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(is study aims to identify discrete element model parameters of rock-like materials. An inverse procedure is developed to
determine the discrete element model parameters from experimental measurements. (is involves the solution of an inverse
problem through minimizing the misfit function which describes the error between numerical computation and experiment by an
optimization procedure. In this procedure, the discrete element method is adopted as the numerical calculation method of the
forward problem. (e orthogonal experimental design is used for parameter sensitivity analysis. Besides, the approximation
model with radial basis function is adopted instead of the actual calculation model to reduce the time of forward calculation. (e
ant-colony optimization algorithm is employed as the inverse operator. (erefore, the parameters of the discrete element model
are optimized by this procedure. (e three-point bending experiment with discrete element simulation is provided to verify the
validity and accuracy of the inversion results. (e results indicate that it can rapidly obtain the available and reliable model
parameters just through a few sets of experimental data. As a result, this inverse procedure can be applied more widely to
parameter identification of the discrete element model for brittle materials.

1. Introduction

With the rapid development of rock engineering, especially
the tunnel construction for high-speed rails [1], shale gas
exploitation [2], and construction of protective engineering
[3], the working efficiency and life of large rock breaking
machinery such as the tunnel boring machine (TBM) are
widely concerned. In the process of rock breaking of the
TBM, hard rock is very prone to brittle failure, which is easy
to cause disasters such as low pressure and rock burst.
(erefore, it is most significant and essential to understand
the mechanical performance and breakage behaviors of rock
materials when they are suffering from different loading.
Traditionally, mechanical properties of rock materials can be
studied through experimental measurements [4–7]. How-
ever, the laboratory experiments or tests are the costly and
time-consuming process. (us, numerical computation has
provided a new way for investigating the mechanical

properties of materials. Among these numerical methods,
the discrete element method (DEM) is one of the best tools
to study the mechanical property of rock materials [8].

(e DEM considers many kinds of discontinuities,
material failure characteristics, and fracture modes. It is
commonly used to numerically compute the mechanical
properties of rock materials by considering them as a col-
lection system with a set of units such as springs, beams, or
separate particles bonded together with contact. Many re-
searchers have studied the mechanical properties of rock-
like materials through the DEM [9–14]. (ese research
results showed that the DEM had a great advantage in
micromechanical representation, which provided a good
avenue to understand material failure characteristics.

For numerical calculation using the DEM, an accurate
set of material input parameter values is needed, which
determines the accuracy of numerical simulation results.
Some microscopic input parameters can be determined
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directly by experiments, while some parameters describing
themechanical behavior of materials at the microscopic level
can only be obtained indirectly. Generally, an initial value is
used in the DEM and gradually adjusted until the error
between the experiment and the simulation reaches the
allowable value [15]. (is way of parameter identification is
called the “trial and error” method. Yang et al. studied the
relationship between the microscopic parameters and the
macroscopic parameters of the parallel bond model and
found that these quantitative relationships between mi-
croscopic and macroscopic properties are empirical [16].
Tan et al. determined the DEM parameters with a set of tests,
comprising the uniaxial compression test, Brazilian test, and
fracture toughness test [17]. However, the “trial and error”
method for identifying the microscopic parameters depends
on previous experience, with randomness and blindness.
Simultaneously, this method is very expensive and time-
consuming. In order to overcome these obstacles, it is
necessary to seek an effective way to determine these mi-
croscopic input parameters. By now, the inverse method for
parameter identification is more suitable.

(e inverse method for parameter identification is aimed
at searching the optimal input parameters such that themodel
responses best match the experimental data. In recent years,
the computational inverse method has made good progress in
the field of model parameter identification [18–23]. (e in-
verse method for identifying the DEM parameters uses the
complex relationship between the macroscopic responses
from experimental measurements and the microscopic input
constants. (is complex relationship is generally recon-
structed by a given mathematical model that describes for-
ward problems. Hence, as a number of accurate experimental
responses are obtained, the unknown microscopic input
parameters of the DEM can be determined through solving
the inverse problem, which is properly established.

(e aim of this study, therefore, is to propose an effective
inverse technique for determining the model parameters of
the DEM for rock-like materials.(e remainder of this study
is organized as follows: In Section 2, the outline of the in-
verse procedure is presented and uniaxial compression and
three-point bending tests of granite were carried out to
provide input data and validation data. Moreover, the mi-
croscopic parameters were successfully determined by the
inverse analysis, which then combines with forward cal-
culation, sensitivity analysis, approximate model, and op-
timization algorithm. In Section 3, the identified results are
given and discussions on the three-point bending tests are
performed to verify the reliability of the inverse procedure.

2. Inverse Analysis: An Objective
Identification Process

(e inverse process for the DEM parameter identification for
rock-like brittle materials is shown in Figure 1. In the process,
firstly, it is necessary to analyze themechanical behaviors of the
material and perform the physical mechanics experiments and
then clarify the corresponding forward and inverse problem
forms. According to the mechanics experiment, the corre-
sponding forward problemmodel is built. Secondly, in order to

ensure the existence and solvability of the inverse problem, the
model parameters need to be analyzed by sensitivity analysis
and then the inversed parameters are determined. (en, the
forward solver needs to be repeatedly called in the parameters’
inverse process. (erefore, the approximate model is usually
adopted instead of the numerical calculation model to enhance
the computational efficiency. Furthermore, the calculation
response obtained by solving the forward problem is compared
with the experimental measurement response, and the inverse
objective function is established according to the practical
problems and the requirements of the solution. Furthermore, it
is necessary to use the efficient and reliable optimization al-
gorithm to obtain the inverse results. In this work, the objective
function is defined to estimate the gap between experimental
measures and numerical data. Objective function used here is

Fobj(r) �􏽘
n

i�1

ym
i − y

c
i (r)( 􏼁2, (1)

where r is the vector of inversed parameters, ym
i is the

response measured from the experiment, yc
i (r) is the

computational response, and n is the number of data points.
Finally, if the convergence criteria can be satisfied, the

inversed parameters are obtained. On the contrary, if not, it
is needed to add new samples and calculate the forward
problem again to reconstruct the approximate model.
Furthermore, the previous steps are repeated until the cri-
teria of convergence are satisfied, as shown in Figure 1.

2.1. Mechanical Property Tests for Granite

2.1.1. Sample Preparation and Experimental Equipment.
Combining the inverse technique, the following two basic
physical mechanics experiments are carried out to obtain a
prepared and reliable source of experimental data. (ey are
the uniaxial compression test and three-point bending test.

As shown in Figure 2, the rock sample selected for the test
is granite. (e rock samples used in the test are prepared
according to the relevant experimental rules of rock me-
chanics. All granite samples were taken from the same large
rockmass with good homogeneity. During the coring process,
the drilling directions are parallel to each other to ensure the
verticality and parallelism of the experimental sample. (e
end face of each sample was carefully ground using a stone
grinder. Among them, the samples used for the uniaxial
compression tests are cylindrical samples with a diameter of
50mm and a height of 100mm. (e samples used for the
three-point bending tests are cylindrical specimens having a
diameter of 50mm, a height of 220mm, a slit length of
18mm, and a slit width of 2mm. (e sample size meets the
requirements of the International Rock Mechanics Institute
for determining the type I static fracture toughness method.
In the tests, AX and CX were used to number the test samples
in three different test modes, where A represents a uniaxial
compression test, C represents a three-point bending test, and
X is the serial number of the sample under each test mode.
Among them, the uniaxial compression test uses the INS-
TRON 1346 electrohydraulic servo test machine, and the
three-point bending test uses the INSTRON 1342
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electrohydraulic servo test machine. (e installation position
of the test device and samples are shown in Figures 3 and 4.

2.1.2. Experimental Results. (e force-displacement curves
and stress-strain curves of the uniaxial compression test are
shown in Figure 5.(e uniaxial compression strength (UCS) of

the granite sample has a maximum value of 140.25MPa, a
minimum value of 137.19MPa, and an average value of
138.8MPa. Young’s modulus is up to 44.29GPa, the lowest
Young’s modulus is 39.95GPa, and the average Young’s
modulus is 41.5GPa. Poisson’s ratio is usually expressed as the
ratio of the average of the lateral strain along the X-axis to the

(a) (b)

Figure 2: Test samples. (a) Uniaxial compression test sample. (b) (ree-point bending test sample.
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Figure 1: Schematic chart for the parameter identification process.
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average of the lateral strain along the Y-axis. So based on the
experimental measurement, the value of Poisson’s ratio is at
most 0.24, the minimum is 0.22, and the average is 0.23.

(rough the analysis of the above data, it has been found that
the UCS, Young’s modulus, and Poisson’s ratio between the
samples are not much different, the error of which is in the

Figure 3: Uniaxial compression test device.
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Figure 4: (ree-point bending test information. (a) Schematic diagram. (b) Specific device.

A1

A2

A3

0.2 0.4 0.6 0.8 1.00.0

Displacement (mm)

0

50

100

150

200

250

300

F
o

rc
e 

(k
N

)

(a)

A1

A2

A3

0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

Strain (%)

0

20

40

60

80

100

120

140

160

St
re

ss
 (

M
P

a)

(b)

Figure 5: Uniaxial compression test curves. (a) Force-displacement curves. (b) Stress-strain curves.
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range of 10%. (ese indicate that the homogeneity of the
granite sample is better.(e influence ofmaterial heterogeneity
on the results of uniaxial compression tests is within the error
range. Meanwhile, the peak strain corresponding to the peak
stress of sample A1 was found to be 0.425%, the peak strain of
A2 was 0.451%, and the peak strain of A3 was 0.482%.(e axial
strain of the sample before failure was between 0.425% and
0.482%, both less than 1%. According to the principle of
brittleness and toughness of brittle materials, the axial strain
beforematerial failure is less than 3% that of the brittlematerial.
(erefore, the granite samples have strong brittleness.

(e force and load point displacement curves of the
three-point bending test are shown in Figure 6. (e max-
imum force of the rock sample is 1.509 kN, the minimum
force is 1.396 kN, and the average force is 1.453 kN, and the
fracture toughness KIC can be obtained by the following
formula:

KIC � 0.25
Sd
D

Pmax

D1.5
y
a

D
􏼒 􏼓,

y
a

D
􏼒 􏼓 � 12.75(a/D)0.5 1 + 19.65(a/D)4.5􏽨 􏽩0.5

(1 − (a/D))0.25
,

(2)

where a is the straight incision depth, D is the diameter of
the test piece, Pmax is the maximum load of the fracture
failure, and Sd is the distance between the two support
points. In the experiment of this paper, Sd is 160mm.

By calculation based on the above formulas, the maxi-
mum fracture toughness is 1.062MPa·m1/2, the minimum is
1.048MPa·m1/2, and the average is 1.057MPa·m1/2. When
the maximum load occurs, the displacement of the load
point is basically concentrated at 0.15-0.16mm.

(e above test data were collated, and the obtained
mechanical properties of granite are summarized in Table 1.

2.2. ForwardCalculation. In this work, the DEMwas used as
the numerical calculator of the forward problem. (e DEM
should be corresponded with the actual material test. In this
study, the uniaxial compression test was used to identify the
DEM parameters. Based on the tests, the DEM could be
built. As the scale of the specimen and the applied load were
plane stress problems, a two-dimensional axisymmetric
DEM was built, as shown in Figure 7. In this numerical
model, for the uniaxial compression test, the length W,
height L, and density ρ of this model were 50mm, 100mm,
and 2622 kg/m3, respectively.

In the DEM, the number of particles is very important
for the numerical model. Usually, the more the number of
particles is, the higher the accuracy of the DEM is. Some
studies have shown that as the number of particles is more
than 6000, the model could be more accurate [24]. In this
work, the minimum radius of particles was 0.25mm, the
average particle diameter was 0.33mm, the maximum-to-
minimum radius ratio was 1.65, and the number of particles
was 12,952.

A suitable numerical model for describing the me-
chanical behaviors of the material is of great importance for
the computational accuracy of the DEM. (ere are many

numerical models for the material in the DEM, such as the
contact stiffness model, contact sliding model, and bond
particle model (BPM).(e BPM is one of the most commonly
usedmodels, which is a combination of particles, in which the
particles are joined together by parallel bond. (is model can
represent many features of material behaviors, such as elas-
ticity, fracturing, and failure. Hence, the BPM was used to
describe the mechanical behaviors of granite in this work.

2.3. BPMand Its Parameter Analysis. Potyondy and Cundall
proposed the BPM to reproduce many features of rock
behavior [15]. (e BPM contains two forms, which are
contact bond and parallel bond. As shown in Figure 8, the
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Figure 6: (ree-point bending test force and displacement curves.

Table 1: Mechanical properties of granite.

Mechanical property parameters Symbol Value Unit

Density ρ 2622 kg/m3

Young’s modulus E 41.5 GPa
Poisson’s ratio υ 0.23 —
UCS σ 138.8 MPa
Fracture toughness KIC 1.057 MPa·m1/2

Wall

Figure 7: Discrete element simulation model.
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parallel bond is not only able to transmit the tension and
shear force between the particles but also able to transmit the
moment and torque between the particles.

(e contact force between the particles would be divided
into normal force and shear force as

Fi � F
nni + F

sti, (3)

where the contact force vector Fi denotes the contact be-
havior of particle A on B, as shown in Figure 9, Fn is the
normal force component, Fs is the shear force component, ni
is the normal unit vector of the contact plane, and ti is the
tangential one.

(e magnitude of the tangential force Fs is calculated
in increments. When the two particles are in contact, Fs is
initially zero, and then it is incremented with the cor-
responding tangential displacement increment. (e
normal force and the increment of shear force are cal-
culated by

Fn
� KnUn,

ΔFs
� − KsΔUs,

(4)

where Kn is the normal stiffness value at the contact, Ks is
the shear stiffness value,Un denotes the overlap of the couple
of particles at contact, ΔFs denotes the increment of Fs, and
ΔUs denotes the relative shear displacement.

Once the tension or shear force exceeds the limit of
normal strength or tangential strength between the particles,
the bond between the two particles should break. At the
same time, the corresponding force and torque can be re-
moved. Figure 10 shows the action of the bond at contact
[25, 26].

Hence, the DEM constructed with the BPM contains
eight microscopic parameters, which are listed as follows:
the friction coefficient of the particles μ, the radius

multiplier of the parallel bond λ which is used to set the
parallel-bond radii, the ball effective modulus Ec, the bond
effective modulus Ec, the normal-to-shear stiffness ratio of
the ball Kn/Ks, the normal-to-shear stiffness ratio of the
parallel bond Kn/Ks, the tensile strength of the parallel
bond σc, and the shear strength of the parallel bond τc.
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Figure 8: BPM model diagram.

Particle A

Ks

μ
τ
–
c

Kn σ
–
c

Particle B

Figure 9: Contact behavior of particles A and B.

Bond breaks

Tension

Bond breaks

Slip model 1 1

Shear

When Us > 0

Overlap

Slip model

K
sK

n

k
i : contact spring

Ui : overlap amount

Fc
i : bond strength

Fc
n

Fc
s

F
s
fric

Compression

Un (Us)

Figure 10: Behavior of the bond at contact.

6 Mathematical Problems in Engineering



Some previous studies indicate that, for brittle materials,
the radius multiplier of the parallel bond λ is usually set to
be 1. (e ball effective modulus and the bond effective
modulus are set to the same value, and the stiffness ratio of
the ball and the stiffness ratio of the parallel bond are set to
the same value [27]. However, it is difficult to determine
the other five parameters (μ, Ec, Kn/Ks, σc, and τc) by the
existing theory or test method. (erefore, this paper
proposes the inverse procedure to identify these micro-
scopic input parameters.

2.4. Sensitivity Analysis. Generally, the input variables
should be highly sensitive to the output for reducing the ill-
posed problem during parameter identification. In other
words, the input and output should have a great causal-effect
relationship. As the orthogonal experimental design (OED)
method is an available tool to investigate the problem with
many factors and levels, in this work, it was adopted for
sensitivity analysis of unknown parameters. (en, the
friction coefficient of the particles μ, the effective modulus of
the particles Ec, the normal-to-shear stiffness ratio of the
particles Kn/Ks, the tensile strength of the parallel bond σc,
and the shear strength of the parallel bond τc were selected as
variables and an L16(4

5) orthogonal array was adopted, as
listed in Table 2. (rough forward numerical computations,
the three macroscopic response variables (Young’s modulus
E, Poisson’s ratio υ, and uniaxial compressive strength σ)
could be obtained with different sets of unknown param-
eters. So the DEM calculations of 16 groups of different
model microscopic parameters were carried out through the
orthogonal experimental table, and the results are listed in
Table 3.

(e range analysis is one of the commonly used
methods in OED. It can show the difference in the
computational results was different with different levels.
Usually, the greater the difference is, the greater the in-
fluence of the factor is. According to the range analysis,
the orthogonal experimental data of DEM computation
were analyzed. In this study, it is noted that KA

i is the
summation of the “i” level (i � 1, 2, 3, and 4) in the A
factor, kAi � K

A
i /4, and RAi � max kAi􏽮 􏽯 − min kAi􏽮 􏽯. (e

greater the value of R is, the greater the impact of this
factor on the result is [28]. Hence, the analysis results are
listed in Tables 4–6.

It can be seen from the R value of the range analysis
that the effective modulus of the particles Ec has the
greatest effect on Young’s modulus and its corresponding
R value is 29.07. (e stiffness ratio of the particles Kn/Ks

has the greatest effect on Poisson’s ratio and its corre-
sponding R value is 0.195, while the tensile strength of the
parallel bond σc has the greatest influence on UCS and its
R is 74.74. In addition, in the range analysis of Poisson’s
ratio, the friction coefficient μ has the second largest
impact on Poisson’s ratio. However, the R value of
stiffness ratio is still more than 6 times the R value of the
friction coefficient. (erefore, the remaining two pa-
rameters friction coefficient μ and shear strength τc have
little effect on the calculation results. (en, it can be found

that the three most sensitive parameters were Ec, Kn/Ks,
and σc. Simultaneously, based on the results of parameter
sensitivity analysis and experimental measures, the value
range of these three parameters could be initially
designed. (e value ranges of inversed parameters were as
follows: Ec (20 GPa and 30 GPa), Kn/Ks [1, 3], and σc
(30MPa and 50MPa). Moreover, according to other re-
search [29, 30], the friction coefficient of the particles μ
and the shear strength of the parallel bond τc can be set to
0.5 and 90MPa, respectively.

2.5. RBF Approximate Model. (e approximate model
technique was used to replace the actual calculation
model for promoting the calculation efficiency. (e
construction of the approximate model can be divided
into three parts, namely, experimental design, model
selection, and model evaluation. (e Latin hypercube
design (LHD) method was adopted for multifactorial
experimental design. It has a great sample-recording
ability and can effectively avoid repeated sampling. More
importantly, it has good equality and can extract samples
distributed in the boundary position. In this work, 30
samples were produced by the LHD method, as shown in
Table 7. In this paper, the radical basis function (RBF)
was adopted, which has simple principles and high ac-
curacy for high-dimensional nonlinear problems, and the
Gaussian function was used for RBF. (e approximate
model can be described as

􏽢y(x) �􏽘
m

i�1

wiφ X − Xi

���� ����􏼐 􏼑, (5)

where wi is the weight coefficient of the linear combination
of the function φ, ‖X − Xi‖ is the Euclidean distance between
the unknown point and the sample point, and φ represents
the radial basis function, as shown in Table 8.

(irty samples were used to construct the RBF ap-
proximate model, and other three random samples were
used to verify whether the model was accurate. (e actual
sample output and the expected output of test samples are
shown in Table 9, and it can be found that the basic pre-
diction error was within 5%. (erefore, it indicates that this
RBF approximation model is reliable.

Hence, the objective function can be expressed as

Fobj(r) �􏽘
3

i�1

ym
i − y

c
i (r)( 􏼁2, (6)

where r is the vector of inversed parameters (Ec, Kn/Ks, and
σc) and y is the vector of responses (E, υ, and σ).

Table 2: Selected levels for the macroscopic properties.

Levels
Factors

Ec (GPa) Kn/Ks σc (MPa) τc (MPa) μ

1 15 1.0 20 50 0.3
2 20 1.67 30 70 0.4
3 25 2.33 40 90 0.5
4 30 3.0 50 110 0.6
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Table 3: Results of the orthogonal experiment.

Number
Factors Results

Ec (GPa) Kn/Ks σc (MPa) τc (MPa) μ E (GPa) υ σ (MPa)

1 15 1.0 20 50 0.3 31.95 0.135 84.75
2 15 1.67 30 70 0.4 29.13 0.217 114.64
3 15 2.33 40 90 0.5 27.5 0.265 138.69
4 15 3.0 50 110 0.6 26.33 0.3 160.59
5 20 1.0 30 90 0.6 44.26 0.098 134.35
6 20 1.67 20 110 0.5 39.45 0.204 82.07
7 20 2.33 50 50 0.4 36.36 0.274 129.29
8 20 3.0 40 70 0.3 34.06 0.324 124.79
9 25 1.0 40 110 0.4 54.02 0.119 162.76
10 25 1.67 50 90 0.3 47.81 0.231 169.97
11 25 2.33 20 70 0.6 46.52 0.255 79.83
12 25 3.0 30 50 0.5 43.67 0.306 101.03
13 30 1.0 50 70 0.5 65.62 0.108 156.97
14 30 1.67 40 50 0.6 59.61 0.196 125.94
15 30 2.33 30 110 0.3 53.81 0.284 107.39
16 30 3.0 20 90 0.4 52.16 0.31 71.24

Table 4: Range analysis data of Young’s modulus.

Value name Ec Kn/Ks σc τc μ

K1 114.91 195.85 170.08 171.59 167.63
K2 154.13 176.00 170.87 175.33 171.67
K3 192.02 164.19 175.19 171.73 176.24
K4 231.20 156.22 176.12 173.61 176.72
k1 28.73 48.96 42.52 42.90 41.91
k2 38.53 44.00 42.72 43.83 42.92
k3 48.01 41.05 43.80 42.93 44.06
k4 57.80 39.06 44.03 43.40 44.18
R 29.07 9.90 1.51 0.93 2.27

Table 5: Range analysis data of Poisson’s ratio.

Value name Ec Kn/Ks σc τc μ

K1 0.917 0.460 0.904 0.911 0.974
K2 0.900 0.848 0.905 0.904 0.920
K3 0.911 1.078 0.904 0.904 0.883
K4 0.898 1.240 0.913 0.907 0.849
k1 0.229 0.115 0.226 0.228 0.244
k2 0.225 0.212 0.226 0.226 0.230
k3 0.228 0.270 0.226 0.226 0.221
k4 0.225 0.310 0.228 0.227 0.212
R 0.004 0.195 0.002 0.002 0.032

Table 6: Range analysis data of uniaxial compressive strength.

Value name Ec Kn/Ks σc τc μ

K1 498.67 538.83 317.89 441.01 486.90
K2 470.50 492.62 457.41 476.23 477.93
K3 513.59 455.20 552.18 514.25 478.76
K4 461.54 457.65 616.82 512.81 500.71
k1 124.67 134.71 79.47 110.25 121.73
k2 117.63 123.16 114.35 119.06 119.48
k3 128.40 113.80 138.05 128.56 119.69
k4 115.39 114.41 154.21 128.20 125.18
R 13.01 20.91 74.74 18.31 5.70

Table 7: Test design sampling points.

Number
Input Output

E (GPa) Kn/Ks σc (MPa) E (GPa) υ σ (MPa)

1 20.03 2.89 46.30 35.69 0.300 151.51
2 26.00 2.82 38.24 45.96 0.296 130.68
3 29.18 2.69 31.64 52.03 0.287 112.44
4 27.86 1.47 34.85 56.23 0.180 141.35
5 21.51 2.19 32.32 40.11 0.252 122.16
6 23.74 1.02 35.34 51.75 0.113 144.75
7 25.23 1.92 39.19 48.21 0.231 146.14
8 29.41 1.59 41.26 58.33 0.196 157.21
9 21.18 1.36 39.93 43.44 0.167 154.29
10 28.99 1.44 48.62 58.74 0.178 171.32
11 27.61 1.84 40.40 53.19 0.223 151.91
12 24.09 1.22 49.03 50.55 0.146 166.59
13 21.84 2.22 42.42 40.47 0.256 155.95
14 24.95 1.98 49.49 47.32 0.236 175.91
15 25.55 2.49 33.58 46.15 0.273 119.42
16 20.80 2.57 44.82 37.42 0.281 150.32
17 26.94 2.34 36.04 49.56 0.264 131.45
18 22.09 1.08 43.35 47.53 0.123 164.02
19 24.59 1.18 45.87 51.96 0.140 161.53
20 26.03 1.63 31.24 51.55 0.200 123.04
21 22.58 2.03 34.20 42.80 0.240 129.44
22 23.08 2.43 33.27 42.12 0.270 118.80
23 27.27 1.74 42.98 53.13 0.213 162.00
24 22.90 2.78 47.65 40.56 0.294 156.60
25 28.64 2.65 36.76 51.36 0.284 130.21
26 29.81 2.99 47.01 52.05 0.305 152.77
27 28.11 2.07 44.40 52.83 0.244 160.83
28 23.48 1.69 30.22 46.13 0.207 118.06
29 26.52 1.30 41.51 54.97 0.159 161.21
30 20.45 2.29 37.65 37.66 0.261 135.05

Table 8: Radial basis function (c> 0).
Function φ(r)

Gaussian φ(r) � e− cr
2
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2.6. Ant-Colony Optimization Algorithm. To promote the
computational inverse accuracy, the ant-colony optimiza-
tion (ACO) method was adopted for the optimization al-
gorithm. It is a very effective metaheuristic algorithm to
solve the complicated engineering problems. In this algo-
rithm, the search way is according to population, and it has
very strong parallel computing capability. (e ACO algo-
rithm has several advantages, such as distributed compu-
tation, constructive greedy heuristics, and positive feedback
[31].(e greatest advantage of this method is that it can tune
a lot of parameters simultaneously and it can be used to solve
optimization problems.

Because of these advantages, the ACO algorithm was
employed as the inverse operator to determine the
inversed parameters of the DEM. When using this algo-
rithm, the number of ant colonies m is 50, the maximum
number of iterations is 200, the information heuristic
factor α is set to 1, the information residual factor ρ is 0.5,
and the expected heuristic factor β is 5. (e objective
function information is applied to guiding and judging the
search process. (e relative errors between the measured
data and the numerical computation results based on the
inversed parameters are below 5%. If these above con-
ditions are satisfied, these inversed parameters can be
considered reliable.

3. Identification Results and Discussion

3.1. Results. Based on the above-mentioned inverse
procedure, parameters of the DEM for granite were
determined and are shown in Table 10. (e convergence
curves of ACO for determination of objective function
are shown in Figure 11(a). It can be seen that the ACO
has a fine convergence performance in this study. (e
computational efficiency curves of ACO for three
inversed parameters are shown in Figures 11(b)–11(d).
(ey show that the computational efficiency is fine, and
the largest number of generations is about 80, which
occurs in the process of inversely determining the
stiffness ratio.

In addition, the value of objective function was 0.0133,
which satisfies the evaluation criteria. (e parameters were
substituted into DEM numerical calculation, and the results
and the experimental curves are shown in Figure 12.

For estimating the goodness of fit between the calculated
results and the experimental data, the relative error RE and
the correlation coefficient CC were used. (e functions of
the expression are stated as follows:

RE �
yC − yM
���� ����

yM
���� ���� ,

CC �
􏽘n

i�1
yCi − X yC( 􏼁􏼂 􏼃 yMi − X yM( 􏼁􏼂 􏼃

yC − X yC( 􏼁􏼂 􏼃 yM − X yM( 􏼁􏼂 􏼃 ,

(7)

where n denotes the number of sampling points and X(y)
denotes the average of the responses.

According to the evaluation principle, the smaller the RE
and the larger the CC, the higher the coincidence degree of
the two curves. If the RE is 0 and the CC is 1, the two curves
are completely coincident. (rough the calculation, the two
curves’ RE is 0.035 and the correlation coefficient CC is
0.996. According to the evaluation principle, it can be shown
that the numerical results based on the inversed parameter
values are in good agreement with the measurement curves
from the experiment.

At the same time, the effective and reliable DEM
parameters determined by the inverse procedure are
substituted into the DEM positive problem calculation.
(e simulated sample damage form is compared with the
experimental sample damage form, as shown in Figure 13.
Because the loading surface is wide and the damage form
is greatly affected by the material homogeneity, the
comparison results will be somewhat fuzzy but overall
consistent.

3.2.Discussion. (e three-point bending test is used to verify
the model parameters. In the corresponding DE modeling
process, the three-point bending test is simulated as a plane
stress problem, which is treated as a two-dimensional DEM.
(e basic dimensions are consistent with those of the test
samples, and the detailed dimensions are shown in Fig-
ure 14. In this numerical model, for the three-point bending
test, the length W, height L, and density ρ were 220mm,
50mm, and 2622 kg/m3, respectively. In this model, the
minimum radius of particles was 0.25mm, the average
particle diameter was 0.33mm, the maximum-to-minimum
radius ratio was 1.65, and the number of particles was 28458.

Table 9: Test results.

Output variable
Test sample 1 Test sample 2 Test sample 3

Actual output Expected value Actual output Expected value Actual output Expected value

E (GPa) 39.15 37.49 58.5 57.91 47.62 48.05
υ 0.276 0.267 0.17 0.172 0.126 0.127
σ (MPa) 163.32 155.43 171.04 169.72 163.82 161.69

Table 10: Results of parameter identification.

Inversed parameters Searching domain Identified values

Ec (GPa) (20.0, 30.0) 21.65
Kn/Ks (1.0, 3.0) 1.9
σc (MPa) (20.0, 40.0) 36.55

Mathematical Problems in Engineering 9



(e DEM parameters identified in the previous work are
applied to the three-point bending model, and the loading
conditions are set to be consistent with those of the test. (e
comparison between the obtained macroscopic mechanical
indexes and the test results is listed in Table 11. It can be found
that the error is about 10%, within the accuracy requirements.

As shown in Figure 15, it can be clearly seen that the simulated
sample damage results almost coincide with the damage
results from the experiment, and it indicates the availability of
the inversed parameters. (e above work also indicates that
this inverse procedure can be effectively applied to the pa-
rameter identification problem of DEMs.
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4. Conclusions

In this work, the microscopic parameters of the DEM for
granite have been determined by using the inverse
procedure. To identify the microscopic parameters, the
error between the synthetic measurements and the cal-
culated data has been minimized by the inverse tech-
nique. A few of uniaxial compressive experimental data
are used as the input for determining the unknown
parameters. (en, the parameters of the DEM are
identified through the above work, and the agreement
between the computational curves and the experimental
results is good. Subsequently, it verifies the accuracy of
the inverse results with the three-point bending tests.
And the results demonstrate the availability of this in-
verse technique. As a consequence, the inverse procedure
for parameter identification can be applied to quickly
determine the unknown model parameters with high
efficiency and accuracy, which provides an effective
understanding of the mechanical properties of rock-like
brittle materials.

(a) (b)

Figure 13: Comparison of simulated and test destruction result. (a) Simulated result. (b) Test result.

Figure 14: DEM for the three-point bending test sample.

(a)

(b)

Figure 15: Comparison of simulated and test destruction result. (a)
Simulated result. (b) Test result.

Table 11: Comparison of discrete element simulation results with
test results.

KIC (MPa·m1/2)

Test result 1.057
Simulation result 1.163
Relative error 10%
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