output is the active power (kW). It is
worth noting that the yearly lagged PV power has been added
as an additional input for the first case study. The yearly
lagged PV power represents the historical PV power at the
same time of the previous year.

D2: Urbana-Champaign solar farm-Flyover (UCF) data set
fromUSA (40◦06’07.3◦N 88◦13’37.5◦W) is used for the sec-
ond case study [44]. The weather data is collected from the
National Oceanographic and Atmospheric Administration
(NOAA). Starting from its first year of operation, The UCF
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TABLE 2. The related characteristics of the PV plant.

TABLE 3. Data types.

plant approximately generates 7.28 megawatt-hours (MWh).
This latter is considered the largest solar array installation for
Urbana campus. The used data comprises T, Rh, Cloud cov-
erage (Cc), visibility, Wind speed (Ws), station Pressure (P),
Altimeter indication (A), and PV power. More details about
the characteristics of UCF is found in Table 2-3.

It is worth noting that the database is cleaned from miss-
ing values and smoothed from instrumental malfunction
measures. Furthermore, the data rows containing the low
irradiance measurements have been eliminated to enhance
the prediction potential of the proposed method. The input
parameters have a direct relation with the predicted PV power
output. However, this relationship is not equally partitioned.
Various models have been proposed to measure the diversity
of feature importance. In this study, the idea is to permit one
parameter and estimate the increase of forecasting error in
each case by the probability value (P-value) calculation. The
domain knowledge is investigated using a combination of
Elastic Net and ExtremeGradient Boosting (XGB) evaluation
models to enhance the features selection reliability. Table 4
presents the numerical measures of P values for feature
inputs.
According to Table 4, the irradiation from D1 and the

temperature and relative humidity from D2 have the highest
impact on PV power estimation. For the sake of simplic-
ity, the time series data representation will include all the

TABLE 4. Feature importance analysis with D1 and D2.

examined features as inputs associated with the date fea-
tures (minute/hour/day/month/year) to forecast the future PV
power. The date features are converted using one-hot encoder
to fit themodel requirements. The two data sets were split into
training and testing folds. A full year {2017D1 , 2016D2} is
dedicated to model training and the rest of {2018D1 , 2017D2}

data is employed for testing purposes.

B. PERFORMANCE EVALUATION OF THE PROPOSED

FORECAST SYSTEM

The evaluation of the proposed NARX-LSTM model is per-
formed to statistically confirm its high performance using
real data sets. Due to the relative effectiveness of score met-
rics under certain testing conditions, multiple statistical error
measures were employed for a reliable forecasting perfor-
mance assessment. In this paper, the evaluation procedure is
twofold:

• Point forecast assessment is quantitatively computed
where a series of error metrics were employed.
The selected performance evaluation measures for
point forecasting include normalized RMSE (nRMSE),
normalized MAE (nMAE), and squared coefficient of
determination (R2) [23], [31]. These percentage error
measures are employed due to their scale-independent
propriety and their efficiency. Thus, these measures are
also used in this paper for comparative purposes with
other benchmarks from different scaled databases.

• Interval forecast criteria of PV power include the
Average Coverage Error (ACE), Prediction Interval
Normalized Average Width (PINAW), Prediction Inter-
val Nominal Confidence (PINC) [13]. The PINAW
index gives information about the model sharpness.
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Furthermore, the normalized pinball Loss function (L)
is employed for its wide applicability in the interval
assessment [45].

In this paper, a normalization is adopted in order to make the
error metrics scale-free when comparing the proposed model
with other data sets. The normalization is conducted by the
mathematical division by the PV capacity for each PV plant.
The error equations between the actual PV power (yi) and the
forecasted power (ŷi) for n timesteps are given as [31], [45]:

nMAE = 100(%)
1

n

∑n−1
i=0 |yi − ŷi|

yc
(28)

nRMSE = 100(%)

√
1

n

∑n−1
i=0 (yi − ŷi)2

yc
(29)

R2 = 1 −

∑n−1
i=0 (ŷi − yi)2∑n−1
i=0 (ȳi − yi)2

, ȳ =

n−1∑

i=0

yi (30)

PICP =
1

n

n−1∑

i=0

ζ, ζ =

{
1,Ti ∈ [Li,Ui]

0,Ti /∈ [Li,Ui]
(31)

PINAW =
1

nR

n−1∑

i=0

(Ui − Li) (32)

ACE = PICP− PINC (33)

Lm,t (qm,t , pt ) =

{
(1 − m

100 )(qm,t − pt ), pt < qm,t
m
100 (pt − qm,t ), pt > qm,t

(34)

where n and yc denote the total number of samples and the
capacity of the PV plant, i.e., 211.259 kW and 4733.25 kW
forD1 andD2 respectively. q, qm,t and pt denote the quantile,
mth normalized actual quantile, and normalized predicted
quantile at time t . In this paper, Averaging the quantiles’ Lq,t
values is adopted to obtain the overall pinball loss score for a
specific forecasting horizon. Moreover, the evaluation of the
proposed model is conducted using 10-fold cross-validation
for better reliability of the evaluation procedure.

TABLE 5. Experimental environment.

The TSA is implemented using hyperactive library [48].
This algorithm uses a defined search space to identify the best
hyperparameters for a given data set. In order to avoid the
verbose computational burden, extensive experiments were
conducted to minimize the search space. It has been found
that the configuration of 20 NARXNN neurons, a delay value
of 4, a Levenberg-Marquardt optimization algorithm, and
three LSTM layers generates the best results. Then, LSTM

TABLE 6. Search space HO of the proposed model.

FIGURE 6. Final architecture of the NARX-LSTM model after TSA
optimization with (a)NARXNN module(b) LSTM module.

FIGURE 7. Scatter plots ((a), (b)) and error distributions ((c), (d)) of PV
measured power and forecasted power for two PV datasets D1 and D2.

units, dropout values, activation, and optimizer functions are
found using TSA optimization. In order to verify the model
generalization for a PV farm with a higher scale, the auto-
matic searchmechanism is conducted only forD1. The search
space for TSA algorithm and the optimization results are
found in Table 6.

The LSTM model uses 100 iterations with an early stop-
ping function to avoid overfitting problems. To get better
visibility of the model performance, the scatter plots and the
error distributions are illustrated in Fig. 7.
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FIGURE 8. Multiple tests of NARX-LSTM model for 5-min horizon forecasting on D1 under different weather conditions.(a) March 20, Rainy.
(b) May 20, sunny. (c) June 20, sunny. (d) July 20, sunny to cloudy.(e) September 20, Sunny. (f) November 20, foggy to cloudy.

FIGURE 9. Multiple tests of NARX-LSTM model for 1-hour horizon forecasting on D2 under different weather conditions:(a)March 7,Rainy. (b) May 7,
sunny to cloudy. (c) July 7, sunny. (d) September 7, sunny to cloudy.(e) October 20, Rainy. (f) November 20, foggy to cloudy.

C. POINT PV POWER FORECASTING

This section tackles the numerical validation of the model
performance using two data sets from different locations
(USA and Australia) with different speeds of data acquisi-
tion. The feasibility of NARX-LSTM model is conducted
using Python programming language. The NARX-LSTM
model is implemented using Keras and Sckit-learn packages
[46], [47]. The model is evaluated on single-step and multi-
step ahead respectively. The experimental environment is
described in Table 5.

From Table 6, it can be seen that the LSTM layers are
fixed at 512, 256, and 36 units for the three LSTM lev-
els respectively. The dropout values are fixed at 0.1 for all
the aforementioned levels. The optimizer function is adam.
The most suitable activation function, Softplus, is calculated

as follows:

f (x) = log(1 + exp(x)) (35)

It bears noting that the TSA is computationally demanding
with a conversion speed of 18.95 min per iteration. This low
convergence speed could be explained by the fact that the
high-resolution data set for a small-timestep of 5 minutes
causes an exhaustive calculation due to a large number of
investigated patterns. The final architecture of the proposed
model is shown in Fig. 6.

As can be seen from the scatter plots with D1 and D2

in Fig. 7, the proposed model follows the actual PV power
with high accuracy. Despite the low error values, the 1 hour
ahead daily PV predictions on D2 generates better results.
Fig. 8 and Fig. 9 illustrate, for 5 min and 1 hour ahead,
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FIGURE 10. Daily PVPF results for 5-min and 1-hour ahead.

the actual/predicted daily PV power for different weather
conditions (sunny, partially cloudy, foggy, rainy, and cloudy
days).
According to Fig. 8-9, the estimated power tracks the real

one with great exactitude. It can be seen that the results
are very promising especially during sunny days. However,
the model accuracy is degraded in fast changes of the weather
conditions (Fig. 8.(e)). Nevertheless, even with fast fluctua-
tions of the weather parameters, the NARX-LSTM network
is able to follow the general shape of the real values. For
a quantitative assessment with error metrics and contrast
models, Table 7 presents the characteristics of reference mod-
els including LSTM, NARX, XGBoost, ANN, and LGBM.
It worth noting that Random Search method is adopted to
train XGboost, LGBM ANN. Moreover, the selected hyper-
parameters of the LSTMandNARXNNmodels are employed
in the tuning of the proposed NARX-LSTM model. All the
proposed models use the same configuration from Table 5.
To begin with, the comparative study is conducted based on

different climate conditions (sunny, partially cloudy, cloudy,
and rainy). The point forecastingmeasures are adopted for the
performance comparison. The simulation results are shown
in Fig. 10.

According to Fig. 10, it can be clearly observed that the
forecasting performance highly depends on a particular sea-
son of the year. Specifically, the prediction performance of
NARX model decreases significantly during the winter days
(Fig. 10. (d) and Fig. 10(h)). According to the simulations,
NARX-LSTM has been seen performing best than other
individual models. The performance superiority is observed
on winter and spring days. With more detailed information
comparing the original LSTM with the proposed model,
it can be said that the error correction vector has signifi-
cantly enhanced its performance in capturing the trend of
the actual PV power. From Fig. 10, it has been found that

TABLE 7. Hyperparameters settings for reference models.

TABLE 8. Testing time (second) obtained for different PV power forecast
models with two datasets.

the performance superiority has been attributed to NARX-
LSTM. The computational complexity of the testing model
is resumed in Table 8.

According to Table 8, the simple ANN offers the least
computation time. The proposed model is relatively more
computationally demanding than the original LSTM (case I),
while on D2, the proposed model took less time than the
original LSTM. Despite the longer testing calculation of
the proposed NARX-LSTM model, it is easily applicable to
real-world experiments (especially with the popularization of
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TABLE 9. Score performance comparison on D1 and D2.

cloud computing). Table 9 resumes the score performance
measures results on D1 and D2 respectively.
According to the numerical results presented in Table 9,

it can be concluded that the combination NARX-LSTM out-
performs other individual models. The NARX-LSTM gener-
ates a mean nRMSE = 1.98% and nRMSE = 1.33% on D1

and D2 respectively. The obtained results confirm the high
performance of the proposed model in TSF.

As the paper attempts to offer a clear assessment of
NARX-LSTMmodel, a fair comparison is conductedwith the
recent benchmarkmodels, specifically, Ensemble ofMethods
(ENS), improved ANN, Grey-Box model (GB), Correlation
model, Extreme LearningMachines (ELM),modified LSTM,
Differential Polynomial Neural Network (D-PNN), Auto-
encoders LSTM (AE-LSTM), and Wavelet transform-Radial
Basis function neural network- Particle Swarm Optimiza-
tion (WT-RBFNN-PSO). The comparison of the proposed
NARX-LSTM model with the cited models is conducted
based on hourly ahead daily PV power forecasting. Thus,
the NARX-LSTM performance is only included with D2 in
this comparative experiment. Table 11 includes the perfor-
mance of contrast models withNARX-LSTMmodel based on

their mean nRMSE measures as the main performance index
between different models.

As can be seen from Table 11, the NARX-LSTM model
could achieve the best results based on the overall forecasting
performance in point forecasting with one-hour resolution
horizon. The mean nRSME of NARX-LSTM is nRMSE =

1.33% while the closest model (WT-RBFNN-PSO) achieves
a mean nRMSE = 1.85%. The proposed NARX-LSTM
model is advantageous for short-term PVPF in terms of fore-
casting accuracy. In order to validate the model performance
for multistep forecasting, different forecasting horizons were
applied for the forecasting settings. Due to the difference of
D1 and D2 resolution, D1 is assigned to forecasts one hour,
6 hours, and 12 hours ahead while D2 will predict 3 hours,
6 hours, and one day ahead of PV power. The simulation
results are shown in Fig. 11, where four random days from
the testing set were selected to conduct these experiments.

Regarding the model performance for different forecasting
horizons in Fig. 11, it can be said that the general shape of
the PV power is followed with good exactitude for 1 hour
3 hour, and 6-hours ahead on D1 and D2. however, the pro-
posed model can be slightly inaccurate when the forecasting
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TABLE 10. Score performance comparison using D1 and D2.

horizon exceeds the six-hour resolution. Table 10quantifies
the forecasting performance on D1 and D2. For the sake of
the integrity of the forecasting procedure for multiple steps
ahead, ten-fold cross-validation procedure is adopted.
According to Table 10, the performance of NARX-LSTM

decreases with the increase of the forecasting horizon. A clear
conclusion can be drawn that the single-step predictions are
more accurate than multiple steps predictions. However, from
the simulation results on hourly daily ahead predictions, it is
concretely evident that the proposed NARX-LSTM could
generate accurate results with an R2 = 99.89% ± 0.02 and
R2 = 99.69% ± 0.19 for D1 and D2 respectively. While
the worse results are achieved for 12-hours and 24-hours
ahead with R2 = 98.86 ± 0.07 and R2 = 84.31% ±

1.11 for D1 and D2 respectively. As reported in Table 10,
it can be said that the forecasting skill of the proposed
NARX-LSTM dramatically decreases after 6 hours ahead
forecasting threshold. Therefore, the validity of the proposed
model on 24-ahead forecasting is not considered in what
follows. For the sake of comparing the model forecasting

TABLE 11. Comparison of 1-hour ahead daily forecasts. The best
information criterion is in boldface.

performance with benchmarks based on 3 hours and 6 hours
ahead forecasting, several benchmarks were employed
includingWavelet Transform-Generalized RegressionNeural
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FIGURE 11. Multistep forecasting tests of NARX-LSTM model using D1
and D2 datasets for different forecasting horizons.

TABLE 12. Comparative study of 3-hour ahead daily PVPF.

Network (WT-GRNN), Wavelet Transform-Generalized
Regression Neural Network-Particle Swarm Optimization
(WT-GRNN-PSO), Wavelet transform-Radial Basis function
neural network (WT-RBFNN), and WT-RBFNN-PSO mod-
els [31]. Table 12 resumes the forecasting performance of
NARX-LSTM (D2) with the cited benchmarks based on
3-hour ahead and 6-hour ahead multistep forecasting.
Table 12 presents the performance comparison of the pro-

posed model with other benchmarks. In terms of nMAE,
the proposed model is favorable with nMAE = 3.70%.
whileWT-RBFNN-PSO(nRMSE= 6.85%) is outperforming
the NARX-LSTM (nRMSE = 7.26%) in terms of lower

TABLE 13. Performance evaluation of interval forecasting.

nRMSE values. On the other side, according to Table 12,
the performance of the proposed model is best with the
dominance of NARX-LSTM on D1 data set. The NARX-
LSTM generates an nRMSE = 1.93 % and nMAE = 0.80%
on D1, while the reported performance errors on D2 are
equal to nRMSE = 7.27% and nMAE = 3.77% for 6-hour
daily PVPF. The proposed model is found highly accurate
with good competitiveness skills for a single-step and mul-
tistep point forecasting. Nevertheless, a longer time horizon
requires further investigations.

D. INTERVAL FORECASTING OF PV POWER

Interval forecasting is essentially conducted to quantify the
uncertainties of the PVPF associated with point forecasting.
Interval forecasting is a challenging task due to the stochas-
tic variation of the weather parameters during the days and
seasons of the year. The unavoidability of point forecasting
errors has significantly intensified the inherent role of interval
forecasting. In this paper, prediction intervals are used for
quantitative characterizations of PV power forecasts. The loss
function ℓ of single-point forecasts in quantile regression is
defined as:

ℓ(ξ |α) =

{
αξi ξ > 0

(α − 1)ξi, ξ < 0
(36)

where ξ is the quantile value quantified between 0 and 1 and
ξ is calculated as:

ξ = yi − f (xi) (37)

Here f (x) is the forecasted quantile model. The average
function for a given data set is computed as:

ℓ(y, |α) =
1

N

N∑

i=1

ℓ(yi − f (xi)|α) (38)

After adding a risk uncertainty-based LSTMmodel, the fore-
casting system becomes able to perform quantile regression.
The interval forecasting model is implemented in Keras by
the modification of the loss function as Eq. 38 to provide
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TABLE 14. Results of multi-step interval forecasting for 1-hour, 2-hours, and 3-hours forecasting horizons.

FIGURE 12. Prediction interval results for D1 and D2.

uncertainties from point PVPF. The experimental results are
conducted for two data sets to validate the generalization of
the forecasting model. The first case study is conducted for
5 min daily forecasting while the second case study is for
hourly daily forecasting. The simulation results on D1 and
D2 are illustrated in Fig. 12.
Regarding Fig. 12, it has been found that for case I-II that

the prediction intervals encloses most of the actual values.
The interval forecasting yields accurate uncertainty results
for 5 min and 1 hour ahead predictions. In Fig. 13, 90%
prediction intervals are illustrated where they enclose the
actual PV power for different weather conditions.

FIGURE 13. 90% Prediction interval results on D1 and D2.

In order to compare the results of interval forecasting for
one step ahead, several recent benchmarks are employed
including Particle Swarm Optimization-based Weighted
Average (PSOWA), Convolutional Neural Network-Quantile
Regression(CNN-QR), Improved Convolutional Neural
Network-Quantile Regression (ICNN-QR), Neural Network-
Quantile Regression NN-QR, Bagging Extreme Learn-
ing Machine (BELM), Persistance model, and Improved
Differential Evolution-based Weighted Average (IDEWA)
[53]–[55]. The interval error measures for the proposed
NARX-LSTM model with the other models are resumed
in Table 13.
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The error measures for D1 and D2 are computed
in Table 13. Particularly, for PINC= 90%, the NARX-LSTM
generates a PICP = 90.024% for 5 min ahead of daily fore-
casting and PICP = 90.018% for hourly daily forecasting
using D2 data set. The calculated Pinball loss is equal to
0.16% and 0.12% forD1 andD2 respectively. Regarding the
error measures, a general conclusion can be drawn that the
interval forecasting with NARX-LSTM generates a higher
performance in terms of lower ACE and PINAW compared
to the state-of-the-art. In this paper, the uncertainty analy-
sis takes into account the multistep forecasting validation.
The proposed NARX-LSTM model is examined for 1 hour,
2-hours, and 3-hours ahead horizon. The results of multistep
validation for interval forecasting are reported in Table 14.

From Table 14, it can be mentioned that the proposed
NARX-LSTM model is strongly efficient in interval fore-
casting where all the true values are enclosed by the gen-
erated prediction intervals especially in 1 hour ahead and
2-hour ahead. The expansion of the forecasting horizon to
3 hours ahead leads to losing sight of accuracy in terms
that some of the true values exceed the forecasting inter-
vals. For example, at 17:00, from the second case study,
the actual PV power is 1193.5kW, while the prediction
interval is [865.867,1175.649]. However, the increase of
the forecasting horizon decreases the forecasting accuracy.
In order to overcome this horizon limitation, the data set can
be extended to more related features such as the lucrative
inclusion of the zenith and azimuth. By enriching the data
representation, the proposed NARX-LSTM can employ the
additional information to enhance its prediction accuracy.
Furthermore, the computational burden caused by the mul-
tiple processing units can limit the potential of the NARX-
LSTM model, which requires further investigations. As a
conclusion, the NARX-LSTMmodel proves its suitability for
single step, 1-hour, and 2-hour ahead interval forecasting.

IV. CONCLUSION

This paper proposed a new computing framework based on
the combination of Nonlinear Auto-Regressive Exogenous
Neural Network (NARXNN) and Long Short-Term Memory
(LSTM) optimized by Tabu search algorithm. It was demon-
strated that the proposed model is strongly able to capture
the behavior of weather changes as well as the uncertainties
associated with point forecasts to generate accurate short-
term PV power forecasting. Furthermore, the performance of
the hybrid model was investigated for different horizon scales
in PV power forecasting. The presented simulation results
have shown that the NARX-LSTMmodel impressively offers
higher efficiency and accuracy compared to the commonly
deployed methods in PV power forecasting problems. More-
over, the NARX-LSTMmodel showed excellent performance
and good generalization capabilities from two different loca-
tions and utility scales. The proposed model contributes to
smart grids in terms of efficient unit commitment and reli-
able budget planning with a high certitude. Future work will
broaden the scope to include a feasibility investigation of the

proposed model for other smart grid applications including
wind power and load forecasting.
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