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AN EFFECTIVE MATRIX GEOMETRIC MEAN SATISFYING

THE ANDO–LI–MATHIAS PROPERTIES

DARIO A. BINI, BEATRICE MEINI, AND FEDERICO POLONI

Abstract. We propose a new matrix geometric mean satisfying the ten prop-
erties given by Ando, Li and Mathias [Linear Alg. Appl. 2004]. This mean is
the limit of a sequence which converges superlinearly with convergence of or-
der 3 whereas the mean introduced by Ando, Li and Mathias is the limit of a
sequence having order of convergence 1. This makes this new mean very easily
computable. We provide a geometric interpretation and a generalization which
includes as special cases our mean and the Ando-Li-Mathias mean.

1. Introduction

In several contexts, it is natural to generalize the geometric mean of two positive
real numbers a# b :=

√
ab to real symmetric positive definite n× n matrices as

(1.1) A#B := A(A−1B)1/2 = A1/2(A−1/2BA−1/2)1/2A1/2.

Several papers, e.g. [3, 4, 9], and a chapter of the book [2] are devoted to study-
ing the geometry of the cone of positive definite matrices P

n endowed with the
Riemannian metric defined by

ds =
∥∥∥A−1/2dAA−1/2

∥∥∥ ,
where ‖B‖ =

√∑
i,j |bi,j |2 denotes the Frobenius norm. The distance induced by

this metric is

(1.2) d(A,B) = || log(A−1/2BA−1/2)||.
It turns out that on this manifold the geodesic joining X and Y has the equation

γ(t) = X1/2(X−1/2Y X−1/2)tX1/2 = X(X−1Y )t =: X#t Y, t ∈ [0, 1],

and thus A#B is the midpoint of the geodesic joining A and B. An analysis of
numerical methods for computing the geometric mean of two matrices is carried
out in [7].

It is less clear how to define the geometric mean of more than two matrices. In
the seminal work [1], Ando, Li and Mathias list ten properties that a “good” matrix
geometric mean should satisfy, and they show that several natural approaches based
on a generalization of formulas working for the scalar case, or for the case of two
matrices, do not work well. They propose a new definition for the mean of k
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matrices satisfying all the requested properties. We refer to this mean as to the
Ando-Li-Mathias mean, or the ALM-mean, for short.

The ALM-mean is the limit of a recursive iteration process where at each step
of the iteration k geometric means of k−1 matrices must be computed. One of the
main drawbacks of this iteration is its linear convergence. In fact, the large number
of iterations needed to approximate each geometric mean at all the recursive steps
makes it quite expensive to actually compute the ALM-mean with this algorithm.
Moreover, no other algorithms endowed with a higher efficiency are known.

A class of geometric means satisfying the Ando, Li, Mathias requirements has
been introduced in [8]. These means are defined in terms of the solution of cer-
tain matrix equations. This approach provides interesting theoretical properties
concerning the means but no effective tools for their computation.

In this paper, we propose a new matrix geometric mean satisfying the ten prop-
erties of Ando, Li and Mathias. Similar to the ALM-mean, our mean is defined
as the limit of an iteration process with the relevant difference that convergence
is superlinear with order of convergence at least three. This property makes it
much less expensive to compute this geometric mean since the number of iterations
required to reach a high accuracy is dropped down to just a few.

The iteration on which our mean is based has a simple geometrical interpretation.
In the case k = 3, given the positive definite matrices A1, A2, A3, we generate three

matrix sequences A
(m)
1 , A

(m)
2 , A

(m)
3 starting from A

(0)
i = Ai, i = 1, 2, 3. At the step

m + 1, the matrix A
(m+1)
1 is chosen along the geodesic which connects A

(m)
1 with

the midpoint of the geodesic connecting A
(m)
2 to A

(m)
3 at distance 2/3 from A

(m)
1 .

The matrices A
(m+1)
2 and A

(m+1)
3 are similarly defined. In the case of Euclidean

geometry, just one step of the iteration provides the value of the limit, i.e., the

centroid of the triangle with vertices A
(m)
1 , A

(m)
2 , A

(m)
3 . In fact, the medians in a

triangle intersect each other at 2/3 of their length. In the different geometry of the
cone of positive definite matrices, the geodesics which play the role of the medians
might not even intersect each other.

In the case of k matrices A1, A2, . . . , Ak, the matrix A
(m+1)
i is chosen along the

geodesic which connects A
(m)
i with the geometric mean of the remaining matrices,

at distance k/(k + 1) from A
(m)
i . In the customary geometry, this point is the

common intersection point of all the “medians” of the k-dimensional simplex formed

by all the matrices A
(m)
i , i = 1, . . . , k. We prove that the sequences (A

(m)
i )∞m=1,

i = 1, . . . , k, converge to a common limit Ā with order of convergence at least 3.
The limit Ā is our definition of the geometric mean of A1, . . . , Ak.

It is interesting to point out that our mean and the ALM-mean of k matrices
can be viewed as two specific instances of a class of more general means depending
on k − 1 parameters si ∈ [0, 1], i = 1, . . . , k − 1. All the means of this class
satisfy the requirements of Ando, Li and Mathias; moreover, the ALM-mean is
obtained with s = (1, 1, . . . , 1, 1/2), for s = (si), while our mean is obtained with
s = ((k − 1)/k, (k − 2)/(k − 1), . . . , 1/2). The new mean is the only one in this
class for which the matrix sequences generated at each recursive step converge
superlinearly.

The article is structured as follows. After this introduction, in Section 2 we
present the ten Ando–Li–Mathias properties and briefly describe the ALM-mean;
then, in Section 3, we propose our new definition of a matrix geometric mean and



AN EFFECTIVE MATRIX GEOMETRIC MEAN 439

prove some of its properties by also giving a geometrical interpretation; in Section
4 we provide a generalization which includes the ALM-mean and our mean as
two special cases. Finally, in Section 5 we present some numerical experiments of
explicit computations involving this means concerning some problems from physics.
It turns out that, in the case of six matrices, the increased speed reached by our
approach with respect to the ALM-mean is by a factor greater than 200. We
also experimentally demonstrate that the ALM-mean is different, even though very
close, from our mean. Finally, for k = 3 we provide a pictorial description of the
parametric family of geometric means.

2. Known results

Throughout this section we use the positive semidefinite ordering defined by
A ≥ B if A−B is positive semidefinite. We denote by A∗ the conjugate transpose
of A.

2.1. Ando–Li–Mathias properties for a matrix geometric mean. Ando, Li
and Mathias [1] proposed the following list of properties that a “good” geometric
mean G(·) of three matrices should satisfy.

P1: Consistency with scalars. If A, B, C commute, then G(A,B,C) =
(ABC)1/3.

P2: Joint homogeneity. G(αA, βB, γC) = (αβγ)1/3G(A,B,C).
P3: Permutation invariance. For any permutation π(A,B,C) of A, B, C it

follows that G(A,B,C) = G(π(A,B,C)).
P4: Monotonicity. If A ≥ A′, B ≥ B′, C ≥ C ′, then G(A,B,C) ≥

G(A′, B′, C ′).
P5: Continuity from above. If An, Bn, Cn are monotonically decreasing se-

quences converging to A, B, C, respectively, then G(An, Bn, Cn) converges
to G(A,B,C).

P6: Congruence invariance. For any nonsingular S, G(S∗AS, S∗BS, S∗CS) =
S∗G(A,B,C)S.

P7: Joint concavity. If A = λA1 + (1 − λ)A2, B = λB1 + (1 − λ)B2, C =
λC1+(1−λ)C2, then G(A,B,C) ≥ λG(A1, B1, C1)+(1−λ)G(A2, B2, C2).

P8: Self-duality. G(A,B,C)−1 = G(A−1, B−1, C−1).
P9: Determinant identity. detG(A,B,C) = (detA detB detC)1/3.
P10: Arithmetic–geometric–harmonic mean inequality:

A+B + C

3
≥ G(A,B,C) ≥

(
A−1 +B−1 + C−1

3

)−1

.

Moreover, it is proved in [1] that P5 and P10 are consequences of the others. Notice
that all these properties can be easily generalized to the mean of any number of
matrices. We will call a geometric mean of three or more matrices any map G(·)
satisfying P1–P10 or their analogues for a number k ≥ 3 of entries.

2.2. The Ando–Li–Mathias mean. Here and hereafter, we use the following
notation. We denote by G2(A,B) the usual geometric mean A#B and, given the
k-tuple (A1, . . . , Ak), we define

Zi(A1, . . . , Ak) = (A1, . . . , Ai−1, Ai+1, . . . , Ak), i = 1, . . . , k,

that is, the k-tuple where the i-th term has been dropped out.
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In [1], Ando, Li and Mathias note that the previously proposed definitions of
means of more than two matrices do not satisfy all the properties P1–P10, and they
propose a new definition that fulfills all of them. Their mean is defined inductively
on the number of arguments k.

Given A1, . . . , Ak positive definite, and given the definition of a geometric mean

Gk−1(·) of k − 1 matrices, they set A
(0)
i = Ai, i = 1, . . . , k, and define for r ≥ 0,

(2.1) A
(r+1)
i := Gk−1(Zi(A

(r)
1 , . . . , A

(r)
k )), i = 1, . . . , k.

For k = 3, the iteration reads⎡
⎣A(r+1)

B(r+1)

C(r+1)

⎤
⎦ =

⎡
⎣G2(B

(r), C(r))

G2(A
(r), C(r))

G2(A
(r), B(r))

⎤
⎦ .

Ando, Li and Mathias show that the k sequences (A
(r)
i )∞r=1 converge to the same

matrix Ã, and finally they define Gk(A1, . . . , Ak) = Ã. In the following, we shall
denote by G(·) the Ando–Li–Mathias mean, dropping the subscript k when not
essential.

An additional property of the Ando–Li–Mathias mean which will turn out to be
important in the convergence proof is the following. Recall that ρ(X) denotes the
spectral radius of X, and let

R(A,B) := max(ρ(A−1B), ρ(B−1A)).

This function is a multiplicative metric; that is, we have R(A,B) ≥ 1 with equality
iff A = B, and

R(A,C) ≤ R(A,B)R(B,C).

The additional property is

P11: For each k≥2, and for each pair of sequences (A1, . . . , Ak), (B1, . . . , Bk),
we require that

R (G(A1, . . . , Ak), G(B1, . . . , Bk)) ≤
(

k∏
i=1

R(Ai, Bi)

)1/k

.

3. A new matrix geometric mean

3.1. Definition. We are going to define for each k ≥ 2 a new mean Ḡk(·) of k
matrices satisfying P1–P11. Let Ḡ2(A,B) = A#B, and suppose that the mean

has already been defined for up to k − 1 matrices. Let us denote, for short, T
(r)
i =

Ḡk−1(Zi(Ā
(r)
1 , . . . , Ā

(r)
k )) and define Ā

(r+1)
i for i = 1, . . . , k as

(3.1) Ā
(r+1)
i := Ḡk(Ā

(r)
i , T

(r)
i , T

(r)
i , . . . , T

(r)
i︸ ︷︷ ︸

k − 1 times

),

with Ā
(0)
i = Ai for all i. Notice that apparently this requires the mean Ḡk(·) to

already be defined; in fact, in the special case in which k − 1 of the k arguments
are coincident, the properties P1 and P6 alone allow one to determine the common
value of any geometric mean:

G(X,Y, Y, . . . , Y ) =X1/2G(I,X−1/2Y X−1/2, . . . , X−1/2Y X−1/2)X1/2

=X1/2(X−1/2Y X−1/2)
k−1
k X1/2 = X# k−1

k
Y.
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Thus we can use this simpler expression directly in (3.1) and set

(3.2) Ā
(r+1)
i = Ā

(r)
i # k−1

k
T

(r)
i .

In sections 3.3 and 3.4, we are going to prove that the k sequences (Ā
(r)
i )∞r=1

converge to a common limit Ā with order of convergence at least three, and this
will enable us to define Ḡk(A1, . . . , Ak) := Ā. In the following, we will drop the
index k from Ḡk(·) when it can be easily inferred from the context.

3.2. Geometrical interpretation. In [3], an interesting geometrical interpreta-
tion of the Ando–Li–Mathias mean is proposed for k = 3. We propose an interpre-
tation of the new mean Ḡ(·) in the same spirit. For k = 3, the iteration defining
Ḡ(·) reads ⎡

⎣Ā(r+1)

B̄(r+1)

C̄(r+1)

⎤
⎦ =

⎡
⎢⎣Ā

(r)# 2
3
(B̄(r)# C̄(r))

B̄(r)# 2
3
(Ā(r)# C̄(r))

C̄(r)# 2
3
(Ā(r)# B̄(r))

⎤
⎥⎦ .

We can interpret this iteration as a geometrical construction in the following way.
To find e.g. Ā(r+1), the algorithm is:

(1) Draw the geodesic joining B̄(r) and C̄(r), and take its midpoint M (r).
(2) Draw the geodesic joining Ā(r) and M (r), and take the point lying at 2/3

of its length: this is Ā(r+1).

If we execute the same algorithm on the Euclidean plane, replacing the word “geo-
desic” with “straight line segment”, it turns out that Ā(1), B̄(1), and C̄(1) coincide
in the centroid of the triangle with vertices A, B, C. Thus, unlike the Euclidean
counterpart of the Ando–Li–Mathias mean, this process converges in one step on
the plane. Roughly speaking, when A, B and C are very close to each other, we can
approximate (in some intuitive sense) the geometry on the Riemannian manifold
P
n with the geometry on the Euclidean plane: since this construction to find the

centroid of a plane triangle converges faster than the Ando–Li–Mathias one, we can
expect that also the convergence speed of the resulting algorithm is faster. This is
indeed what will result after a more accurate convergence analysis.

3.3. Global convergence and properties P1–P11. In order to prove that the
iteration (3.2) is convergent (and thus that Ḡ(·) is well defined), we are going to
adapt a part of the proof of Theorem 3.2 of [1] (namely, Argument 1).

Theorem 3.1. Let A1, . . . , Ak, be positive definite.

(1) All the sequences (Ā
(r)
i )∞r=1 converge for r → ∞ to a common limit Ā.

(2) The function Ḡk(A1, . . . , Ak) satisfies P1–P11.

Proof. We work by induction on k. For k = 2, our mean coincides with the ALM-
mean, so all the required work has been done in [1]. Let us now suppose that the
thesis holds for all k′ ≤ k − 1. We have

Ā
(r+1)
i ≤ 1

k

(
Ā

(r)
i + (k − 1)T

(r)
i

)
≤ 1

k

k∑
i=1

Ā
(r)
i ,

where the first inequality follows from P10 for the ALM-mean Gk(·) (remember
that in the special case in which k − 1 of the arguments coincide, Gk(·) = Ḡk(·)),
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and the second follows from P10 for Ḡk−1(·). Thus,

(3.3)

k∑
i=1

Ā
(r+1)
i ≤

k∑
i=1

Ā
(r)
i ≤

k∑
i=1

Ai.

Therefore, the sequence (Ā
(r)
1 , . . . , Ā

(r)
k )∞r=1 is bounded, and there must be a con-

verging subsequence, say, converging to (Ā1, . . . , Āk).
Moreover, for each p, q ∈ {1, . . . , k} we have

R(Ā(r+1)
p , Ā(r+1)

q ) ≤ R(Ā(r)
p , Ā(r)

q )1/kR(T (r)
p , T (r)

q )
k−1
k

≤ R(Ā(r)
p , Ā(r)

q )1/k(R(Ā(r)
q , Ā(r)

p )
1

k−1 )
k−1
k = R(Ā(r)

p , Ā(r)
q )2/k,

where the first inequality follows from P11 in the special case, and the second
follows from P11 in the inductive hypothesis. Passing to the limit of the converging
subsequence, one can verify that

R(Āp, Āq) ≤ R(Āp, Āq)
2/k,

from which we get R(Āp, Āq) ≤ 1, that is, Āp = Āq, because of the properties of
R; i.e., the limit of the subsequence is in the form (Ā, Ā, . . . , Ā). Suppose there
is another subsequence converging to (B̄, B̄, . . . , B̄); then, by (3.3), we have both
kĀ ≤ kB̄ and kB̄ ≤ kĀ, that is, Ā = B̄. Therefore, the sequence has only one limit
point; thus it is convergent. This proves the first point of the theorem.

We now turn to show that P11 holds for our mean Ḡk(·). Consider the k-tuples

A1, . . . , Ak and B1, . . . , Bk, and let B̄
(r)
i be defined as Ā

(r)
i but starting the iteration

from the k-tuple (Bi) instead of (Ai). We have for each i,

R(Ā
(r+1)
i , B̄

(r+1)
i )

≤ R(Ā
(r)
i , B̄

(r)
i )1/kR(Ḡ(Zi(Ā

(r)
1 , . . . , Ā

(r)
k )), Ḡ(Zi(B̄

(r)
1 , . . . , B̄

(r)
k )))

k−1
k

≤ R(Ā
(r)
i , B̄

(r)
i )1/k

⎛
⎝∏

j �=i

R(Ā
(r)
j , B̄

(r)
j )

1
k−1

⎞
⎠

k−1
k

=

k∏
j=1

R(Ā
(r)
j , B̄

(r)
j )1/k.

This yields
k∏

i=1

R(Ā
(r+1)
i , B̄

(r+1)
i ) ≤

k∏
i=1

R(Ā
(r)
i , B̄

(r)
i );

chaining together these inequalities for successive values of r and passing to the
limit, we get

R(G(A1, . . . , Ak), G(B1, . . . , Bk))
k ≤

k∏
i=1

R(Ai, Bi),

which is P11.
The other properties P1–P4 and P6–P9 (remember that P5 and P10 are conse-

quences of these) are not difficult to prove. All the proofs are quite similar, and
can be established by induction, using also the fact that since they hold for the
ALM-mean, they can be applied to the mean Ḡ(·) appearing in (3.2) (since we just
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proved that all possible geometric means take the same value if applied with k − 1
equal arguments). For the sake of brevity, we provide only the proof for three of
these properties.

P1: We need to prove that if the Ai commute, then Ḡ(A1, . . . , Ak) =

(A1 · · ·Ak)
1/k. Using the inductive hypothesis, we have T

(1)
i =

∏
j �=i Ā

1
k−1

i .
Using the fact that P1 holds for the ALM-mean, we have

Ā
(1)
i = A

1/k
i

⎛
⎝∏

j �=i

A
1

k−1

j

⎞
⎠

k−1
k

=

k∏
i=1

A
1/k
i ,

as needed. So, from the second iteration on, we have Ā
(r)
1 = Ā

(r)
2 = · · · =

Ā
(r)
k =

∏k
i=1 A

1/k
i .

P4: Let T
′(r)
i and Ā

′(r)
i be defined as T

(r)
i and Ā

(r)
i but starting from A′

i ≤ Ai.
Using monotonicity in the inductive case and in the ALM-mean, we have
for each s ≤ 1 and for each i,

T
(r+1)
i ≤ T

′(r+1)
i

and thus
Ā

(r+1)
i ≤ Ā

′(r+1)
i .

Passing to the limit for r → ∞, we obtain P4.

P7: Suppose Ai = λA′
i + (1 − λ)A′′

i , and let T
′(r)
i (resp. T

′′(r)
i ) and Ā

′(r)
i

(resp. Ā
′′(r)
i ) be defined as T

(r)
i and Ā

(r)
i but starting from A′

i (resp. A′′
i ).

Suppose that for some r we have Ā
(r)
i ≥ λĀ

′(r)
i +(1−λ)Ā

′′(r)
i for all i. Then

by joint concavity and monotonicity in the inductive case we have

T
(r+1)
i = Ḡ(Zi(Ā

(r)
1 , . . . , Ā

(r)
k ))

≥ Ḡ(Zi(λĀ
′(r)
1 + (1− λ)Ā

′′(r)
1 , . . . , λĀ

′(r)
k + (1− λ)Ā

′′(r)
k ))

≥ λT
′(r)
i + (1− λ)T

′′(r)
i ,

and by joint concavity and monotonicity of the Ando–Li–Mathias mean we
have

Ā
(r+1)
i = Ā

(r)
i # k−1

k
T

(r)
i

≥
(
λĀ

′(r)
i + (1− λ)Ā

′′(r)
i

)
# k−1

k

(
λT

′(r)
i + (1− λ)T

′′(r)
i

)
≥ λĀ

′(r+1)
i + (1− λ)Ā

′′(r+1)
i .

Passing to the limit for r → ∞, we obtain P7. �
3.4. Cubic convergence. In this section, we will use the big-O notation in the
norm sense; that is, we will write X = Y +O(εh) to denote that there are universal
positive constants ε0 < 1 and θ such that for each 0 < ε < ε0 it follows that
‖X − Y ‖ ≤ θεh. The usual arithmetic rules involving this notation hold. In the
following, these constants may depend on k, but not on the specific choice of the
matrices involved in the formulas.

Theorem 3.2. Let 0 < ε < 1, M and Ā
(0)
i = Ai, i = 1, . . . , k, be positive definite

n× n matrices, and Ei := M−1Ai − I. Suppose that ‖Ei‖ ≤ ε for all i = 1, . . . , k.

Then, for the matrices Ā
(1)
i defined in (3.2) the following hold.
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C1: We have

(3.4) M−1Ā
(1)
i − I = Tk +O(ε3),

where

Tk :=
1

k

k∑
j=1

Ej −
1

4k2

k∑
i,j=1

(Ei − Ej)
2.

C2: There are positive constants θ, σ and ε̄ < 1 (all of which may depend on
k) such that for all ε ≤ ε̄,∥∥∥M−1

1 Ā
(1)
i − I

∥∥∥ ≤ θε3

for a suitable matrix M1 satisfying
∥∥M−1M1 − I

∥∥ ≤ σε.
C3: The iteration (3.2) converges at least cubically.
C4: We have

(3.5) M−1
1 Ḡ(A1, . . . , Ak)− I = O(ε3).

Proof. Let us first find a local expansion of a generic point on the geodesic A#t B:
let M−1A = I + F1 and M−1B = I + F2 with ‖F1‖ ≤ δ, ‖F2‖ ≤ δ, 0 < δ < 1.
Then we have

(3.6)

M−1(A#t B) = M−1A(A−1B)t = (I + F1)
(
(I + F1)

−1(I + F2)
)t

= (I + F1)
(
(I − F1 + F 2

1 +O(δ3))(I + F2)
)t

= (I + F1)
(
I + F2 − F1 − F1F2 + F 2

1 +O(δ3)
)t

= (I + F1)

(
I + t(F2 − F1 − F1F2 + F 2

1 )

+
t(t− 1)

2
(F2 − F1)

2 +O(δ3)

)

= I + (1− t)F1 + tF2 +
t(t− 1)

2
(F2 − F1)

2 +O(δ3),

where we have made use of the matrix series expansion (I + X)t = I + tX +
t(t−1)

2 X2 + O(X3). Now, we are going to prove the theorem by induction on k in
the following way. Let Cik denote the assertion Ci of the theorem (for i = 1, . . . , 4)
for a given value of k. We show that

(1) C12 holds;
(2) C1k =⇒ C2k;
(3) C2k =⇒ C3k,C4k;
(4) C4k =⇒ C1k+1.

It is clear that these claims imply that the results C1—C4 hold for all k ≥ 2 by
induction; we will now turn to prove them one by one.

(1) This is simply equation (3.6) for t = 1
2 .

(2) It is obvious that Tk = O(ε); thus, choosing M1 := M(I + Tk) one has

(3.7) Ā
(1)
i = M(I + Tk +O(ε3)) = M1(I + (I + Tk)

−1O(ε3)) = M1(I +O(ε3)).

Using explicit constants in the big-O estimates, we get∥∥∥M−1
1 Ā

(1)
i − I

∥∥∥ ≤ θε3,
∥∥M−1M1 − I

∥∥ ≤ σε

for suitable constants θ and σ.
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(3) Suppose ε is small enough to have θε3 ≤ ε. We shall apply C2 with initial

matrices Ā
(1)
i , with ε1 = θε3 in lieu of ε and M1 in lieu of M , getting∥∥∥M−1

2 Ā
(2)
i − I

∥∥∥ ≤ θε31,
∥∥M−1

1 M2 − I
∥∥ ≤ σε1.

Repeating again for all the steps of our iterative process, we get for all
s = 1, 2, . . . ,

(3.8)
∥∥∥M−1

s Ā
(s)
i − I

∥∥∥ ≤ θε3s−1 = εs,
∥∥M−1

s Ms+1 − I
∥∥ ≤ σεs

with εs+1 := θε3s and M0 := M .
For simplicity’s sake, we introduce the notation

d(X,Y ) :=
∥∥X−1Y − I

∥∥
for any two n×n symmetric positive definite matrices X and Y . It will be
useful to notice that ‖X − Y ‖ ≤ ‖X‖

∥∥X−1Y − I
∥∥ ≤ ‖X‖ d(X,Y ) and

(3.9)
d(X,Z) =

∥∥(X−1Y − I)(Y −1Z − I) +X−1Y − I + Y −1Z − I
∥∥

≤ d(X,Y )d(Y, Z) + d(X,Y ) + d(Y, Z).

With this notation, we can restate (3.8) as

d(Ms, Ā
(s)
i ) ≤ εs, d(Ms,Ms+1) ≤ σεs.

We will now prove by induction that, for ε smaller than a fixed constant,
it follows that

(3.10) d(Ms,Ms+t) ≤
(
2− 1

2t

)
σεs.

First of all, for all t ≥ 1,

εs+t = θ
3t−1

2 ε3
t

,

which, for ε smaller than min(1/8, θ−1), implies εs+t

εs
≤ ε

3t−1
2

s ≤ εts ≤ 1
2t+2 .

Now, using (3.9), and supposing additionally that ε ≤ σ−1, we have

d(Ms,Ms+t+1) ≤ d(Ms,Ms+t)d(Ms+t,Ms+t+1)

+ d(Ms,Ms+t) + d(Ms+t,Ms+t+1)

≤
(
2− 1

2t

)
σεs + σεs

(
σεs+t +

εs+t

εs

)

≤
(
2− 1

2t

)
σεs + σεs

(
2
εs+t

εs

)

≤
(
2− 1

2t

)
σεs + σεs

1

2t+1
=

(
2− 1

2t+1

)
σεs

Thus, we have for each t,

‖Mt −M‖ ≤ ‖M‖
∥∥M−1Mt − I

∥∥ ≤ 2σ ‖M‖ ε,
which implies ‖Mt‖ ≤ 2 ‖M‖ for all t. By a similar argument,

(3.11) ‖Ms+t −Ms‖ ≤ ‖Ms‖ d(Ms+t,Ms) ≤ 2σ ‖M‖ εs.
Due to the bounds already imposed on ε, the sequence εs tends monotoni-
cally to zero with a cubic convergence rate; thus (Mt) is a Cauchy sequence
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and therefore converges. In the following, let M∗ be its limit. The conver-
gence rate is cubic, since passing to the limit (3.11) we get

‖M∗ −Ms‖ ≤ 2σ ‖M‖ εs.
Now, using the other relation in (3.8), we get∥∥∥Ā(s)

i −M∗
∥∥∥ ≤

∥∥∥Ā(s)
i −Ms

∥∥∥+ ‖M∗ −Ms‖

≤ 2 ‖M‖ d(Ms, Ā
(s)
i ) + 2σ ‖M‖ εs

≤ (2σ + 2) ‖M‖ εs;

that is, Ā
(s)
i converges with cubic convergence rate to M∗. Thus C3 is

proved. By (3.9), (3.10), and (3.8), we have

d(M1, Ā
(t)
i ) ≤ d(M1,Mt)d(Mt, Ā

(t)
i ) + d(M1,Mt) + d(Mt, Ā

(t)
i )

≤ 2σε1εt + 2σε1 + εt ≤ (4σ + 1)ε1 = O(ε3),

which is C4.
(4) Using C4k and (3.6) with F1 = Ek+1, F2 = M−1Ḡ(A1, . . . , Ak) = Tk +

O(ε3), δ = 2kε, we have

(3.12)

M−1Ā
(1)
k+1 = M−1

(
Ak+1# k

k+1
Ḡ(A1, . . . , Ak)

)
= I +

1

k + 1
Ek+1 +

k

k + 1
Tk

− k

2(k + 1)2

(
Ek+1 −

1

k

k∑
i=1

Ei

)2

+O(ε3).

Observe that

Tk =
1

k
Sk +

Pk − (k − 1)Qk

2k2
,

where Sk =
∑k

i=1 Ei, Qk =
∑k

i=1 E
2
i , Pk =

∑k
i,j=1, i �=j EiEj . Since S2

k =

Pk+Qk and Sk+1 = Sk+Ek+1, Qk+1 = Qk+E2
k+1, Pk+1 = Pk+Ek+1Sk+

SkEk+1, from (3.12) one finds that

M−1Ā
(1)
k+1 = I +

1

k + 1
Sk+1 −

k

2(k + 1)2
Qk+1 +

1

2(k + 1)2
Pk+1 +O(ε3)

= I + Tk+1 +O(ε3).

Since the expression we found is symmetric with respect to the Ei, it follows

that Ā
(1)
j has the same expansion for any j. �

Observe that Theorems 3.1 and 3.2 imply that the iteration (3.2) is globally
convergent with order of convergence at least 3.

It is worth pointing out that, in the case where the matrices Ai, i = 1, . . . , Ak,

commute with each other, the iteration (3.2) converges in just one step, i.e., Ā
(1)
i =

Ā for any i. In the noncommutative general case, one has det(Ā
(s)
i ) = det(Ā) for

any i and for any s ≥ 1; i.e., the determinant converges in one single step to the
determinant of the matrix mean.

Our mean is different from the ALM-mean, as we will show with some numerical
experiments in Section 5. In Section 4, we prove that our mean and the ALM-mean
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belong to a general class of matrix geometric means, which depends on a set of k−1
parameters.

4. A new class of matrix geometric means

In this section we introduce a new class of matrix means depending on a set
of parameters s1, . . . , sk−1 and show that the ALM-mean and our mean are two
specific instances of this class.

For the sake of simplicity, we describe this generalization in the case of k = 3
matrices A,B,C. The case k > 3 is outlined. Here, the distance between two
matrices is defined in (1.2).

For k = 3, the algorithm presented in Section 3 replaces the triple A,B,C with
A′, B′, C ′ where A′ is chosen in the geodesic connecting A with the midpoint of
the geodesic connecting B and C, at distance 2/3 from A, and a similar choice is
made for B′ and C ′. In our generalization we use two parameters s, t ∈ [0, 1]. We
consider the point Pt = B#tC in the geodesic connecting B to C at distance t
from B. Then we consider the geodesic connecting A to Pt and define A′ to be the
matrix on this geodesic at a distance s from A. That is, we set A′ = A#s(B#tC).
We do a similar step with B and C. This transformation is recursively repeated so
that the matrix sequences A(r), B(r), C(r) are generated by means of

(4.1)

A(r+1) = A(r)#s(B
(r)#tC

(r)),

B(r+1) = B(r)#s(C
(r)#tA

(r)),

C(r+1) = C(r)#s(A
(r)#tB

(r)),

r = 0, 1, . . . ,

starting with A(0) = A, B(0) = B, C(0) = C.
By following the same arguments of Section 3, it can be shown that the three

sequences have a common limit Gs,t for any s, t ∈ [0, 1], s 	= 0, (s, t) 	= (1, 0), (1, 1).
Moreover, for s = 1, t = 1/2 one obtains the ALM-mean, i.e., G = G1, 12

, while for

s = 2/3, t = 1/2 the limit coincides with our mean, i.e., Ḡ = G 2
3 ,

1
2
. Moreover, it

is possible to prove that for any s, t ∈ [0, 1], s 	= 0, (s, t) 	= (1, 0), (1, 1) the limit
satisfies the conditions P1–P11 so that it can be considered a good geometric mean.

Concerning the convergence speed of the sequence generated by (4.1) we may
perform a more accurate analysis. Assume that A = M(I + E1), B = M(I + E2),
C = M(I + E3), where ‖Ei‖ ≤ ε < 1, i = 1, 2, 3. Then, applying (3.6) in (4.1)
yields

A′ .
= M(I + (1− s)E1 + s(1− t)E2 + stE3 +

st(t−1)
2 H2

2 + s(s−1)
2 (H1 + tH2)

2),

B′ .
= M(I + (1− s)E2 + s(1− t)E3 + stE1 +

st(t−1)
2 H2

3 + s(s−1)
2 (H2 + tH3)

2),

C ′ .
= M(I + (1− s)E3 + s(1− t)E1 + stE2 +

st(t−1)
2 H2

1 + s(s−1)
2 (H3 + tH1)

2),

where
.
= denotes equality up to O(ε3) terms, with H1 = E1 − E2, H2 = E2 −

E3, H3 = E3 − E1. Hence we have A′ = M(I + E′
1), B

′ = M(I + E′
2), C

′ =
M(I + E′

3), with⎡
⎣ E′

1

E′
2

E′
3

⎤
⎦ .
= C(s, t)

⎡
⎣ E1

E2

E3

⎤
⎦+

st(t− 1)

2

⎡
⎣ H2

2

H2
3

H2
1

⎤
⎦+

s(s− 1)

2

⎡
⎣ (H1 − tH2)

2

(H2 − tH3)
2

(H3 − tH1)
2

⎤
⎦ ,
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where

C(s, t) =

⎡
⎣ (1− s)I s(1− t)I stI

stI (1− s)I s(1− t)I
s(1− t)I stI (1− s)I

⎤
⎦ .

Observe that the block circulant matrix C(s, t) has eigenvalues λ1 = 1, λ2 =

(1− 3
2s)+i

√
3
2 s(2t−1), and λ3 = λ̄2, with multiplicity n, where i2 = −1. Moreover,

the pair (s, t) = (2/3, 1/2) is the only one which yields λ2 = λ3 = 0. In fact
(2/3, 1/2) is the only pair which provides superlinear convergence. For the ALM-
mean, where t = 1/2 and s = 1, it follows that |λ2| = |λ3| = 1/2, which is the rate
of convergence of the ALM iteration [1].

In the case of k > 3 matrices, given the (k − 1)-tuple (s1, s2, . . . , sk−1) we may
recursively define Gs1,...,sk−1

(A1, . . . , Ak) as the common limit of the sequences
generated by

A
(r+1)
i = A

(r)
i #s1Gs2,...,sk−1

(Zi(A
(r)
1 , . . . , A

(r)
k )), i = 1, . . . , k.

Observe that with (s1, . . . , sk−1) = (1, 1, . . . , 1, 1/2) one obtains the ALM-mean,
while with (s1, . . . , sk−1) = ((k−1)/k, (k−2)/(k−1), . . . , 1/2) one obtains the new
mean introduced in Section 3.

5. Numerical experiments

We have implemented the two iterations converging to the ALM-mean and to
the newly defined geometric mean in Matlab, and we have run some numerical
experiments on a quad-Xeon 2.8Ghz computer. To compute matrix square roots
we used Matlab’s built-in sqrtm function, while for p-th roots with p > 2 we used
the rootm function in Nicholas Higham’s Matrix Computation Toolbox [6]. To
counter the loss of symmetry due to the accumulation of computational errors, we
chose to discard the imaginary part of the computed roots.

The experiments have been performed on the same data set as the paper [9]. It
consists of five sets, each composed of four to six 6 × 6 positive definite matrices,
corresponding to physical data from elasticity experiments conducted by Hearmon
[5]. The matrices are composed of smaller diagonal blocks of sizes 1×1 up to 4×4,
depending on the symmetries of the involved materials. Two to three significant
digits are reported for each experiment.

We have computed both the ALM-mean and the newly defined mean of these
sets; as a stopping criterion for each computed mean, we chose

max
i

∣∣∣A(r+1)
i −A

(r)
i

∣∣∣ < ε,

where |X| := maxi,j |Xij |, with ε = 10−10. The CPU times, in seconds, are reported
in Table 1. For four matrices, the speed gain is a factor of 20, and it increases even
more for more than four matrices.

We then focused on Hearmon’s second data set (ammonium dihydrogen phos-
phate), composed of four matrices. In Table 2, we reported the number of outer
(k = 4) iterations needed and the average number of iterations needed to reach
convergence in the inner (k = 3) iterations (remember that the computation of
a mean of four matrices requires the computation of three means of three matri-
ces at each of its steps). Moreover, we measured the number of square and p-th
roots needed by the two algorithms, since they are the most expensive operation
in the algorithm. From the results, it is evident that the speed gain in the new
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Table 1. CPU times in seconds for the Hearmon elasticity data

Data set (number of matrices) ALM-mean New mean
NaClO3 (5) 230.0 1.30

Ammonium dihydrogen phosphate (4) 9.9 0.39
Potassium dihydrogen phosphate (4) 9.7 0.38

Quartz (6) 6700.0 30.00
Rochelle salt (4) 10.0 0.53

Table 2. Number of inner and outer iterations needed, and num-
ber of matrix roots needed

ALM-mean New mean
Outer iterations 23 3

Avg. inner iterations 18.3 2
Matrix square roots (sqrtm) 5052 72
Matrix p-th roots (rootm) 0 84

mean is due not only to the reduction of the number of outer iterations, but also of
the number of inner iterations needed to get convergence at each step of the inner
mean calculations. When the number of involved matrices becomes larger, these
increased speeds add up at each level.

Hearmon’s elasticity data are not suitable for measuring the accuracy of the
algorithm, since the results to be obtained are not known. To measure the accuracy
of the computed results, we computed instead

∣∣G(A4, I, I, I)−A
∣∣, which should

yield zero in exact arithmetic (due to P1), and its analogue with the new mean.
We chose A to be the first matrix in Hearmon’s second data set. Moreover, in
order to obtain results closer to machine precision, in this experiment we changed
the stopping criterion by choosing ε = 10−13:

Operation Result∣∣G(A4, I, I, I)−A
∣∣ 3.6E-13∣∣Ḡ(A4, I, I, I)−A
∣∣ 1.8E-14

The results are well within the errors permitted by the stopping criterion, and they
show that both algorithms can reach a satisfying precision.

The following examples provide an experimental proof that our mean is different
from the ALM-mean.

Consider the following matrices:

A =

[
a b
b a

]
, B =

[
a −b
−b a

]
, C =

[
1 0
0 c

]
.

Observe that the triple (A,B,C) is transformed into (B,A,C) under the map
X → S−1XS, for S = diag(1,−1). In this way, any matrix mean G(A,B,C)
satisfying condition P3 is such that G = S−1GS; that is, the off-diagonal entries
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of G are zero, whence G must be diagonal. With a = 2, b = 1, c = 24, for the
ALM-mean G and our mean Ḡ one finds that

Ḡ =

[
1.487443626 0

0 4.033766318

]
, G =

[
1.485347837 0

0 4.039457861

]
,

where we reported the first 10 digits. Observe that the determinant of both the
matrices is 6, that is, the geometric mean of detA, detB, detC; moreover, ρ(Ḡ) <
ρ(G).

For the matrices

A =

⎡
⎣ 2 −1 0

−1 3 −2
0 −2 2

⎤
⎦ , B =

⎡
⎣ 2 1 0

1 3 2
0 2 2

⎤
⎦ ,

C =

⎡
⎣ 1 0 1

0 10 0
1 0 50

⎤
⎦ , D =

⎡
⎣ 1 0 −1

0 10 0
−1 0 50

⎤
⎦ ,

one has

Ḡ =

⎡
⎣ 1.3481 0 −0.3016

0 3.8452 0
−0.3016 0 6.1068

⎤
⎦ , G =

⎡
⎣ 1.3472 0 −0.3106

0 3.8796 0
−0.3106 0 6.0611

⎤
⎦ .

Their eigenvalues are (6.1258, 3.8452, 1.3290), and (6.0815, 3.8796, 1.3268), respec-
tively. Observe that, unlike in the previous example, it follows that ρ(Ḡ) > ρ(G).

In order to illustrate the properties of the set

{Gs,t : (s, t) ∈ (0, 1]× (0, 1)},

where Gs,t is the mean of three matrices defined in Section 4, we considered the in-
tervals [1/15, 1], [1/15, 14/15] and discretized them into two sets S, T of 15 equidis-
tant points {1/15 = s1 < s2 < · · · < s15 = 1}, {1/15 = t1 < t2 < · · · < t15 =
14/15}, respectively. For each pair (si, tj) ∈ S × T , i, j = 1, . . . , 15, we com-
puted Gsi,tj and the orthogonal projection (x(i, j), y(i, j), z(i, j)) of the matrix
Gsi,tj − G 2

3 ,
1
2
, over a three-dimensional fixed randomly generated subspace. The

set

V = {(x(i, j), y(i, j), z(i, j)) ∈ R
3, i, j = 1, . . . , 15}

has been plotted with the Matlab command mesh(x,y,z) which connects each
point with coordinates (x(i, j), y(i, j), z(i, j)) to its four neighbors with coordinates
(x(i+ δ, j + γ), y(i+ δ, j + γ), z(i+ δ, j + γ))) for δ, γ ∈ {1,−1}.

Figure 1 displays the set V from six different points of view, where the matrices
A,B and C of size 3 have been randomly generated. The set appears to be a flat
surface with part of the edge tightly folded on itself. The geometric mean G 2

3 ,
1
2

corresponds to the point with coordinates (0, 0, 0), which is denoted by a small
circle and seems to be located in the central part of the figure. These properties,
reported for only one triple (A,B,C), are maintained with very light differences in
all the plots that we have performed.

The software concerning our experiments can be delivered upon request.
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Figure 1. Plot of the set V . The small circle corresponds to G2/3,1/2.
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