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1 Introduction

Euclidean wormholes have been at the center of a spate of recent progress in understanding
quantum gravity [1–7]. These non-perturbative contributions were shown to reproduce late
time behavior of the spectral form associated to level repulsion in chaotic systems (referred
to as the ramp) [4], and the Page curve for entanglement entropy of an AdS black hole
evaporating into an external bath [1, 2]. In pure Jackiw-Teitelboim (JT) gravity [8, 9]
the non-perturbative Euclidean path integral can be computed exactly [10], and precisely
matched with a particular double-scaled matrix model.

The latter fact highlights the curious aspect that the quantum mechanics dual is an
ensemble average, rather than a particular Hamiltonian theory. This seems at odds with
AdS/CFT in higher dimensions. In particular, although there are no further constraints
of consistency on positive hermitian Hamiltonians in quantum mechanics, conformal field
theories in higher dimensions are highly constrained by microlocality and come only in
sporadic families. Therefore there cannot exist continuous ensembles of conformal field
theories with a number of parameters that scales with the dimensionality of the Hilbert
space, as happens in the matrix model for JT gravity, otherwise any potential matrix model
dual of higher dimensional AdS quantum gravity would allow nonlocal heavy operators that
does not obey crossing symmetry because their matrix elements could be tuned arbitrarily
by the overwhelming number of parameters, and that contradict with AdS/CFT because
bulk dual of heavy operators are black holes localized in a finite region.

For these reasons it is of great interest to know if JT gravity itself can be the long
distance effective theory of some UV modified theory that behaves more conventionally,
with an ordered dual possessing a discrete spectrum, as might be expected to arise in a
string compactification to 1+1 dimensions. We will not answer that question here, but will
explore consequences of a minimal ingredient that such a UV “completion” of JT gravity
would require: dynamical branes that can end spacetime.

In 1+1 dimensions, the fundamental objects that could form the microstates of black
holes are codimension 1 branes, in other words, end of the world (EOW) branes. Dynamical
objects of that type are also required to solve the factorization problem [11] starting from
canonical quantization of Lorentzian JT theory. At an even most basic level, there are
simply no Lorentzian configurations in pure JT gravity with a single nearly AdS2 boundary
that could appear in the Hilbert space of a putative dual quantum mechanics.

EOW branes could have a variety of microscopic realizations in a compactification to
JT gravity, including intrinsic end of the world branes like the Horava-Witten brane in
M-theory and Kaluza-Klein solitons where part of an internal manifold smoothly shrinks.
In the long distance effective theory these can be treated as boundary conditions in JT
gravity. We will study the simplest possibility, which is characterized simply by the brane
tension (equivalently the rest mass of this 0+1 dimensional object).

Branes of this type were used in [2] to model black hole microstates of pure JT gravity,
however in that context they were not treated as dynamical objects added to the theory.
Because of this, the loops of EOW branes were not considered in [2] even though the number
of flavors K was as large as eS0 . The Page curve of [2] indicates a phase transition when
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K is on the order of eS0 . Here we will be interested in the effects of summing over EOW
branes in the path integral, which will be important when K is of order eS0 .

We will see that positive tension EOW branes are always cloaked behind horizons.
Nevertheless, the EOW branes modify the spectral density because they act as gravitational
instantons that correct the long distance effective action in the form of a more general
W (Φ) gravity.

Similarly to [11], the classical phase space may be parametrized in a geodesic slice gauge
in terms of the (renormalized) length L of the spatial slice and its conjugate momentum,
leading to a Morse potential quantum mechanics. The spectrum of the Hamiltonian is a
continuum, so it is unsurprising that the theory with EOW branes remains an ensemble.

The continuous spectrum of the Morse potential quantum mechanics, which is associated
to the L→∞ limit, leads to a logarithmic divergence in the contributions of gravitational
instantons. The large L limit can equivalently be understood as a b → 0 limit of high
temperature in the reference frame of the EOW brane, where b is the length of the EOW
brane loop. As such the calculation is sensitive to UV physics deep in the throat; the
large red shift allows it to contribute at a fixed energy as measured at the AdS boundary.
Therefore an EFT understanding is crucial for the proper treatment of this divergence.

In the gravity calculation, we obtain finite results by using a regulated EOW brane
such that the b→ 0 pole is cancelled and the theory becomes pure JT in the far UV. The
low energy spectral density ρ(E) becomes universal as the regulator is removed, up to a
single parameter. One characterization of that UV sensitive parameter is the zero point
energy, E0, at which the spectrum begins. In this way, it behaves like a relevant parameter
in the Wilsonian sense.

The effect of the EOW branes in the dual quantum mechanics is to introduce K vectors
in the SSS matrix model [10] (as in [2]). These are the states in the Hilbert space produced
by a given EOW brane. The branes here are dynamical objects in the gravity theory, and
one must integrate over the vector degrees of freedom in the matrix model.

For the purpose of computing the spectral density and its correlation functions, the
vectors can be integrated out, leading to a modified matrix ensemble for the Hamiltonian,
whose matrix potential differs from that of pure JT gravity by δV (E). The deformation
of the matrix model potential by various types of EOW branes has been considered in a
recent work [12].

The same δV can equally be computed from the trumpet partition function with fixed
AdS boundary energy, which is the inverse Laplace transformation of Ztrumpet(b, β). The
full path integral is a sum over the number of closed loops of EOW brane boundaries, which
is reproduced by the exponentiation of the additional potential, e−KTrδV (H).

There is a trivial UV divergence in δV , which can be absorbed into the overall nor-
malization of the ensemble measure. It is straightforward to compute the change in the
tree-level spectral density δρ induced by the change in the potential δV . However, the
large E behavior of δV (E) implies that the integral of δρ(E) over its support (which
is noncompact) diverges. More severely, without the appropriate fine tuning of the UV
sensitive parameter, E0 would go to −∞. This means that an infinite number of eigenvalues
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that would have been pushed to infinity in the double-scaling limit of the SSS matrix model
remain at finite energies.

Regulating the theory at short distance leads to a modified δV that decays at large
energy, allowing a δρ that is normalizable. This is a special feature that is associated to
this model’s rapid approach to the pure JT spectrum at high energies. We exactly match
the result with the gravitational calculation. More importantly, from the IR point of view,
E0 is a free parameter in both the matrix model and gravity sides, which is sensitive to the
details of the bulk UV physics.

The contribution of near cusps, which arise in the limit of an infinitely long trumpet,
corresponds to an effectiveW (Φ) ∝ e−2πΦ in the general dilaton gravity considered in [13, 14].
The matrix model potential in the double scaling limit is in fact unchanged from SSS, and
the only difference is via the IR parameter E0 which determines how the double scaling
limit is taken.

For large K � eS0 in the matrix model with heavy EOW branes, the effective extremal
entropy S0,eff defined as ρ(E) ≈ eS0,eff

√
E − E0 for E − E0 � 1 scales as logK. This is a

form of induced gravity, in which K flavors of heavy EOW branes count the microscopic
states of black hole.

As pointed out in [10], the matrix model dual to pure JT gravity is non-perturbatively
unstable because the effective potential becomes arbitrarily negative away from the support
of the spectrum. This non-perturbative instability causes negativity in the spectrum of JT
gravity with too many flavors of deficit angles [15] and in JT gravity with EOW branes
as well. To have a well-defined matrix model, one needs to extend the contour of each
eigenvalue through the largest saddle point of the effective potential on the real axis and
into the complex plane [10]. This completion promotes H to a complex matrix because an
order e−e

S0 fraction of eigenvalues will be complex even in the pure JT model.
We will adopt this completion and study how the spectrum changes as we increase the

number of flavors K of EOW branes. As K increases, the qualitative behavior depends on
how the UV divergence of the EOW branes is renormalized, which comes with a renormaliza-
tion parameter λ. There are three cases to consider, corresponding to the zero point energy
E0 being positive (λ < 0), zero (λ = 0) or negative (λ > 0) when K is slightly positive. See
figure 1 as the phase diagram. For the first case, there is no critical K and no phase tran-
sition. For second case, a continuous phase transition occurs and E0 moves to positive after
K going beyond a critical value. For the last case, instead of a negative spectrum, our non-
perturbative completion implies that the spectrum undergoes a continuous phase transition
to a “Y” shaped on the complex energy plane when K is over a critical value (see figure 10).

We interpret these eS0 order of complex eigenvalues as unstable black hole states that
could decay to lower energy objects other than EOW branes. This matches the Lorentzian
analysis in the effective W (Φ) dilaton gravity [13], for which the spectrum is unbounded
from below. This is also related to the existence of a minimal temperature below which no
stable black hole exists. Because of this, we regard JT gravity with such EOW branes as
incomplete, requiring other stable objects with lower energy (such as Dirichlet-Neumann
branes [12]) to which these unstable black holes decay. Using the effective W (Φ) gravity
description, we explicitly show how this occurs as a Hawking-Page phase transition.
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Figure 1. The phase diagram of matrix model of JT gravity with K flavors of EOW branes. Green
region is “Y” shaped phase, blue region is one-cut phase and red curve is critical line.

The paper is organized as follows. In section 2, we find the phase space of JT gravity
with one dynamical EOW brane and quantize it canonically. We compute the partition
function of this system and identify the measure of EOW branes in the Euclidean path
integral. Using this measure to sum over arbitrary numbers of EOW branes, we compute
the tree-level spectral density. For the E0 = 0 case, we find the effective W (Φ) dilaton
gravity by integrating out the EOW branes. In section 3, we derive the change in the
matrix model potential δV induced by the EOW branes and solve for the one-cut solution
of the spectral density that matches with our gravitational computation. In section 4, we
study the “Y” shaped spectrum in the matrix model and the phase transition from the
one-cut solution when the number of flavors, K, of EOW branes exceeds a critical value. In
section 5, we study the effective W (Φ) dilaton gravity for a gas of cusps that is related to
K heavy EOW branes. By requiring smoothness of the Euclidean metric, we find complex
saddles when K is beyond the critical value. These complex saddles exhibit similar “Y”
shaped spectra. We interpret the complex energies as unstable black holes and study the
Hawking-Page phase transition after including lower energy Dirichlet-Neumann branes. We
conclude in section 6 with a few discussions.

2 Ends of the world in 2d gravity

2.1 Classical solution and phase space with a boundary brane

The JT gravity [8, 9] action with boundaries is

S = S0 + κ

[1
2

∫
Φ
√
|g|(R+ 2) +

∫
AdS

duΦ
√
−guu(K − 1) +

∫
brane

dv
√
−gvv(ΦK − µ)

]
(2.1)

where S0 = φ0
4G is the extremal entropy and κ = (8πG)−1. In this paper, we will set κ = 1

for notational simplicity. u and v are affine parameters along the AdS boundary and EOW
brane respectively. As analyzed in appendix A, the equations of motion are

R+ 2 = 0, ∇a∇bΦ− gab∇2Φ + gabΦ = 0 (2.2)
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and the boundary conditions arenc∂cΦ = CΦ +D or habδgab = 0
∇ana = C or δΦ = 0

,

C = 0, D = µ brane
C = 1, D = 0 AdS

(2.3)

For an AdS boundary, we fix the asymptotic metric habδgab = 0 and the value of dilaton
δΦ = 0; for an EOW brane, we allow the metric and dilaton to fluctuate but impose

∇ana = 0, na∂aΦ = µ (2.4)

The general solution to the equations of motion can be written as

ds2 = −dT
2 + dσ2

sin2 σ
, Φ = α cos(T − β)− γ cosσ

sin σ (2.5)

where σ ∈ [0, π], T ∈ R and α, β, γ are real numbers. Physically, Φ+φ0 must be nonnegative
as it would represent the area of codimension 2 surfaces in higher dimensions if JT gravity
were obtained via dimensional reduction. As the solution is periodic in T , the physical
region Φ + φ0 ≥ 0 appears periodically along T axis. There is a SL(2) ' SO(2, 1) isometry
for AdS2 metric. To see this, we can write AdS2 as a hyperplane in higher dimension

− Y 2
−1 − Y 2

0 + Y 2
1 = −1, ds2 = −dY 2

−1 − dY 2
0 + dY 2

1 (2.6)

with coordinate transformation

Y−1 = sin T cscσ, Y0 = cosT cscσ, Y1 = − cotσ (2.7)

Then the dilaton solution can be written in a simpler form

Φ = V µYµ, V µ = (α sin β, α cosβ,−γ) (2.8)

Under SO(2, 1) transformation, α, β, γ will change according to the action on V µ. However,
there is one invariant describing the solution,

V µVµ = γ2 − α2 (2.9)

whose sign will separate the solutions into two types. Indeed, the existence of a saddle for
Φ depends on γ2 − α2. Differentiating with respect to T and σ, we get

∂TΦ = 0 =⇒ T = β + nπ (2.10)

∂σΦ = 0 =⇒ cosσ = (−)n γ
α

(2.11)

If |γ| ≤ |α|, the saddle exists and if |γ| > |α|, it does not. In this paper, we will only
consider cases with a Φ saddle, which is the analog of the near extremal horizon “area” in
JT gravity. The SO(2, 1) is a gauge symmetry and we fix it by choosing the dilaton solution
to be

Φ = Φh
cosT
sin σ , Φh ≥ 0 (2.12)
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Figure 2. The solution of JT gravity. The light green region is physical in which Φ + φ0 ≥ 0. Red
curves are two AdS boundaries with T ∈ [−π/2, π/2]. The dashed lines are horizon. Blue curve is
the geodesic of EOW brane.

The physical region with AdS boundary is chosen to be T ∈ [−π/2, π/2] and Φh is the
saddle value of Φ (see figure 2).

The AdS boundary condition is [16]

guu = − 1
ε2
, Φ = A = φb

ε
, ε→ 0 (2.13)

For fixed Φ = A value, its solution is given by

cosT = A

Φh
sin σ (2.14)

In large A limit, we would like to put AdS boundary near σ = π. In small ε expansion with
fixed metric, we have

σ = π − εT ′ +O(ε2) (2.15)

tan T2 = tanh Φh

2φb
(u− u0) (2.16)

The EOW brane boundary condition is given in (2.4). For any brane world line
σ − f(T ) = 0, the normal vector is

nT = − sin σf ′(T )√
1− f ′(T )2 , n

σ = − sin σ√
1− f ′(T )2 (2.17)

The normal derivative to Φ on the brane is

na∂aΦ = Φh
cosT cot f + sin Tf ′√

1− f ′2
(2.18)

On the other hand, ∇ana = 0 implies that it is a geodesic whose general solution is

σ = f(T ) = arccos(r cos(T − θ)), θ ∈ [0, π), r ∈ R (2.19)
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Note that we require the world line to be timelike, namely |f ′(T )| < 1. This restricts
r ∈ [−1, 1]. Using coordinate Yµ, we can rewrite geodesic solution (2.19) as

UµYµ = 0, Uµ ∝ (r sin θ, r cos θ, 1) (2.20)

where Uµ can be rescaled with any nonzero real number without change the solution. As
SO(2, 1) is a gauge symmetry, we are free to choose V µ as above to partly fix it. In (2.12),
we rotate V µ to (0,Φh, 0) and clearly there is an unfixed SO(1, 1) between the V −1 and V 1

components. This SO(1, 1) can be further fixed by rotating the U−1 and U1 components to
set U−1 = 0 (note that |r sin θ| < 1 makes this always possible). This is equivalent to set
sin θ = 0 (θ = 0). Hence, after fixing all gauge symmetries, the solution for the geodesic is

cosσ = r cosT, r ∈ [−1, 1] (2.21)

Plugging this solution into na∂aΦ = µ, we get

na∂aΦ = rΦh√
1− r2

= µ =⇒ r = µ√
Φ2
h + µ2

(2.22)

As shown above, the EOW brane boundary condition completely determines its worldline
from the parameters µ and Φh. There is another way to characterize the brane geodesic from
the AdS boundary point of view, which will be important for our phase space description.
It is the length of a spacelike geodesic shooting from AdS boundary at u = 0 and ending
normally on the brane. It is simplest to calculate this in the Yµ coordinate. Note that
different geodesics can be transformed to each other via SO(2, 1) isometry. In particular,
the brane geodesic (2.21) can be written as

UµMν
µYν = 0, Uµ = (0, 0, 1), M =

1
cosh ξ sinh ξ
sinh ξ cosh ξ

 , tanh ξ = r (2.23)

On the other hand, the geodesic UµYµ = 0 is very simple, namely σ = π/2. We can calculate
the spacelike geodesic connecting it with boundary and then do a SO(2, 1) transformation
to find the case related to (2.21). Note that orthogonality and geodesic length is preserved
under isometry.

It is clear that for σ = π/2, the orthogonal spacelike geodesic is T = T0 for any T0.
This spatial slice intersects the AdS boundary at (T0, σ0). The geodesic length from the
brane to (T0, σ0) is

Lbare =
∫ σ0

π/2

dσ

sin σ = 1
2 log 1− cosσ0

1 + cosσ0
(2.24)

To get the spatial slice orthogonal to (2.21), we simply do the transformation

Yµ→Mν
µYν = (sinT0 cscσ0,cosT0 cscσ0 coshξ−cotσ0 sinhξ,cosT0 cscσ0 sinhξ−cotσ0 coshξ)

(2.25)
Under this transformation, cosσ0 transforms as

cosσ0 = − Y1√
Y 2
−1 + Y 2

0

→ − cosh ξ cosσ0 − cosT0 sinh ξ√
sin2 T0 + (cosT0 cosh ξ − cosσ0 sinh ξ)2

(2.26)
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The boundary location (σ0, T0) is given by (2.14) with A = φb/ε. Taking this into (2.24)
gives divergent result and needs to be renormalized as [11]

L = Lbare − logA = log 2(r + secT0)
Φh

√
1− r2

(2.27)

Using the expression for r in (2.22) and T0 in (2.16), we have

L = log
2µ+ 2

√
µ2 + Φ2

h coshw
Φ2
h

, w ≡ Φh

φb
u0 (2.28)

As the lower bound of Φh is zero, we must require µ ≥ 0 for L to be well-defined.
The AdS boundary stress tensor is

Tµν∂M = 1
ε3

2√
|γ|

δS

δγµν
(2.29)

where γµν is the induced metric. In 2d case, there is only one component of stress tensor,
namely Hamiltonian. Using (A.10), we get

H = T uu∂M = (na∂aΦ− Φ)huu/ε3 (2.30)

Using (2.14) (AdS boundary has A = φb/ε) and (2.18) (here we need to flip the sign for na
pointing outward), we can evaluate it on AdS boundary as

H = Φ2
h/(2φb) (2.31)

This Hamiltonian is nonnegative as the ADM energy of a black hole should be. On the other
hand, the brane Hamiltonian is vanishing because we choose the brane boundary condition
such that T vvbrane ∝ na∂aΦ− µ = 0. This is consistent with gravity being dynamical on the
EOW brane.

Similarly to the two-sided 2D JT gravity [11], the phase space is two dimensional, which
is characterized by u0 and H, where u0 is the boundary time constant corresponding to
T = 0 slice. As H is the Hamiltonian on AdS boundary, its canonical conjugate is time
translation. This implies the symplectic form in phase space is

ω = δu0 ∧ δH (2.32)

The dynamics in phase space is given by

ẋa = (ω−1)ba∂bH =⇒ u̇0 = 1, Ḣ = 0 (2.33)

The symplectic form can be written as

ω = Φh

φb
δu0 ∧ δΦh = δw ∧ δΦh (2.34)

where we see that w is the conjugate coordinate for Φh. Note that using parameters w
and Φh is not quite a good description of the phase space because Φh is restricted to be a
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nonnegative number. In order to find nice phase space coordinates with range R2, we need
to do a canonical transformation.

The canonical transformation to the L variable is easy to find. Solving for w in (2.28),
we find

w = ±arccosh e
LΦ2

h − 2µ
2
√

Φ2
h + µ2

(2.35)

where the sign of w depends on that of u0. This implies that

δw ∧ δΦh = ± eLΦh√
e2LΦ2

h − 4µeL − 4
δL ∧ δΦh = δL ∧ δP, P ≡ ±

√
Φ2
h − 4µe−L − 4e−2L

(2.36)
Solving for Φ2

h leads to the Hamiltonian in terms of L and P

H = 2
φb

[
P 2

4 + µe−L + e−2L
]

(2.37)

This is the Hamiltonian with Morse potential. It is obvious that the Hamiltonian is
nonnegative for all L only when µ > 0. Indeed, for µ < 0, we can do a similar phase space
analysis and end up with the same Hamiltonian. In that case, Hamiltonian is negative
for L larger than a critical value but still lower bounded. In particular, there is a stable
minimal energy point located at P = 0, L = − log |µ| with ground energy E = −µ2/φb.
Such Hamiltonian allows bound states, whose geometric meaning is a naked EOW brane,
rather than a black hole. In this paper, we will mainly focus on µ > 0 case.

2.2 Quantization with a boundary brane

As the Hamiltonian is simply a particle in the Morse potential, its quantization is straight-
forward by replacing P → −i∂L. It follows that the energy eigen-functions fE(L) obey[

−∂2
L + 4µe−L + 4e−2L

]
fE(L) = 2φbEfE(L) (2.38)

Using a new variable z = 4e−L, we can rewrite the equation as[
−z(∂z + z∂2

z ) + µz + 1
4z

2
]
fE(z) = 2φbEfE(z) (2.39)

For µ > 0, the spectrum of solutions is continuous.
The general solution is given by Whittaker function

fk(z) = Nkz
−1/2W−µ,ik(z), E = k2

2φb
, k ≥ 0 (2.40)

Note that here we restrict k ≥ 0 because of identity Wa,b(z) = Wa,−b(z). The normalization
is given by a flat measure integration over L ∈ R

δ(k − k′) = NkNk′ lim
ε→0

∫ ∞
0

dz

z1+ε
1
z
W−µ,ik(z)W−µ,ik′(z) (2.41)
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After some algebra, we can work out the normalized eigen-function

Ψk(z) =
√
ϕ(k)z−1/2W−µ,ik(z), ϕ(k) ≡

|Γ(1
2 + µ− ik)|2k sinh 2πk

π2 (2.42)

The propagator for the Morse potential quantum mechanics is

Gµ,β(L2, L1) =
∫
dke−βk

2/(2φb) 〈L2|k〉 〈k|L1〉

=
∫
dke−βk

2/(2φb)ϕ(k)(z1z2)−1/2W−µ,ik(z1)W−µ,ik(z2) (2.43)

If we set L1 = L2 and integrate it over R, we will get the partition function of JT gravity
with a single EOW brane, which is divergent. This is because the Morse potential quantum
mechanics has a continuous spectrum. As we will now show, we may alternatively interpret
this divergence as a UV divergence associated to an EOW brane loop that shrinks to zero
size. To see this, use identity (6.647-1 in [17]) to write (2.43) as

Gβ(L2,L1) =
∫
dke−βk

2/(2φb)ϕ(k)
∫ ∞

0
dx

2xµ−1/2e−(z1+z2)/2e
− z1+z2

2√z1z2
x

|Γ(1
2 +µ−ik)|2(2√z1z2+x)µ+1/2K2ik

(√
x(2
√
z1z2+x)

)
(2.44)

which holds only when µ > −1
2 . Set z1 = z2 and perform

∫+∞
−∞ dL =

∫∞
0

dz
z integration. The

two (x, z) variable integration can be computed using alternative variables

v =
√
x(2z + x), w =

√
x

2z + x
=⇒ dxdz = v

w
dvdw (2.45)

It follows that the partition function with a single EOW brane is

ZEOW(β) =
∫
dke−βk

2/(2φb) 4k sinh2πk
π2

∫ 1

0

dww2µ

1−w2

∫ ∞
0

dv

v
e−(w+w−1)v/2K2ik(v)

= 2
π

∫
dke−βk

2/(2φb)
∫ 1

0

dww2µ

1−w2 cos
(

4karcsinh
√

1
2

(1
2(w+1/w)−1

))
(2.46)

where we used identity (6.621-3 in [17]). Redefining w = e−b/2 for positive b, we have

ZEOW(β) = 1
2π

∫
dke−βk

2/(2φb)
∫ ∞

0

db

sinh(b/2) cos(kb)e−µb

=
∫ ∞

0
dbZtrumpet(β, b)

e−µb

2 sinh(b/2) , (2.47)

where Ztrumpet(β, b) is the Euclidean path integral of the trumpet bounded by one AdS
boundary of regularized length β and one geodesic boundary of length b in [10],

Ztrumpet(β, b) = φ
1/2
b

(2π)1/2β1/2 e
−φbb2/(2β) = 1

2π

∫
dk cos kb2 e

−βk2/(8φb). (2.48)

The integral in (2.47) represents a Euclidean spacetime that ends on a geodesic EOW brane
in the bulk, and the length of the EOW brane b is integrated with a measureM(b) given by

M(b) = db e−µb

2 sinh(b/2) =
∞∑
n=0

dbe−(n+1/2+µ)b. (2.49)

This integral clearly diverges due to its behavior as b→ 0.
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To obtain a well-defined path integral, we need to regulate the small b behavior of
the measureM(b) such that (2.47) converges. In particular, we require that the regulated
M(b) is bounded as b→ 0. The UV divergence in (2.47) can be cancelled by a cusp-like
counterterm, which physically corresponds to a closed geodesic whose length is zero in
the limit that the regulator is removed. This is a modification of the UV physics that
regulates the contributions of EOW branes to the path integral of the effective IR theory.
The specific form of the regulator and the cusp-like counterterm is far from unique. One
option is to regulate the UV divergence of (2.47) by cutting off the b integral at b = ε,
adding a counterterm proportional to a trumpet smeared over b ∈ [0, ε], and then taking
ε→ 0. The regulated path integral with one AdS boundary and one EOW brane becomes

lim
ε→0

[∫ ∞
ε

dbZtrumpet(β, b)
e−µb

2 sinh(b/2) + λ+ log ε
ε

∫ ε

0
dbZtrumpet(β, b)

]
, (2.50)

where λ represents the finite part of the cusp-like counterterm. We can thus make the
following replacement in the definition ofM(b),

e−µb

2 sinh(b/2) →
e−µb

2 sinh(b/2)θ(b− ε) + λ+ log ε
ε

(θ(ε− b)− θ(−b)) (2.51)

which is bounded for all b ≥ 0 as required. As usual, the renormalization procedure forces
us to view λ as an additional parameter of the theory. The value of λ depends on UV
physics that becomes relevant in the small b limit. Modifying this UV physics corresponds
to modifying the large-eigenvalue behavior of the potential of the dual matrix model, as we
will discuss in section 3.3.3.

We will find it convenient to express our results in terms of the inverse Laplace transform
ofM(b), which we denote by m(α). We have that

M(b) =
∫
D
dαm(α) e−αb, (2.52)

where D, the support of m(α), could take complex values. The boundedness of M(b) at
b = 0 implies that ∣∣∣∣∫

D
dαm(α)

∣∣∣∣ <∞. (2.53)

It is clear that the unregulated EOW brane measure (2.49) could be written as

m(α) =
∞∑
n=0

δ(α− (n+ 1/2 + µ)). (2.54)

The m(α) corresponding to the regulated measure (2.51) could be computed similarly,
though its explicit form is not important for our calculations. We will replace the regulated
measure with the unregulated measure whenever doing so leads to a finite result. The
property (2.53) allows us to exchange the order of a limit and integral in (3.47).
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+ + + +Z(β)= +

Figure 3. The partition function Z(β) in which all genera and EOW brane loops are summed.
Red curve is AdS boundary and blue curves are EOW branes.

2.3 Dynamical branes in path integral

In this section, we compute the Euclidean path integral with one AdS boundary and
arbitrary numbers of EOW branes at genus zero. In general, given a fixed number of AdS
boundaries, we are required to sum over all geometries with arbitrary numbers of handles
and EOW branes (see figure 3). As shown in [10], path integrals can be computed by
gluing trumpets to hyperbolic Riemann surfaces with closed geodesic boundaries. An EOW
brane corresponds to a geodesic boundary whose length b is integrated over with measure
M(b), given in (2.49). The b→ 0 divergence can be regulated as shown in (2.50). In the
Euclidean action, there is an Einstein-Hilbert term −S0χ, where χ is Euler characteristic
χ = 2− 2g − n of Riemann surface, where g is genus and n is number of boundaries. This
topological term endows every Riemann surface with a weight eS0χ. For fixed genus, adding
one more EOW brane means increasing n by one and leads to a factor of e−S0 . On the
other hand, if we have K flavors of EOW brane, each loop will contribute a factor of K
(modulo a possible permutation symmetry that we will specify later). Therefore, for an O(1)
number of flavors, any effects of the EOW brane loops are suppressed by e−S0 . To enhance
the effects of the EOW branes, we will assume K ∼ O(eS0). Furthermore, we will assume
that S0 is large so that we may restrict our attention to genus zero surfaces. For simplicity,
we assume all flavors of EOW branes have the same value of µ. Our method for resumming
EOW branes in the Euclidean path integral will closely follow the method used in [15].

The leading term is a disk where there is no EOW brane. As computed in [10], the
disk partition function is

Zdisk(β) = eS0φ
3/2
b

(2π)1/2β3/2 e
2π2φb/β (2.55)

The zero genus partition function is a series

Z0(β) = Zdisk(β) +KZEOW(β) +
∞∑
n=2

e−S0(n−1)Zn(β) (2.56)

where Zn(β) is the Euclidean path integral over the surface with n EOW brane loops and
one AdS boundary

Zn(β) =
∫
bdbZtrumpet(β, b)

∫ n∏
i=1

dbiV0,n+1(b, b1, · · · , bn)Cn
n∏
i=1
M(bi). (2.57)

In this formula, V0,n+1(b, b1, · · · , bn) is the WP volume for genus zero and n + 1 holes
computed in [18],

V0,n(b1, · · · , bn) = lim
x→0
−1

2∂
n−3
x

[
u′(x)

n∏
i=1

J0

(
bi

√
u(x)

)]
, (2.58)
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where J0(x) is Bessel function of first kind and u(x) is defined implicitly via√
u(x)I1

(
2π
√
u(x)

)
= −2πx, (2.59)

where I1(x) is modified Bessel function of first kind. For a given x, this equation has
infinitely many solutions. We take the largest u because we need u(0) = 0 in (2.58). This
defines u(x) smoothly in a neighborhood of x = 0, and for all negative x. However, for
negative u,

√
uI1(2π

√
u) oscillates (see figure 4) with increasing amplitude as |u|1/4, which

leads to a piecewise continuous function u(x). As we will show later, for certain values of
the parameters, this discontinuity will imply that the sum over EOW branes is divergent.
This multi-valueness of u(x) also leads to non-perturbative instability as analyzed in [19].
In (2.57), Cn is a symmetry factor that accounts for identical EOW branes. We assume
EOW branes to be indistinguishable for the same flavor but distinguishable for different
flavors. This leads to

Cn =
∑∑K

i=1 `i=n
`i≥0

1
`1! · · · `K ! = 1

n!K
n. (2.60)

Let us denote the last infinite sum in (2.56) as Ẑ(β). Using (2.58), it can be written as

Ẑ(β) = eS0

√
φb

2πβ

∞∑
n=2

1
n!∂

n−2
x

{[
e
−βu(x)

2φb

]′ (
Ke−S0f(u(x))

)n}
x=0

(2.61)

where we have used∫ ∞
0

bdbZtrumpet(β, b)J0

(
b
√
u(x)

)
=
√

β

2πφb
e
−βu(x)

2φb (2.62)

and defined

f(u) ≡
∫
dbM(b)J0(b

√
u) =

∫
D
dαm(α)

∫
db e−αbJ0(b

√
u) =

∫
D
dα

m(α)√
α2 + u

, (2.63)

where the
∫
db e−αbJ0(b

√
u) integral converges only when <(α ± i

√
u) ≥ 0 for all α ∈ D.

Note that the boundedness of the regulated measure M(b) for small b also guarantees a
finite f(u) whereas using unregulated measure (2.49) leads to divergent f(u). To sum this
series to a closed form, we need to use the Lagrange inversion theorem (see appendix B). It
turns out that

Ẑ(β) = eS0

√
φb

2πβ

∫ 0

a
dx

[
e
−βu(x+g(x))

2φb − e−
βu(x)
2φb −

[
e
−βu(x)

2φb

]′
Ke−S0f(u(x))

]
(2.64)

where g(x) is defined implicitly as

g(x) = Ke−S0f(u(g(x) + x)) (2.65)

and a must be a parameter such that u(a)→ +∞. Clearly, we choose a = −∞.
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-6 -5 -4 -3 -2 -1
u

-0.5

0.5

1.0

u I1(2π u )

Figure 4. The plot of
√
uI1(2π

√
u) as a function of u.

It turns out that the second and third terms in (2.64) are exactly first two terms
in (2.56). For the second term, we can change the variable x to u to get

eS0

√
φb

2πβ

∫ 0

−∞
dxe

−βu(x)
2φb = eS0

√
φb

2πβ

∫ 0

∞
due

− βu
2φb x′(u) (2.66)

From (2.59), we have

x′(u) = − 1
2π∂u(

√
uI1(2π

√
u)) = −1

2I0(2π
√
u) (2.67)

and (2.66) becomes

eS0

√
φb

2πβ

∫ 0

−∞
dxe

−βu(x)
2φb = eS0

√
φb

2πβ ×
1
2

∫ ∞
0

due
− βu

2φb I0(2π
√
u)

= eS0φ
3/2
b

(2π)1/2β3/2 e
2π2φb/β = Zdisk(β) (2.68)

For the third term, we can recover the Bessel functions using (2.62) and (2.63), and change
integration variable to u to get√

φb
2πβ

∫ 0

−∞
dx

[
e
−βu(x)

2φb

]′
Kf(u(x)) = K

2

∫ ∞
0

du

∫
b1db1Ztrumpet(β,b1)J0(b1

√
u)
∫
dbM(b)J0(b

√
u)

(2.69)
Changing variable u→ x2 and using identity∫ ∞

0
dxxJ0(ax)J0(bx) = 1

b
δ(a− b), (a, b ≥ 0) (2.70)

we can rewrite it as√
φb

2πβ

∫ 0

−∞
dx

[
e
−βu(x)

2φb

]′
Kf(u(x)) = K

∫
dbZtrumpet(β, b)M(b) = KZEOW(β) (2.71)

Redefining ξ(−x) ≡ u(x+ g(x)) and using (2.59) and (2.65), we can write the partition
function as

Z(β) = eS0

√
φb

2πβ

∫ ∞
0

dx e
−βξ(x)

2φb (2.72)
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where ξ(x) satisfies √
ξ(x)I1(2π

√
ξ(x))

2π +Ke−S0f(ξ(x)) = x. (2.73)

Equation (2.73) is the “string equation” that shows how the inclusion of EOW branes affects
the partition function. Starting from the regulated and renormalized measure in (2.51) and
taking the ε→ 0 limit, we find that f(u) becomes fλ(u), which is defined by

fλ(u) = λ−
∫ ∞

0
db log

(
4 tanh b4

)
∂b
(
e−µbJ0(b

√
u)
)

= λ− λ0 +
∞∑
n=0

(
1√

(1/2 + µ+ n)2 + u
− 1

1/2 + µ+ n

)
(2.74)

where
λ0 ≡ −µ

∫ ∞
0

db log
(

4 tanh b4

)
e−µb = H(µ− 1/2) (2.75)

and H(x) is the Harmonic number. As the constant λ0 has no physical meaning, we will
shift λ→ λ+ λ0 in the rest of paper for notational simplicity.

In the limit that the regulator is removed, any regulated measure leads to the same
fλ(u) for some value of renormalization parameter λ. For example, we used the cusp-like
counterterm such that fλ(0) = λ in (2.74). The derivative of fλ(u) agrees with the derivative
of (2.63) with m(α) taken to be the unregulated measure (2.54). In the limit that the
regulator is removed, the string equation becomes√

ξ(x)I1(2π
√
ξ(x))

2π +Ke−S0fλ(ξ(x)) = x. (2.76)

It is clear from the string equation that our theory contains three independent parameters:
K, µ, and λ.

2.4 Spectral density

We perform an inverse Laplace transform to get the spectral density

ρ(E) = eS0φb
π

∫ ∞
0

dx
θ[2φbE − ξ(x)]√

2φbE − ξ(x)

= eS0φb
2π

∫ 2φbE

2φbE0

dξ√
2φbE − ξ

(
I0(2π

√
ξ) + 2Ke−S0f ′λ(ξ)

)
(2.77)

where the zero point energy E0 is given by x = 0 in (2.76)

√
2φbE0

I1(2π
√

2φbE0)
2π +Ke−S0fλ(2φbE0) = 0 (2.78)

As fλ(u) has singularities at −(1/2 +µ+n)2 for n ∈ N, we will assume 2φE0 > −(1/2 +µ)2

throughout this paper. Using (2.63) and (2.51), we can also write the second term in (2.77) as

ρ(E) ⊃ −Kφb2π

∫
D
dαm(α)

∫ 2φbE

2φbE0

dξ√
2φbE − ξ(α2 + ξ)3/2

= −Kφb
π

∫
D
dαm(α)

√
2φb(E − E0)

(α2 + 2φbE)
√
α2 + 2φbE0

(2.79)
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-2.0 -1.5 -1.0 -0.5
x

-0.10

-0.05

0.05

y(x)

(c) λ > 0

Figure 5. Plot of
√
xI1(2π

√
x)/(2π) (blue) and −Ke−S0fλ(x) (other colors) for different λ. The

largest intersection point gives zero point energy E0. (a) yellow, green and red means increasing K
and E0 moves rightward as K increases; (b) yellow is K < K=

cr, green is critical K = K=
cr and red

is K > K=
cr. E0 = 0 when K ≤ K=

cr, and E0 > 0 when K > K=
cr; (c) yellow is K > K>

cr, green is
critical K = K>

cr, red is K < K>
cr and purple is for K too large such that no intersection exists (this

purple curve also has smaller µ than the other three). E0 moves leftward when K increases and has
a jump when K > K>

cr. In the plot, we set 2φb = 1 and eS0 = 1.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
E
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0.5

ρ(E)

(a) λ < 0

0.05 0.10 0.15 0.20
E

0.05
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ρ(E)

(b) λ = 0
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E

-0.02
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0.08

0.10

ρ(E)

(c) λ > 0

Figure 6. Plot of spectral density ρ(E) for different λ. Each color represents taking the K value
corresponding to the same color curve in figure 5. All parameters are identical to figure 5.

In ε→ 0 limit, the derivative f ′λ(u) = f ′(u) is finite, which means that the dependence of
ρ(E) on the renormalization parameter λ is through the zero point energy E0 only. We
are interested in how the spectrum changes when K is increased from zero. For K = 0, the
spectrum reduces to the pure JT gravity result

ρJT (E) = ρK=0(E) = eS0φb
2π2 sinh

(
2π
√

2φbE
)

(2.80)

For nonzero K, because
√
uI1(2π

√
u) passes through the origin as shown in figure 4, we

can organize the problem into three cases based on the value of λ: fλ(0) < 0, fλ(0) = 0
and fλ(0) > 0.

Note that fλ(u) is a monotonically decreasing function. When fλ(0) < 0, λ < 0, the
largest solution to (2.78) is positive, which implies E0 > 0 (see figure 5a). As K increases,
E0 increases as well and the spectrum is pushed to right (see figure 6a).

When fλ(0) = 0, λ = 0, the largest solution to (2.78) has a non-smooth but continuous
change. Indeed, it suffices to compare the slope of the two pieces in (2.78). The slope of√
uI1(2π

√
u)/(2π) is 1/2 at u = 0 and that of fλ(u) is

∂ufλ(u)|u=0 = 1
4ψ

(2)(1/2 + µ) < 0, (µ > −1/2) (2.81)
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where ψ(n) is n-th order polygamma function. When K < −2eS0/ψ(2)(1/2 + µ), the slope
of −Ke−S0f(x) is smaller than that of

√
uI1(2π

√
u)/(2π) and the largest solution to (2.78)

is E0 = 0 (see the yellow curve in figure 5b); when K > −2eS0/ψ(2)(1/2 + µ), the largest
solution to (2.78) is at some E0 > 0 (see the red curve in figure 5b). It turns out that
K = K=

cr ≡ −2eS0/ψ(2)(1/2 + µ) is the critical point for a phase transition of spectrum,
where two curves tangentially intersects at x = 0 (see the green curve in figure 5b).

At this critical point, the spectral density near the edge scales like ρ(E) ∼ E3/2 rather
than the generic case where ρ(E) ∼ (E−E0)1/2 as shown in figure 6b. To see this, let us define

G(x) ≡
√
x
I1(2π

√
x)

2π +Ke−S0fλ(x) (2.82)

At the critical point, we have G(0) = G′(0) = 0. Close to the critical point, expanding E
around E0, we have

G(2φbE) ∼ a1(E − E0) + a2(E − E0)2 +O((E − E0)3), a1 ≥ 0, a2 > 0 (2.83)

where a1 = 0 at the critical point. As we discussed before, E0 > 0 for K > K=
cr, and E0 = 0

for K < K=
cr. Taking this into (2.77), we find that the spectral edge scales as

ρ(E) ∼
∫ 2φbE

2φbE0

dξ√
2φbE − ξ

[a1 + 2a2(ξ − E0)] ∼ 2(E − E0)1/2
[
a1 + 4a2

3 (E − E0)
]

(2.84)

where the leading order scaling is (E − E0)1/2 unless a1 = 0.
When fλ(0) > 0, λ > 0, the largest solution to (2.78) is negative, which implies E0 < 0

(see figure 5c). As K increases, E0 decreases as well and the spectrum is pushed to left
(see figure 6c). However, as

√
xI1(2π

√
x)/(2π) is an oscillatory function when x < 0, there

will be another critical point K = K>
cr when

√
xI1(2π

√
x)/(2π) tangentially intersects with

−Ke−S0fλ(x) at some negative x. Similar to (2.84), we can show that at this critical point
the near edge spectrum scales as (E−E0)3/2. Though K>

cr does not have an analytic closed
form, we can easily confirm that E0 would have a jump when K > K>

cr because of the
oscillatory feature of

√
xI1(2π

√
x)/(2π) (see figure 5c).

However, such a jump of E0 leads to an unphysical spectrum because there is a range
of E where ρ(E) < 0 (see the yellow curve in figure 6c). Such a negative spectrum has been
observed also in JT gravity with deficit angles [14, 15] and it indicates a breakdown of the
gravitational computation. To be precise, the gravitational sum over loops of EOW branes,
as a perturbative series in K, will not be convergent for K > K>

cr because u(x), defined
in (2.59), has a branch cut beginning at a positive value of x.1 Indeed, when K increases
past K>

cr, the largest two real solutions of (2.78) collide and then split into two complex
conjugate values, which are separated by the branch cut. Therefore, the rule to take 2φbE0
as largest real solution to (2.78) is not analytic.

From the dual matrix model point of view, this is interpreted as a nonperturbative
instability [10, 19] that requires a nonperturbative completion of the divergent sum to yield

1The Lagrange inversion theorem, which is used to perform the sum, requires u(x) to be analytic in a
sufficiently large domain.
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a reasonable spectral density. In sections 3 and 4, we will consider a nonperturbatively
well-defined matrix model whose tree-level spectral density agrees with the results in this
section for K < K>

cr but remains well-defined for K > K>
cr. We will find that beyond this

critical point, the spectrum undergoes a special phase transition to include both real and
complex energies.

Before we move on to next section, we will point out a worse problem for the spectrum
formula given by (2.77) and (2.78) when K > K>

cr. Our regulated fλ(x) in (2.74) has
singularities at x = −(1/2 + µ + n)2 for all nonnegative integer n. If we take K large
enough, there could be no real solution to (2.78) at all because fλ(x) blows up near its first
singularity too fast (see the purple curve in figure 5c). This feature does not exist in JT
gravity with deficit angles [14, 15], where real solution of E0 always exists. This is another
evidence that gravitational computation breaks down when we include too many EOW
branes if λ > 0.

2.5 Integrating out EOW branes

In this subsection we discuss the effective action for the metric and dilaton that remains
after integrating out K species of EOW branes with mass µ. Having calculated the change
of the spectral density due to the EOW branes, we now want to find a dilaton gravity
theory whose disk path integral reproduces the total spectral density. Because the effective
action associated with cusps is already known [14, 15], we will focus on the theory where
E0 = 0, or where λ = 0 in (2.74). For small enough K, before any phase transition occurs,
the spectral density follows from (2.79),

ρK(E) = −Kφb
π

∫ ∞
0

db
sin2( b2

√
2φbE)√

2φbE
e−µb

sinh b
2
. (2.85)

In [13], Witten provides a formula for the spectral density ρ(E;U) associated with the
dilaton potential W (Φ) = 2Φ + U(Φ), for a certain class of potentials. The result is

ρ(E;U)− ρJT (E) = eS0 φb
4π
√

2φbE

(
e2π
√

2φbEU(
√

2φbE) + e−2π
√

2φbEU(−
√

2φbE)
)
.

(2.86)
This result was derived for a class of potentials given by

U(Φ) = 2
r∑
i=1

εi e
−αiΦ, π < αi < 2π, U(0) = 0. (2.87)

For certain potentials, (2.86) predicts that the spectral density can be negative for some
energies, similar to figure 6c. In this case, we expect that (2.86) breaks down. The authors
of [19] studied an example where a naive application of (2.86) predicts negativity in the
spectral density, while the correct spectral density has E0 6= 0. For now, we assume that
Ke−S0 is sufficiently small such that ρJT (E) + ρK(E) is positive everywhere.

If we take U(Φ) to be

U(Φ) = 2Ke−S0e−2πΦ
∫ ∞

0
db (cos(bΦ)− 1) e−µb

2 sinh b
2
, (2.88)
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then (2.86) coincides with (2.85). We claim that (2.88) is the correction to the JT action
from integrating out the EOW branes. However, (2.88) is not manifestly of the form
of (2.87). In the spirit of effective field theory, we will expand (2.88) in a power series in 1

µ .
The first few orders are given by

U(Φ) = 2Ke−S0e−2πΦ
[
− Φ2

2µ2 + Φ2 + 2Φ4

8µ4 +O

( 1
µ6

)]
. (2.89)

Each term in the above expansion takes the form of (2.87) for a particular limit of the
parameters. Thus, (2.86) can be used to compute the spectral density associated with (2.88)
order by order in the 1

µ expansion. Alternatively, we can use the result that the string
equation associated to a potential of the form (2.87) is [13, 15]√

ξ(x)
2π I1

(
2π
√
ξ(x)

)
+
∑
i

εiI0

(
(2π − αi)

√
ξ(x)

)
= x. (2.90)

It follows that the string equation that corresponds to (2.89) is√
ξ(x)
2π I1

(
2π
√
ξ(x)

)
+ 2Ke−S0

[
− ξ

8µ2 + 2ξ + 3ξ2

64µ4 +O

( 1
µ6

)]
= x. (2.91)

This agrees with (2.74) for λ = 0 to the same order in 1
µ .

When µ is large and Ke−S0 is order one, the EOW branes have a small effect on the
spectral density, and one cannot reach a phase transition. As shown in figure 5b, there
is a phase transition when K > K=

cr, which is µ-dependent. To investigate the validity
of (2.88) across this phase transition, we note that for sufficiently large K, the largest zero
of W (Φ), which we denote φ∗, discontinuously jumps from zero to a positive value. As K
increases further, φ∗ increases monotonically. The zero temperature entropy of a black hole,
evaluated from the on-shell action, is given by 2πφ∗. We can compare this semiclassical
entropy with our exact calculations by examining the low-energy behavior of the spectral
density, (2.77). For 2φb(E − E0)� 1, (2.77) approximately becomes

ρ(E) ≈ eS0φb
π

√
2φb(E − E0)

(
I0(2π

√
2φbE0) + 2Ke−S0f ′0(2φbE0)

)
. (2.92)

We define the effective zero-temperature entropy (or effective extremal entropy), S0,eff, by
the coefficient of

√
E − E0 in ρ(E)

eS0,eff ≡
√

2φbφbeS0

π

(
I0(2π

√
2φbE0) + 2Ke−S0f ′0(2φbE0)

)
. (2.93)

The effective zero-temperature entropy, which we simply read off from the normalization
of the edge of the spectrum, represents the change in the zero-temperature entropy due
to integrating out EOW branes. For order one values of Ke−S0 , S0,eff and 2πφ∗ disagree;
indeed, for K < K=

cr, S0,eff is nonzero while 2πφ∗ is zero.2 However, for large values of
2This is not a surprise because (2.88) does not have a simple weak coupling limit. To restore G, we replace

φ→ φ
8πG . Because

1
G

does not appear in the action as an overall prefactor, G→ 0 is not a weak coupling
limit. Furthermore, near the phase transition, (2.93) is not a good measure of the zero temperature entropy
because the coefficient of the E1/2 term in the spectral density is suppressed relative to the E3/2 term.
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K both S0,eff and 2πφ∗ diverge as logK. This provides a qualitative check of (2.88) for
K > K=

cr.
The fact that S0,eff increases as logK for large K suggests that in this limit, the

zero-temperature entropy is counting the number of species of EOW branes. Thus, we can
view JT gravity with EOW branes as a model of induced gravity, since part of the black
hole entropy in the effective dilaton gravity theory is induced by dynamical EOW branes
that have been integrated out.

Indeed, such induced gravity interpretation is a general feature for heavy EOW branes
in large K. For λ < 0 and large µ limit, we can use (2.78) and (2.93) to see the same scaling
S0,eff ∼ logK when Ke−S0 � 1 even though it does not undergo any phase transition. For
λ > 0 where the gravitational computation breaks down when K > K>

cr, we will see the
same scaling in section 4.3 and 5.1 for K � K>

cr.

3 Effective matrix model

The duality between JT gravity and a double-scaled matrix model [10] can be expressed as
the following identity

Zn(β1, · · · , βn) =
〈
Tr e−β1H · · ·Tr e−βnH

〉
≡ lim

double
scaling

1
Z

∫
dH e−NTrV (H)Tr e−β1H · · ·Tr e−βnH

(3.1)
where H is a N ×N hermitian matrix. In this equation, Zn(β1, · · · , βn) is the Euclidean
path integral over all Riemann surfaces with n AdS boundaries with inverse temperatures β1
to βn, and

〈
Tre−β1H · · ·Tre−βnH

〉
is the expectation value of n operator insertions Tre−βiH

in the matrix model in the double scaling limit. Z is the matrix model partition function
with no insertion of operators. The double scaling is the special limit in which we zoom in
the lower edge of spectrum in the large N limit while fixing the total number of eigenvalues
∼ eS0 in any finite energy range. On both sides of (3.1), we have a topological expansion,
in which each order is related to a genus g Riemann surface weighted by e(2−2g−n)S0 .
The beautiful work in [10] derives (3.1) by showing that both topological expansions are
equivalent order by order. In this section, we will work out how dynamical EOW branes
modify the matrix model potential V (H) and the genus zero spectral density.

3.1 Potential deformation by EOW branes

Our strategy is to find the “inverse trumpet” Z̃(β) such that3∫
dβZtrumpet(b, β)Z̃(β) =M(b)/b. (3.2)

Using Z̃(β), we can compute a path integral with n loops of EOW branes by integrating the
path integral of pure JT gravity with at least n AdS boundaries against n inverse trumpets.

3A recent work [12] also studied matrix model dual to branes with different boundary condition via the
inverse trumpet.

– 20 –



J
H
E
P
0
1
(
2
0
2
2
)
0
3
8

Invoking the duality between pure JT gravity and a matrix integral, the Euclidean path
integral over all surfaces with m AdS boundaries and n EOW brane loops is given by

Zn(β1, . . . , βm) = Kn

n!

〈 m∏
j=1

Tr e−βjH
 [∫ dβ̃Tre−β̃H Z̃(β̃)

]n〉
. (3.3)

If we define
δV (H) ≡ −

∫
dβe−βH Z̃(β), (3.4)

then the sum over all geometries with m AdS boundaries and any number of EOW branes
becomes

Z(β1, . . . , βm) =
∞∑
n=0
Zn(β1, . . . , βm) = lim

double
scaling

1
Z

∫
dH

m∏
j=1

Tr e−βjH e−NTrV (H)−KTrδV (H).

(3.5)
Equation (3.5) includes unwanted terms that may be interpreted as disconnected vacuum
bubble geometries with EOW branes; these may be cancelled by multiplying Z by an overall
constant.

Finding the inverse trumpet Z̃(β) is straightforward. The inverse Laplace transformation
of trumpet is given by (2.48), which written in energy variable is

Ztrumpet(b, β) =
∫ ∞

0
dEρtrumpet(b, E)e−βE , ρtrumpet(b, E) =

√
φb
2E

cos(
√

2φbEb)
π

(3.6)

It leads to ∫
dβZtrumpet(b, β)Z̃(β) = −

∫ ∞
0

dEρtrumpet(b, E)δV (E) =M(b)/b (3.7)

Using the orthogonality of cosine function∫ ∞
0

dx cos ax cos bx = π

2 (δ(a+ b) + δ(a− b)) (3.8)

we have
δV (E) = −2

∫ ∞
0

db cos(
√

2φbEb)M(b)/b (3.9)

This integral is not well-defined near b ∼ 0. We can regularize it by, for example, replacing
1/b with bα and taking α→ −1 + ε in the last step. Using the identity∫ ∞

0
dbe−xbbα = x−1−αΓ(1 + α) (3.10)

we find for (2.49)

δV (E) = −
[
ζ
(
1 + α, 1/2 + µ+ i

√
2φbE

)
+ c.c

]
Γ(1 + α)

= 2µ
ε
− log

[
e2µγE

2π |Γ
(
1/2 + µ+ i

√
2φbE

)
|2
]

+ o(ε) (3.11)
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Note that the leading divergence and constant log e2µγE
2π can be absorbed into the normal-

ization of the matrix model partition function, and thus does not affect any correlation
functions. Therefore, we find that summing over dynamical EOW brane loops in the path
integral amounts to shifting the matrix model potential by KδV , with

δV (E) = − log
[
|Γ(1/2 + µ+ i

√
2φbE)|2

]
. (3.12)

From this matrix model analysis, it appears that we do not need to introduce any counterterm
to the matrix model potential because the b → 0 divergence of (3.9) does not seem to
affect any normalized correlators. However, just as the computations in section 2 required
regularization, the analysis of the double-scaled matrix model with the potential deformed
by (3.12) requires additional input to be well-defined. In section 3.3.3, we will explain
why and interpret the meaning of the cusp counterterm introduced in section 2.3 from the
perspective of the matrix model.

The derivative of δV (E) is a sum of poles:

δV ′(E) =
∞∑
n=0

1

E + ( 1
2 +µ+n)2

2φb

. (3.13)

Throughout this paper, we will assume that the support of the spectrum of the matrix
model does not contain any of the singularities in (3.13).

The deformation of potential (3.12) could also be rewritten as an integral over complex
vector fields. Using identity Tr logA = log detA, we have

eKTr log
[
|Γ(1/2+µ+i

√
2φbH)|2

]
=
[
det |Γ

(
1/2 + µ+ i

√
2φbH

)
|−2
]−K

=
∫
DQ†iDQie

−
∑K

i=1 Q
†
i |Γ
(
1/2+µ+i

√
2φbH

)
|−2Qi (3.14)

where each Qi is a N -dimensional complex vector for i = 1, · · · ,K. Alternatively to a
deformation of the potential, we could understand each flavor of EOW loop as being
dual to a coupling Q†i |Γ(1/2 + µ+ i

√
2φbH)|−2Qi of complex vectors in the matrix model.

Each of the vectors Qi has the interpretation of a state with a single EOW brane in the
gravity theory.

3.2 Saddle equation for the matrix model with deformed potential

In this section, we discuss how the shift in the potential δV affects the tree-level spectral
density of the matrix model. Instead of using the explicit form of δV given in (3.12), we
will use the more general formula (3.9) that applies for general geodesic length measures.
This is because it will turn out to be necessary to use a regulated M(b) in (3.9) when
determining the location of the lower endpoint of the spectrum.

The total potential of the matrix model is

NV = NVJT +KδV (3.15)
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where VJT is the potential of the matrix model dual to pure JT gravity and δV is given
in (3.9). Next, we define the effective potential

NVeff(E) ≡ NV (E)−
∫
Dρ
dλρ(λ) log(λ− E)2, (3.16)

and the action
I = N

∫
Dρ
dλρ(λ)Veff(λ), (3.17)

where Dρ is the support of ρ(λ). As in [20], we call the second term in (3.16) the Coulomb
gas replusive potential between pairs of eigenvalues. In the large N limit the saddle equation
for variation of each λ ∈ Dρ gives V ′eff(E) = 0 for E ∈ Dρ, namely

NV ′JT (E) +KδV ′(E) = 2
∫
Dρ
dλ

ρ(λ)
E − λ

, E ∈ Dρ (3.18)

where the integral is understood as its principal value. Here ρ(λ) is normalized as∫
Dρ
dλρ(λ) = N . This means that the effective potential on the support of spectrum

is a constant. Moreover, this constant is the minimum value of the effective potential
along the path over which all eigenvalues are integrated. Physically, this means that all
eigenvalues tend to stay in the lowest energy configuration which is a balance between the
external force −V ′ and the internal Coulomb repulsion for each eigenvalue.

Let us define ρ(λ) = ρJT (λ) + δρ(λ) for λ ∈ Dρ where ρJT (λ) is the spectral density
in the original SSS matrix model. Note that ρ(λ) and ρJT (λ) may have different support
and thus δρ(λ) could be a continuous but only piecewise differentiable function. Define the
resolvent as

R(E) =
∫
Dρ
dλ

ρ(λ)
E − λ

(3.19)

One can show that R(E) is a double cover map from E ∈ C ∪ {∞} to C with a branch cut
along Dρ. It follows from the definition and (3.18) that

ρ(E) = − 1
2πi(R(E + iε)−R(E − iε)), NV ′(E) = R(E + iε) +R(E − iε), E ∈ Dρ

(3.20)
As the double cover map has a sign ambiguity along the cut, for a sensible matrix model
solution, we need to assign the phase around the cut such that the measure ρ(E)dE is
nonnegative along Dρ. For branch cut of s pieces ∪si=1[a2i−1, a2i] ⊂ R, we can write

ρ(E) = 1
2πM(E)

√
−σ(E), σ(E) =

2s∏
i=1

(E − ai), E ∈ Dρ (3.21)

for some analytic function M(E) (M(x) is a polynomial of degree d − s when potential
V (x) is a polynomial of degree d+ 1). Then it is easy to see that

R(x) = 1
2

(
NV ′(x)−M(x)

√
σ(x)

)
=⇒ NV ′eff(x) = iπ(ρ(x+ iε)− ρ(x− iε)), x ∈ R

(3.22)
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Applying this to SSS matrix model, we can write (3.18) as

KδV ′(E) + iπ(ρJT (E + iε)− ρJT (E − iε)) + 2
∫
D∗
dλ
ρJT (λ)
E − λ

= 2
∫
Dρ
dλ

δρ(λ)
E − λ

, E ∈ Dρ

(3.23)

where D∗ ≡ DρJT \(Dρ ∩DρJT ). This is a nice formula in which the l.h.s. is known except
the range of Dρ, and r.h.s. has the same form as (3.18). We can define the l.h.s. in terms of
a new potential NṼ ′(E) and write (3.23) as

NṼ ′(E) = 2
∫
Dρ
dλ

δρ(λ)
E − λ

(3.24)

This is the saddle-point equation for a single-matrix model with potential NṼ ′(E). The
normalization condition for δρ is∫

Dρ
dλδρ(λ) =

∫
D∗
dλρJT (λ) (3.25)

Standard techniques of solving for the resolvent and spectral density can be applied to
the new potential Ṽ . For example, we can define the variation of the resolvent

δR(E) = 2
∫
Dρ
dλ

δρ(λ)
E − λ

(3.26)

and it follows that

δρ(E) = − 1
2πi(δR(E+iε)−δR(E−iε)), NṼ ′(E) = δR(E+iε)+δR(E−iε), E ∈ Dρ

(3.27)
One can also use the Tricomi relation [20] to write δR in terms of contour integral of the
potential

δR(E) = 1
2πi

∮
E
dλ
δR(λ)
λ−E

√
σ(E)
σ(λ) = 1

2πi

∮
Dρ
dλ
δR(λ)
E−λ

√
σ(E)
σ(λ) = 1

4πi

∮
Dρ
dλ
NṼ ′(λ)
E−λ

√
σ(E)
σ(λ)
(3.28)

where in the second step we used (3.27). In the double scaling limit, the rightmost end
a2s → +∞, and the formula reduces to

δR(E) = 1
4πi

∮
Dρ
dλ
NṼ ′(λ)
E − λ

√
σ∗(E)
σ∗(λ) , σ∗(E) = (a2s−1 − E)

2s−2∏
i=1

(E − ai) (3.29)

3.3 One-cut solution of spectral density

To simplify the computation of the tree-level spectral density of JT gravity coupled to
EOW branes, let us assume that the lower edge of the spectrum E0 is negative. This
simplifies (3.23) as the third term in l.h.s. vanishes due to D∗ = ∅.

By (3.29), δR is linear in NṼ ′ and thus is the sum of two terms that correspond to the
first two terms of NṼ ′ in (3.23). We call the first term the potential related piece (with
subscript “K”) and the second term the universal piece (with subscript “U”) respectively.
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For the potential related piece, we will consider a general measure for the EOW branes (2.52)
giving an extra force

− δV ′(E) = −

√
2φb
E

∫ ∞
0

db sin(
√

2φbEb)M(b) = −2φb
∫
D
dα

m(α)
α2 + 2φbE

(3.30)

For the unregulated measure (2.54), we recover (3.13). Because it is a convergent sum,
using any regulated measure leads to the same result in ε→ 0 limit. In the rest of this paper
unless specified, we will use unregulated measure (2.54) in all integrals over α whenever it
is convergent (and thus it makes no difference which regulated one is used, in the limit the
regulator is removed).

The minus sign in (3.30) shows that the force is leftward for 2φbE > −(1/2 + µ)2 and
one might have conclude E0 < 0. However, although δV ′(E) is independent of regularization
and λ in the ε→ 0 limit, E0 still depends on the regularization in a subtle way that we will
explain in section 3.3.3.

Let us still assume here that E0 < 0 for computational simplicity. In the end, the
result (3.36) and (3.37) has an analytic form that can be easily continued to E0 > 0 case.
On the other hand, solving (3.23) with E0 > 0 requires dealing with the third term in (3.23)
as D∗ 6= ∅, but this leads to the same result.

3.3.1 Universal piece

As ρJT (E) in (2.80) has a branch cut along the negative real axis, the universal piece of
NṼ ′(λ) is proportional to sin(2π

√
2φb(−λ)) and only supported for λ < 0. This implies

that the contour integral of (3.29) can be reduced to surrounding [E0, 0]

δRU (E) = eS0φb
4π2i

∮
[E0,0]

dλ sin(2π
√

2φb(−λ))
λ− E

√
E0 − E√
E0 − λ

(3.31)

Expand the sine function in Taylor series, in which each term can be evaluated by moving the
contour to infinity. It turns out that the integral becomes a sum over residue at E and ∞,

δRU (E) =−e
S0φb
2π

[
sin
(

2π
√

2φb(−E)
)
− 1

2πi

∞∑
n=0

(2π
√

2φb)2n+1

(2n+1)!

∮
∞
dλ
λn+1/2

λ−E

√
E0−E√
λ−E0

]
(3.32)

The first term has a branch cut on the positive real axis. Thus, along the negative real axis,
δρU (E) = 0. For E > 0, the contribution to δρU (E) = −ρJT (E) which cancels out ρJT (E).
Therefore the spectral density comes from the second integral around infinity. We can do
a coordinate transformation λ→ 1/z, and the integral becomes

RU (E) ' eS0φb
4π2i

∞∑
n=0

(2π
√

2φb)2n+1

(2n+ 1)!

∮
0

dzz−n−1

1− Ez

√
E0 − E√
1− E0z

= eS0φb
√
E0 − E

2π

∞∑
n=0

(2π
√

2φb)2n+1En

(2n+ 1)!

n∑
n0=0

(1/2)n0

n0!

(
E0
E

)n0

(3.33)
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where in the second step we used Taylor expansion and picked out the coefficient of zn−1.
Here “'” means ignoring the analytic part of RU (E) that does not contribute to spectral den-
sity. Let us denote the sum over n0 as Sn(E0/E). Expanding (E0/E)n0 = ((E0/E−1)+1)n0

in powers of (E0/E − 1), we have

Sn(E0/E) =
n∑

n0=0

n0∑
k0=0

(1/2)n0

(n0 − k0)!k0! (E0/E − 1)k0

=
n∑

k0=0

(1/2)k0

k0! (E0/E − 1)k0
n−k0∑
s0=0

(1/2 + k0)s0
s0!

=
∫ 1

0
dt0

n∑
k0=0

Γ(n+ 3/2)√
π(n− k0)!k0! (E0/E − 1)k0t

k0−1/2
0

= Γ(n+ 3/2)√
πn!

∫ 1

0
dt0

(1 + t0(E0/E − 1))n

t
1/2
0

(3.34)

The sum over n is straightforward

∞∑
n=0

(2π
√

2φb)2n+1En

(2n+ 1)! Sn(E0/E) = π
√

2φb
∫ 1

0
dt0

I0
(
2π
√

2φb[t0E0 + (1− t0)E]
)

t
1/2
0

(3.35)

As I0(x) is an entire function, the integrand is analytic for all E. Therefore, the discontinuity
of δRU (E) at E± is purely determined by the factor

√
E0 − E. It follows that

ρU (E) = eS0φb
√

2φb(E − E0)
2π

∫ 1

0
dt0

I0
(
2π
√

2φb[E + t0(E0 − E)]
)

t
1/2
0

(3.36)

Defining ξ = 2φb[E + t0(E0 −E)], we can easily see that (3.36) matches with the first term
of gravity calculation (2.77).

3.3.2 Potential related piece

Using (3.30) and (3.29), we have

δRK(E) = −Kφb2πi

∫
D
dαm(α)

∮
[E0,+∞)

dλ

(λ− E)(α2 + 2φbλ)

√
E0 − E√
E0 − λ

= Kφb

∫
D
dαm(α)

[
1

α2 + 2φbE
−

√
E0 − E

(α2 + 2φbE)
√
E0 + α2/(2φb)

]
(3.37)

where in second line we deformed the contour to poles at λ = E and λ = −α2/(2φb) and
computed it using the residue theorem. This is justified by our assumption below (3.13)
that 2φbE0 > −(1/2 +µ)2. It is clear that only the second term of (3.37) contributes to ρK

ρK(E) = −Kφb
π

∫
D
dαm(α)

√
2φb(E − E0)

(α2 + 2φbE)
√
α2 + 2φbE0

(3.38)

which exactly matches with (2.79).
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3.3.3 Determining E0

In the gravity computation of section 2.3, the ambiguity in the finite part of the cusp-
like counterterm leads to a free parameter λ. In the following, we will show that this
ambiguity naturally corresponds to an ambiguity in the zero point energy E0 of the tree-
level spectrum of the matrix model, which is sensitive to additional UV deformations to
potential (3.12). Such UV deformations are not unique but play an equivalent role to the
cusp-like counterterm in gravitational computation.

From the string equation (2.76), we see that λ can be adjusted to set E0 to a desired value.
At first glance, this seems to be at odds with our understanding of matrix models. Ordinarily,
the endpoints of a single-cut spectrum in a matrix model are not free parameters. They
are fixed by the condition that the spectral density is normalized to the appropriate value.
From (3.25) and the simplifying assumption that E0 ≤ 0, the normalization condition is∫

Dρ
dλ δρ(λ) = 0. (3.39)

As detailed in the previous subsection, δρ is a sum of two terms, δρU = ρU − ρJT and δρK .
From (3.36), (3.38), and (2.54), we will have a different large E behavior of δρU and δρK ,
respectively, as O(E−1/2) and O(E−1/2)+O(E−1/2 logE).4 Thus, (3.39) cannot be satisfied
for any choice of E0 because δρU and δρK have different asymptotic behavior. The upshot
is that the normalization condition can no longer determine the tree-level spectral density
of the double-scaled matrix model, where the spectrum is assumed to have noncompact
support on [E0,∞). On the other hand, in a non-double-scaled matrix model, where the
spectral density has compact support, the potential and normalization condition uniquely
determine the spectrum. Thus, to determine E0, we must also specify how the change in
the potential δV approaches (3.12) in the double scaling limit.

We claim that for any E0, it is possible to add a term to the potential of the matrix
model dual to JT gravity that converges pointwise to (3.12) in the double scaling limit such
that the resulting spectral density is supported on [E0,∞) and given by ρJT + δρ, where
δρ = δρU + δρK . There is one exception: when the spectral density corresponding to a
given value of E0 has negativity, that value of E0 is ruled out.

To see this, consider a family of matrix models labelled by Λ whose tree-level spectra
ρΛ have compact support and converge pointwise to ρJT in the double scaling limit Λ→∞.
For concreteness, we may assume that ρΛ(E) agrees with ρJT (E) for E < Λ. Next, define
δρΛ(E) to agree with δρ for E0 < E < Λ.5 For E > Λ, let δρΛ be a smooth function that
interpolates between δρ(Λ) and 0 in a way such that the normalization condition∫

Dρ̃Λ

dE δρΛ(E) = 0 (3.40)

4While (3.38) cannot be evaluated analytically for E0 6= 0, one can check that it has the advertised large
E falloff for E0 = 0 and that the large E behavior of its E0 derivative is subleading.

5We will still assume that E0 < 0 to be consistent with our earlier computations of δρU and δρK , although
this condition is not essential for our present argument.
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Λ

1 2 3 4 5
E

-0.1

0.1

0.2

0.3

ρ(E)

Figure 7. The blue curve is spectral density ρΛ(E) that matches with ρJT (E) for E < Λ; the
yellow curve is full spectral density ρ̃Λ(E) with E0 < 0; the red curve is the difference δρΛ(E). Due
to normalization (3.43), δρΛ(E) has a large negative “bump” above Λ.

is obeyed, where ρ̃Λ ≡ ρΛ + δρΛ is the full spectral density. See figure 7 for an illustration
of δρΛ. Similar to (3.23), the saddle point equation for δρΛ is

2
∫
Dρ̃Λ

dλ
δρΛ(λ)
E − λ

− iπ(ρΛ(E + iε)− ρΛ(E − iε)) + δFΛ(E) = 0, E ∈ Dρ̃Λ (3.41)

where δFΛ is the extra force that must be applied to the eigenvalues such that the resulting
spectrum is ρ̃Λ. Given δρΛ, one simply uses the above equation to calculate δFΛ. Let aΛ+
be the location of the upper end of Dρ̃Λ . Then (3.41) becomes

2
∫ Λ

E0
dλ

δρ(λ)
E − λ

+2
∫ aΛ+

Λ
dλ

δρΛ(λ)
E − λ

− iπ(ρΛ(E+ iε)−ρΛ(E− iε))+δFΛ(E) = 0, E ∈ Dρ̃Λ ,

(3.42)
while (3.40) becomes ∫ Λ

E0
dE δρ(E) +

∫ aΛ+

Λ
dE δρΛ(E) = 0. (3.43)

From the large E behavior of δρ(E), we see that the first term above diverges as Λ1/2 log Λ.
This controls how large the “bump” in figure 7 can be. This justifies that normalization
does not hold within the double-scaled regime. At fixed E, the second term of (3.42) goes
to zero in the large Λ limit. We are left with

2
∫ ∞
E0

dλ
δρ(λ)
E − λ

− iπ(ρJT (E + iε)− ρJT (E − iε)) = − lim
Λ→∞

δFΛ(E), E > E0. (3.44)

We have thus demonstrated that it is possible to pick a δFΛ that converges pointwise to
the derivative of (3.12) such that E0 takes on any desired value (modulo the possibility
that the resulting spectrum might have negativity). Thus, E0 should be viewed as a free
parameter, just as λ is a free parameter in (2.76). The above argument mirrors in the dual
matrix model our treatment of JT gravity with EOW branes as an effective field theory.
The fact that δFΛ(E) can be tuned for E > Λ to achieve different values of E0 reflects the
concept that the UV physics of the model can be tuned to achieve a desired IR theory. Of
course, the exact shape of the bump in figure 7 is unimportant; different choices represent
irrelevant UV modifications that belong to the same IR universality class.
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As explained above, we have a family of double-scaled matrix models, each of which
is labelled by a free IR parameter E0. The spectral density of each matrix model agrees
with the result of a gravitational calculation, (2.77). To match a particular matrix model
to a choice of the cusp counterterm λ in the gravity theory, we may use (2.78) to match the
spectral density on both sides. This IR perspective neglects the UV details that determine
these parameters.6 In section 4, we will consider the regime λ > 0 and K > K>

cr, where
the gravity computation breaks down but the matrix model computation does not (once
we specify a nonperturbative completion of the model, which is not unique). Thus, it
is also worthwhile to consider a UV perspective, where we explicitly consider how the
IR parameter E0 is determined by UV data. The previous paragraph implies that this
UV data is equivalent to the details of how the double-scaling limit is taken, and E0 is
determined by the normalization condition (3.40). To simplify computations, we have
identified two alternative methods to determine E0 from UV data that are easier to use in
practice. First, instead of deforming the potential by (3.12), one can use (3.30) to define a
δV associated with a regulated measure (such as (2.51)), and then impose the condition
that δρ is a normalizable function. The UV data is contained in the details of the regulated
measure. The second method is to take δV to be (3.12), but impose a condition on the
asymptotic behavior of δρ that fixes E0 (we will specify this below). The benefit of these
alternative conditions is that they allow us to bypass the use of a non-double-scaled matrix
model to define what we mean by the UV data of the matrix model. Also, they explicitly
relate the UV data of the matrix model to the choice of cusp counterterm λ in the gravity
theory. However, these alternative methods can only be fully justified by checking that they
reproduce (2.78), which determines E0 in the gravity computation. We explain these two
alternative methods below in more detail.

Let us first expand δρ(E) in large E. Note that ρJT (E) corresponds to E0 = 0 and
K = 0

ρJT (E) = eS0φb
2π

∫ 2φbE

0

dξ√
2φbE − ξ

I0(2π
√
ξ) (3.45)

We have δρ(E) in large E limit

δρ(E) =E−1/2 ·
[
eS0φ

1/2
b

2
√

2π

∫ 0

2φbE0
dξI0(2π

√
ξ)−K

π

∫
D
dα

√
2φ3/2

b Em(α)
(α2+2φbE)

√
α2+2φbE0

]
+o(E−1)

(3.46)
If we use a regulated measure, we may take the large E limit inside the integral of α and
have

δρ(E) = E−1/2 ·
[
eS0φ

1/2
b

2
√

2π

∫ 0

2φbE0
dξI0(2π

√
ξ)− Kφ

1/2
b√

2π

∫
D
dα

m(α)√
α2 + 2φbE0

]
+ o(E−1)

(3.47)

6In the matrix model, E0 is determined by the normalization of the spectrum before the double-scaling
limit is taken. This is sensitive to UV deformations of the potential. It would be very interesting to
understand if such non-double-scaled matrix model has any geometric dual. In particular, such dual, if exists,
cannot be asymptotically AdS because the non-double-scaled matrix model has an upper bound of energy.
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where the α integral is just fλ(2φbE0) by (2.63), which is finite and involves λ from
the regulated measure. The E−1/2 order integrates to E1/2 divergence for large E that
violates (3.39) within the double scaling limit. Imposing that δρ(E) is normalizable in
the double scaling limit requires that the order E−1/2 term in (3.47) vanishes. Using
I0(a
√
x) = 2

a∂x
√
xI1(a

√
x), the same zero point equation (2.78) follows after taking ε→ 0

in last step.
Note that the final result for δρ(E) after the double-scaling limit is taken is normalizable

but does not obey
∫
dEδρ(E) = 0. In general, the normalization could be nonzero (but

finite in the double-scaling limit). Given zero point equation (2.78) before removing the
regulator, one can show that∫ ∞

2φbE0
δρ(E)dE = 2φbK

π

(
lim
ξ→∞

√
ξfλ(ξ)−

∫ 0

2φbE0
dξ
√
−ξf ′λ(ξ)

)
(3.48)

It is clear that normalization depends on fλ(∞). From (2.53) and (2.63), we know that
fλ(ξ) ∼ ξ−1/2 in large ξ. Normalization holds exactly only for specially designed fλ(x) such
that ∫ 0

2φbE0
dξ
√
−ξf ′λ(ξ) = lim

ξ→∞

√
ξfλ(ξ) (3.49)

On the other hand, if we use unregulated measure (2.54) in (3.46), taking the large E
limit in the integral of α is illegal because it is divergent. As we mentioned before, this
term has an O(E−1/2) +O(E−1/2 logE) divergence. To match with the gravity result, we
can specify the UV data of dual matrix model as that for E →∞

δρ(E)→E−1/2 ·
Kφ

1/2
b√

2π

[
λ−

∫
D
dα

2φbEm(α)
(α2 + 2φbE)α

]
+ o(E−1)

=E−1/2 ·
Kφ

1/2
b√

2π

(
λ+ λ0 − log eγE

√
2φbE

)
+ o(E−1) (3.50)

where γE is Euler constant. This requirement leads to

1
2π

∫ 0

2φbE0
dξ∂ξ(

√
ξI1(2π

√
ξ))−Ke−S0

[
λ+

∫
D
dα

(
1√

α2 + 2φbE0
− 1
α

)]
= 0 (3.51)

which fixes E0 exactly as in gravitational answer in (2.78).

4 A “Y” shaped phase

As shown in figure 6c, the one-cut solution with λ > 0 is unphysical for K > K>
cr as

it has negative spectral density. On the gravity side, there is no obvious way to obtain
a sensible result beyond the critical point. Fortunately, the dual matrix model can be
non-perturbatively well-defined, and the method to compute spectral density for a given
potential is known. It turns out to has a “Y” shaped cut in the complex plane as we will
see shortly.
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4.1 Matrix model on complex contours

Before we discuss the phase transition, let us review some basic features of the non-
perturbative definition of matrix models. The partition function of a matrix model of
N ×N hermitian matrices is defined as

Z =
∫
dHe−NTrV (H) =

∫
RN

∏
i

dλi∆(λ)2e−N
∑N

i=1 V (λi) (4.1)

where ∆(λ) =
∏
i<j(λi − λj) is Vandermonde determinant and domain of integration of all

eigenvalues λi is RN .
We can generalize this definition to N contours in the complex plane Γ = ⊗Ni=1Γi ∈ CN

and define the ensemble of normal matrices with eigenvalues on Γ [20]

E(Γ) = {V ΛV −1|V ∈ U(N),Λ = diag(λ1, · · · , λN ), λi ∈ Γi} (4.2)

The partition function of this matrix model is

ZΓ =
∫

Γ

∏
i

dλi∆(λ)2e−N
∑N

i=1 V (λi) (4.3)

It is clear that the hermitian matrix ensemble is just the special case Γi = R for all i.
Absolute convergence for all eigenvalues is required to have a well-defined integral. With this
condition, we restrict each integration contour Γi to end at poles of V with an appropriate
angle such that <V (x)→ +∞ for x→ ∂Γi, where ∂Γi means the two ends of Γi. Here we
assume V (x) tends to its singularities faster than a logarithm so that the Vandermonde
determinant (scaling as e2N log x for each eigenvalue x→∞) is always subleading and does
not affect the integral’s convergence. Though it seems that there are infinitely many ways
to choose contours, contours that differ by smooth deformations do not change the integral
due to analyticity. It follows that the space of independent contours is isomorphic to the
homology space H1(e−V (x)dx). We can pick a basis γi for this homology space, and for
each eigenvalue λi, its integration contour can be chosen as an integer coefficient linear
combination of this basis

Γi =
∑
ij

cijγj , cij ∈ Z, 1 ≤ j ≤ dimH1(e−V (x)dx) (4.4)

where cij is the number of times λi is integrated along γi and the sign defines the direction
of integration.

For example, if V (x) = x4, its pole is at infinity and there are four directions approaching
infinity with <V (x) → +∞ (i.e. arg x ∈ (nπ/2 − π/8, nπ/2 + π/8) and |x| → ∞ for
n = 0, 1, 2, 3), which leads to a basis of three independent integration contours, say γn,n+1
for n = 0, 1, 2, denoting contours connecting einπ/2∞ to ei(n+1)π/2∞. There are only three
basis contours because γ0,1 + γ1,2 + γ2,3 + γ3,0 = 0 by analyticity. In general, for a potential
with a finite total degree of its poles, the dimension of H1(e−V (x)dx) is finite, while for
potentials with infinite degree of poles (infinitely many poles or an essential singularity), the
dimension of H1(e−V (x)dx) is countably infinite. For the N dimensional integration in Γ,
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Figure 8. The real part of effective potential along a descent-ascent road parametrized by x. Red
and blue curves are two different ascending roads γ(m) for a saddle point m of Veff. Green shaded
region is (part of) the support of spectrum Dρ. In (a) m is one edge of Dρ and in (b) m is not on
Dρ. In (b) the blue ascending road hits at a point p ∈ Dρ, then follows along Dρ to reach an edge
m′ of Dρ before extending to ∞.

to properly count the number of basis contours, we also need to quotient by permutations
of the eigenvalues. This leads to a basis of dimension dim(H1(e−V (x)dx)⊗N/Vsym), where
Vsym is the volume of the permutation symmetry group of the eigenvalues.

Given a matrix model potential and assignment of contours Γ from this basis of
H1(e−V (x)dx), for each eigenvalue λi ∈ Γi, one can use the saddle equation V ′eff(λi) = 0
(and thus setting <Veff(λi) = 0) for λi ∈ Dρ and <Veff(λi) ≥ 0 for λi ∈ Γi\Dρ to solve for
the tree-level spectral density ρ. Here we implicitly used the fact that saddle contour Γi
must have nonzero overlap with Dρ. If the spectrum is multi-cut, we also need to use the
information of how much fraction of eigenvalues lying on each basis γi to determine the
spectral density on each cut.

Conversely, given a tree-level spectral density ρ, we can derive an effective potential
using analytic continuation of ρ (see (3.22)). As Veff(x) has the same non-logarithmic
singularities as V (x) by definition (3.16), we can use it to define a basis γi as follows. For
any saddle point m such that V ′eff(m) = 0 (including the ends of spectrum), we define an
ascending path γ(m) emanating from m such that =Veff(x) = =Veff(m) and <Veff(x) is
strictly increasing for x away from m. Such a path will end on a singularity of V (x) or
a point p on Dρ. In the latter case, we further extend γ(m) along Dρ (on which Veff is
constant) to reach another end m′ of Dρ and then continue to a singularity of V (x) along
an ascending path γ(m′). Define a descent-ascent path [20] as the union of two different
ascending paths starting at the same saddle point m. See figure 8 for illustration. Our
γi is chosen as a complete and independent set from all descent-ascent paths. Each such
contour γi has a unique minimum value of <Veff(x) and extends to singularities of V (x)
monotonically.

Let us apply above construction of the basis γi to the matrix model dual to JT gravity.
The effective potential away from DρJT = R+ is [10]

V JT
eff (E) = eS0

4π3

(
sin
(

2π
√

2φb(−E)
)
− 2π

√
2φb(−E) cos

(
2π
√

2φb(−E)
))

(4.5)

which has infinitely many saddles at E = −n2/(8φb) for n ∈ Z (see figure 9a). Using the
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saddle

-4 -3 -2 -1
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-10
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5

10
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(a) (b)

Figure 9. (a) The effective potential of SSS potential for E < 0 where the first saddle is at
Esaddle = −1/(8φb). (b) First a few basis γi (that are infinite many) on complex E plane for the
matrix model dual to JT gravity. Here we use different colors to distinguish independent basis.
Along each γi to infinity <Veff → +∞ (except being constant along positive real axis DρJT

) and
along the shaded regions between contours <Veff → −∞. To have the spectrum ρJT (E) starting at
origin, we must choose the defining contour Γi for every eigenvalue λi on one of the rightmost two
contours that are labeled by bright red and green respectively.

construction of descent-ascent paths, we can choose the basis γi as plotted in figure 9b,
where four nearby basis contours are separated around the local maximum of V JT

eff (E) at
E = −(2n− 1)2/(8φb) for n ∈ N. As there are infinite many n, the dimension of the basis
is infinite.

Note that the interval around the saddles at −k2/(2φb) for k ∈ Z has lower effective
potential than that on DρJT (see figure 9a). This means that the integral contour Γ for the
spectrum of JT gravity cannot be along the real axis, otherwise there would be infinitely
many eigenvalues filling these energy wells on R−. This is a known non-perturbative
instability [10, 19, 21]. Indeed, in order to have ρJT (E) supported only on the positive real
axis, we must choose the defining contour Γi for every eigenvalue λi in (4.3) to be one of the
rightmost two contours in figure 9b that are labeled by bright red and green respectively.
Each of these two contours consists of two pieces (one along the real axis and the other
extending into upper/lower half complex E plane) joined at the first saddle of V JT

eff (E) at
E = Esaddle = −1/(8φb). Other choices of contours will lead to nonzero support of spectrum
in some regions of R−. Given these two contours, there are still many ways to choose how
many eigenvalues are assigned to each contour. Each choice defines a nonperturbative
completion of the model. The most natural choice of Γ is to assign half of the eigenvalues to
the upper contour and the other half to the lower contour, as this leads to a real partition
function. This is the prescription we will use to study the phase transition.

Adding the extra potential from EOW branes changes the spectrum as seen in the
gravitational computation. Increasing K in (3.15) from zero will also smoothly deform
Γ as the basis defined as descent-ascent roads also smoothly moves. Let us analyze the
effective potential near the critical point K>

cr when λ > 0. Using the near edge spectral
density (2.84), the effective potential for E < E0 is

Veff(E) ∼ 4a1
3 (E0 − E)3/2 − 16a2

15 (E0 − E)5/2 (4.6)
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Before reaching the critical point, Veff(E) is positive in a small neighborhood of E0 but it
becomes negative at the critical point when a1 = 0. For a1 > 0 but close to zero, we can
solve for the rightmost saddle of Veff(E) in the above approximation as

Esaddle ≈ E0 −
3a1
4a2

(4.7)

At critical point, a1 vanishes and Esaddle coincides with E0. Note that increasing K does not
change the direction of left-pointing extra force from δV and the two integration contours in
Γ each has two pieces joined at Esaddle. Given the fact that the end points of the tree-level
spectrum of matrix models must deform continuously (not necessarily smoothly at phase
transition point),7 this means that past the critical point, the spectrum cannot extend
along the real axis into the region with negative effective potential but rather it goes into
the upper or lower complex E plane along Γ. Therefore, the support of spectrum after
phase transition must be a “Y” shape with two complex conjugate pieces joined with a
piece along real axis (see figure 10).8

Such transition to “Y” shaped phases have been studied in other complex matrix
models (for example in [23]). For readers not familiar with this topic, we examine a
simple matrix model in appendix C with cubic potential V (x) = x3/3− tx2/2 and an even
distribution of eigenvalues on complex conjugate contours C+ and C−, where C± is a contour
connecting ±e2iπ/3∞ to +∞. In appendix C, we show that there are two critical values
±tcr = ±22/3 ·31/2 ≈ ±2.749 such that for t > tcr the spectrum is one-cut; for −tcr < t < tcr
the spectrum is “Y” shaped; for t < −tcr the spectrum becomes to one-cut again.

4.2 “Y” shaped solution of the spectral density

Let us denote the two complex ends of the spectrum as E±, the intersection on real
axis as E0 and the two arcs connecting E0 to E± as γ± (see figure 10). As we assume
eigenvalues are evenly distributed on the upper and lower contour, E± and γ± are complex
conjugates.9 Though eigenvalues can be complex, the spectral density ρ(E)dE must be
real and nonnegative along γ±. This is a strong condition that determines the shape of
γ±. Assuming E0 < 0, it is easy to see that same equation (3.29) and the contour integral
techniques of the one-cut case in section 3.3 are both applicable to solve for δR(E). As
usual, δR(E) is the sum of a universal term and a potential-dependent term.

7Even for Stokes’ phenomenon in matrix models that have two or more competitive saddles, the end
points of the tree-level spectrum deforms continuously at the critical point in generic cases. See [22] as
an example.

8As contour is defined only up to deformations that preserve the asymptotes, one may suspect another
scenario where the spectrum splits into two disjoint conjugate curves in the upper and lower half plane
respectively. However, this cannot be a saddle of the matrix model immediately after the critical point
because the Coulomb repulsive force between eigenvalues on these two curves would be arbitrarily large
if they have infinitesimal separation. Hence, the two curves must join somewhere and this is the “Y”
shaped spectrum.

9If we choose to put eigenvalues on these two contours with different fractions, we will still have a “Y”
shaped solution but with E+ not conjugate to E−. In this case, we have an additional parameter, which is fixed
by the extra equation from the difference of normalization on two contours that depends on the filling fraction.
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Figure 10. The support of “Y” shaped spectrum. The two complex conjugate ends are E± and
the joint point is E0. γ± are two arcs connecting E0 to E± respectively.

The computation is similar to the one-cut case, and we relegate it to appendix D. The
result is as follows. We need to place the branch cut of δR(E) along γ+ ∪ γ− ∪ [E0,+∞).
For E ∈ [E0,+∞), we have

ρU (E) = eS0φ2
b

√
(E−E+)(E−E−)(E−E0)

π

∫
V3

I1

(
2π
√

2φb[E+
∑

i=0,± ti(Ei−E)]
)

√
E+
∑

i=0,± ti(Ei−E)t1/20 t
1/2
+ t

1/2
−

dt0dt+dt−

(4.8)

ρK(E) = Kφb
π

∫
D
dαm(α)

√
(E−E0)(E−E+)(E−E−)

(α2+2φbE)
√

(α2/2φb+E0)(α2/2φb+E+)(α2/2φb+E−)
(4.9)

where

V3 ≡

(t0, t+, t−)|ti ≥ 0,
∑
i=0,±

ti ≤ 1

 (4.10)

For E ∈ γ±, ρ(E) has the same formula as (4.8) and (4.9) but with nontrivial branch-cut
choice of

√
(E − E0)(E − E+)(E − E−), which is determined by the locus of γ± by requiring

ρ(E)dE to be real and nonnegative along γ±.

We need three equations to determine three real parameters of the spectrum E0, <E+
and =E+. By a similar argument to section 3.3.3, there are two ways to impose appropriate
UV data to determine these three IR parameters. One can either use a regulated measure
and impose normalizability of δρ(E), or use the unregualted measure (2.54) and specify
the same large E asymptotic behavior in (3.50). They are equivalent in the limit that
the regulator is removed just as in the one-cut case. Let us take the large E behavior
defined by (3.50) as an example. Indeed, it is very easy to see that (4.9) only has three
non-normalizable pieces at large E, namely E1/2, E−1/2 logE and E−1/2. Including the
contribution from δρU (E) at large E, the first piece should vanish and the remaining two
pieces should obey (3.50). As computed in appendix D, matching these three orders gives
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two equations

2πKe−S0

∫
D
dα
m(α)
η(α) =

∫ 1

0

dw

(1− w)1/2

∫ 1

0
du
I0(2π

√
2φb(E0 + w(E+−u− E0−)))

u1/2(1− u)1/2 (4.11)

∫ 1

0

dw

(1− w)1/2

∫ 1

0
du

I0(2π
√

2φb(E0 + w(E+−u− E0−)))
(φbE0 + φbE+−(1− 2u))−1u1/2(1− u)1/2 −

√
2φbE0I1(2π

√
2φbE0)

= 2πKe−S0

[
λ+

∫
D
dαm(α)

(
α2 + (E0 + E+ + E−)φb

η(α) − 1
α

)]
(4.12)

where
η(α) ≡

√
(α2 + 2φbE0)(α2 + 2φbE+)(α2 + 2φbE−) (4.13)

It is a little surprising that three orders give us only two equations. This means that the
E−1/2 logE piece is universal and independent of the phase transition in the IR.

The last equation comes from requiring ρ(E)dE to be a real non-negative measure on
γ±. From the general expression for ρ(E) given in (4.8) and (4.9), we have

ρ(E)dE = ρr(E)dEr − ρi(E)dEi + i (ρr(E)dEi + ρi(E)dEr) (4.14)

where r and i subscripts represent real and imaginary parts respectively. Even though we
do not know where the cut is a priori, the above decomposition holds up to an overall ±
sign because ρ(E) is a two fold map. Being a real measure gives an ordinary differential
equation

ρr(E)dEi + ρi(E)dEr = 0, E ∈ γ± (4.15)

which has a unique solution given an initial point E = E±. On the other hand, we require
γ± to join E± and E0, which gives another initial condition for this differential equation,
leading to the final condition for determining the three parameters of the spectrum. On the
other hand, since ρ(E) is analytic except at the branching point, the integral from E0 to
E± is invariant under path deformation. Therefore, we can pick a simple one, for example
the straight line from E0 to E+, and require the integral to be real

=
∫ E+

E0
dEρ(E) = 0 (4.16)

This condition is independent on the choice of branch cut as ρ(E) is a two fold map [20]
which only leads to a sign ambiguity that is irrelevant in (4.16). The same applies to the
path from E0 to E−. This leads to the third equation required to determine the three
parameters. In appendix D, we rewrite it explicitly as

=

E2
0+E

1/2
−0

∫ 1

0
dy

∫ y

−y
dx

(x+ y)1/2F(E0 − E0ry + iEix)
(y − x)1/2(2 + x− y)1/2

∫ 1

x+y
2+x−y

dq
2F1(−1

2 ,
3
2 , 2, q

E0+
E0−

)
(q − x+y

2+x−y )1/2

+Ke−S0φ
1/2
b

∫
D
dαm(α)

F1(3
2 ;−1

2 ,−
1
2 ; 3; E0+

E0−
, E0+
α2/2φb+E0

)
(α2 + 2φbE0)η(α)

 = 0

(4.17)

where F(x) ≡ I1(2π
√

2φbx)/
√
x, F1 is the Appell function and E± = Er ± iEi, Er,i ∈ R.
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4.3 Phase transition to the “Y” shape

Before we solve for the “Y” shaped configuration numerically, let us first show that this “Y”
shaped solution continuously connects to one-cut solution at critical point E0 = E+ = E−.
The last condition for solving the ODE is trivial and we only need to check the first two
conditions (4.11) and (4.12). Taking E0 = E+ = E− in (4.11), we have

0 = −2πKe−S0

∫
D
dα

m(α)
(α2 + 2φbE0)3/2 + 2πI0(2π

√
2φbE0)

= 4πKe−S0f ′λ(2φbE0) + 2πI0(2π
√

2φbE0) (4.18)

where we used (2.63). Taking E0 = E+ = E− in (4.12), we have

2πφbE0I0(2π
√

2φbE0)−
√

2φbE0I1(2π
√

2φbE0)

= 2πKe−S0

[
λ+

∫
D
dαm(α)

(
α2 + 3E0φb

(α2 + 2φbE0)3/2 −
1
α

)]
= 2πKe−S0

(
fλ(2φbE0)− 2φbE0f

′
λ(2φbE0)

)
(4.19)

Plugging (4.18) into (4.19), we recover (2.78). (4.18) is exactly the critical condition that
G′(2φbE0) = 0 where G(x) is defined in (2.82). This shows that the phase transition to “Y”
shape is second or higher order.

To do numerics, we will take K ∼ O(eS0), λ ∼ O(1) and µ2 � Ke−S0 to simplify
computation. This corresponds to a large number of heavy EOW branes. Let us first look
at one-cut case. In large µ limit, we have Ke−S0f ′λ(x) ∼ Ke−S0µ−2 → 0 in (2.77). The
only contribution to ρ(E) is from the universal piece. For the zero point equation (2.78),
using (2.74) we see fλ(x) = λ is just a constant. In this limit, we can find the critical point
for λ > 0 in section 2.4 easily. Define ζ ≡ Ke−S0λ > 0. As we increase ζ from zero to the
critical value, the solution of E0 from (2.78) moves from zero to some negative Ecr that is
the largest solution to

I0(2π
√

2φbEcr) = 0 =⇒ Ecr ≈ −
0.146
2φb

, ζcr ≈ 0.0316 (4.20)

The simplification is similar in the “Y” shaped case. In (4.9) we have ρK ∼ Kµ−4 �
ρU ∼ O(eS0) and thus can be neglected. The three conditions (4.11), (4.12) and (4.17)
simply to∫ 1

0

dw

(1−w)1/2

∫ 1

0
du

I0(2π
√

2φb(E0+w(E+−u−E0−)))
u1/2(1−u)1/2 = 0 (4.21)

∫ 1

0

dw

(1−w)1/2

∫ 1

0
du

u1/2I0(2π
√

2φb(E0+w(E+−u−E0−)))
(1−u)1/2 + 2πζ+

√
2φbE0I1(2π

√
2φbE0)

2φbE+−
= 0

(4.22)

=
∫ 1

0
dy

∫ y

−y
dx

E2
0+E

1/2
−0 (x+y)1/2I1(2π

√
2φb(E0−E0ry+iEix))

(E0−E0ry+iEix)1/2(y−x)1/2(2+x−y)1/2

∫ 1
x+y

2+x−y
dq

2F1(− 1
2 ,

3
2 ,2, q

E0+
E0−

)

(q− x+y
2+x−y )1/2 = 0

(4.23)
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Figure 11. (a) The numerical solution of E0 (blue) and Er (yellow) as a function of Ei. As Ei
increases, E0 increases monotonically and Er decreases in the beginning then increases. At around
Ei ≈ 1.2, Er becomes larger than E0. (b) The numerical solution of ζ as a function of Ei. As Ei
increases, ζ increases exponentially. In both pictures, we set 2φb = 1.

One may naively think that each of (4.21) and (4.22) contain two real equations as
E± are complex variables. However, one can show that (4.21) is always real given the
symmetry u→ 1− u and the integral in (4.22) is always imaginary using (4.21) (still under
transformation u→ 1− u). Therefore, they only give two real equations.

Our numerical strategy is to solve (4.21) and (4.23) for a given Ei and use Ei to compute
ζ using (4.22). This reduces the numerical work to solving only two integral equations. The
result is plotted in figure 11a and 11b, where we set 2φb = 1 for simplicity. At Ei = 0,
both E0 and Er start at Ecr. As Ei increases, E0 increases monotonically and Er first
decreases, then increases. Before reaching Ei ≈ 1.2, Er is less than E0, and it becomes
larger for Ei & 1.2. While E0,r seems to increase in roughly the same order as Ei in the
numerical range, ζ increases exponentially with Ei. It is interesting that as Ei increases
(corresponding to increasing ζ), both E0 and Er become positive. As we will see later, this
implies that the canonical ensemble partition function for fixed temperature will decrease
for growing ζ.

Given the solution for E0,r,i, we can find the support of the density γ± by solving
ODE (4.16). We illustrate the result for two parameter choices in figure 12a and 12b. In
these two pictures, we plot the vector field (ρr(E),−ρi(E)) on the upper half complex E
plane. The red curve connecting two black dots is the support of the eigenvalues γ+ on which
ρ(E)dE is nonnegative and real. γ− is the reflected curve with =E → −=E. In figure 12a,
Ei is small and the whole γ+ has negative real part, for which particularly Er < Ecr and
E0 > Ecr; in figure 12b, Ei is large and the whole γ+ has positive real part. This is
consistent with the behavior in figure 11a. As E0 is a triple branch point, near E0 we have
ρ(E)dE ∼ d(E − E0)3/2, which implies that the angle between any two branches is 2π/3.

To have an intuitive impression of ρ(λ)dλ on γ±, using dλ ∝ ρr(λ)− iρi(λ) for λ ∈ γ±,
we have

ρ(λ)dλ = ±|ρ(λ(λi))|2

ρi(λ(λi))
dλi, λ(λi) ≡ λr(λi) + iλi ∈ γ± (4.24)
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Figure 12. The stream plot of vector field (ρr(E),−ρi(E)) on upper half complex E plane. The
black dot on real axis is E0 and the black dot with complex value is E+. The red curve connecting
two black dots is the support of density γ+ on which ρ(E)dE is nonnegative and real. γ− is just
mirror symmetric curve with =E → −=E. In both pictures, we set 2φb = 1.
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Figure 13. (a) The plot of density |ρ(λ(λi))|2/|ρi(λ(λi))| along γ+ as a function of λi, the imaginary
part of λ, with Ei = 1. (b) The amount of eigenvalues on γ+ as a function of ζ. In both pictures,
we set 2φb = 1 and eS0 = 1.

where λ(λi) is the locus of γ± with affine parameter λi. Note that we need to choose the
right sign of ± such that ρ(λ)dλ is nonnegative. In figure 13a, we plot |ρ(λ(λi))|2/|ρi(λ(λi))|
along γ+ for Ei = 1. The total number of eigenvalues on γ+ (which is the same as that on
γ−) is computed in (D.21) by integration of ρ(E)dE along γ+ (or equivalently the straight
line) from E0 to E+. As a function of ζ, we plot it in figure 13b. From the plot, it seems
that the number of eigenvalues on γ+ quickly becomes a power law growth in ζ (note that
figure 13b is log-log plot).

We now turn to the interpretation of the complex energy spectrum resulting from
the matrix model analysis in terms of black hole physics. In next section, we will use the
effective W (φ) dilaton JT gravity to illustrate a similar “Y” shaped phase transition using
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Figure 14. exp(Slowest) as a function of ζ. In this plot, we set 2
3δE

3/2 = eS0 = 1 and 2φb = 1. It
is clear that exp(Slowest) scales linearly in ζ for large ζ.

semiclassical analysis of Euclidean black holes. Based on that observation, we will interpret
the complex energy states in spectrum as unstable black holes that decay to eigenbranes,
which are not included in current matrix model. See section 5.3 for more details. The
bottom line is that we can treat the real energy part of spectrum as stable black hole states.
For this piece of the spectrum, we would like to define the lowest energy black hole entropy
(similar to zero-temperature entropy in section 2.5) as

Slowest = lim
E→E0

ρ(E)√
E − E0

(4.25)

This Slowest could also be understood as the effective extremal entropy S0,eff of stable black
holes due to integrating out EOW branes along the lines of the discussion in section 2.5,
although the full complex spectrum does not start at E0. In the large µ limit, the leading
contribution to ρ(E) is the universal piece ρU (E). Using (4.8), we have

Slowest =
eS0φ2

b

∏
i=±(E0 − Ei)

1
2

π

∫
V2

2dt+dt−I1
(
2π
√

2φb[E0 +
∑
i=± ti(Ei − E0)]

)
√
E0 +

∑
i=± ti(Ei − E0)(1− t+ − t−)−1/2t

1/2
+ t

1/2
−
(4.26)

We plot exp(Slowest) as a function of ζ in figure 14. From this plot, it is clear that exp(Slowest)
scales linearly in ζ for large ζ, which is relevant for K � eS0 . In other words, numerics
suggest the lowest energy black hole entropy scales as

Slowest ∼ log(Ke−S0λ) = logK − S0 + o(logK,S0, 1/µ) (4.27)

As mentioned in section 2.5, it is very natural to interpret this as a state counting result,
where K flavors of EOW branes behind the horizon are microstates of the lowest energy
black holes.
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5 Effective W (Φ) dilaton gravity

5.1 Gas of cusps for heavy EOW branes

In section 2.5, we derived an effective W (Φ) dilaton gravity for the λ = 0 case by comparing
spectral densities. In this section, we will study the effective W (Φ) related to heavy EOW
branes with λ 6= 0.

The large µ limit basically receives only contributions from small b of order 1/µ in the
EOW brane measureM(b). On the other hand, the b→ 0 limit shrinks the EOW loops
into cusps as discussed in section 2.2. Therefore, adding heavy EOW branes to JT gravity
can be understood as deformation by cusps, the 2π deficit angle, which is described by a
new potential for the dilaton Φ [14, 15]

W (Φ) = 2Φ + 2χe−2πΦ (5.1)

with total Euclidean action

I = −S0 −
1
2

∫
d2x
√
g(ΦR+W (Φ)) (5.2)

On the other hand, large µ leads to fλ(x) = λ. Comparing (2.78) with (8.4) in [14], we can
determine

χ = Ke−S0λ (5.3)

Given a generic dilaton potential W (Φ) with asymptotic behavior W (Φ) ∼ 2Φ for
Φ→ +∞, the classical solutions of the equations of motion were studied in [24] and recently
in [13]. Choosing the diffeomorphism gauge Φ = φh + r, the solution for the 2d metric is

ds2 = A(r)dt2 + 1
A(r)dr

2, A(r) =
∫ r

0
dxW (φh + x) (5.4)

where φh is the horizon value of the dilaton and r ∈ [0,+∞). Matching with the AdS
boundary condition (2.13) at r = r∞, we have

t = φ−1
b duE , r∞ = φb/ε (5.5)

The ADM energy of such a black hole is

E(φh) = 1
2φb

(
(φh + r∞)2 −

∫ r∞

0
dxW (φh + x)

)
(5.6)

Taking r∞ →∞ limit, and using (5.1) and (5.3), we have

E(φh) = 1
2φb

(
φ2
h −

ζ

π
e−2πφh

)
, (5.7)

where ζ = Ke−S0λ as defined in section 4.3. The black hole temperature is determined by
requiring smoothness of the metric at r = φh. Setting y =

√
r, and A(r) = W (φh)r + o(r),

we have for y � 1

ds2 = 4
W (φh)

(
dy2 + W (φh)2

4 y2dt2
)

(5.8)
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Figure 15. W (Φ) for different values of ζ. Red part corresponds to the spectrum of thermodynamical
stable black holes.

For t ∈ R, this metric has a conical singularity at y = 0 unless

t ' t+ φ−1
b β, β = 4πφb

W (φh) , T (φh) = W (φh)
4πφb

(5.9)

In the following, we will mainly consider λ > 0 (namely ζ > 0).
For small ζ, W (Φ) = 0 has two real roots (see figure 15a). Based on [13], we should

take the larger root as the lower bound for φh because we require A(r) > 0 for all r > 0.
The red part of figure 15a shows the allowed range of φh, which by (5.7) determines the
spectrum. In particular, the black hole temperature can take any nonnegative value. There
is a critical value of ζcr where these two roots coincide at φcr (see figure 15b)

W ′(φcr) = W (φcr) = 0 =⇒ ζcr = 1
2πe ≈ 0.0585, φcr = − 1

2π (5.10)

This gives a critical zero point energy

Ecr = E(φcr) = − 1
8π2φb

≈ −0.0253
2φb

(5.11)

If we compare with the exact result (4.20), we see they are off to some extent but not too
much. As this is only a semiclassical analysis, we should not expect an exact match with the
full quantum computation. They match qualitatively, especially in that for some positive ζ
we get negative critical energy Ecr.

If we increase ζ past the critical value, we will have all φh ∈ R allowed in the spectrum
by the condition A(r) > 0 for r > 0. In this case, as W (φ) is lower bounded by a positive
value, the minimum temperature of black holes is nonzero and given by

T∗ = T (φ∗) = 1 + log 2πζ
4π2φb

(5.12)

where φh = φ∗ = (2π)−1 log 2πζ with W ′(φ∗) = 0. For a given temperature T > T∗, there
are two solutions for black holes with different φh = φh,±. It has been shown in [13] that
the free energy difference between these two solutions is

∆F = 2π
∫ φh,+

φh,−

(T (x)− T )dx > 0 (5.13)
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Figure 16. (a) On the Φ complex plane, the blue curve is the locus for which W (Φ) ∈ R, and φh
is valued on this curve. For a given solution, Φ takes value on the yellow straight line emanating
from φh, which is parameterized by radial coordinate r ∈ [0,+∞). (b) The support γ∗ of energy
spectrum on complex E plane. It has two branches γ∗,± conjugate to each other.

which implies that the larger black hole with φh,+ is thermodynamically stable. Equivalently,
one can also show that the specific heat dE/dT is negative for the smaller black hole
with φh,−.

Note that we have set κ = (8πG)−1 equal to 1 throughout this paper. Restoring the GN
dependence, the contribution to the partition function from smaller black holes is relatively
O(e−1/GN ) suppressed in the small GN limit. Therefore, if we only look at the spectrum of
canonically stable black holes, the energy will be lower bounded by

E∗ = E(φ∗) = (log 2πζ)2 − 2
8π2φb

(5.14)

This physically corresponds to the lower bound E0 of the real energy spectrum in the “Y”
shaped phase of the matrix model computation.

The entropy of this lowest energy stable black hole is

S∗ = 2πφ∗ = log 2πζ (5.15)

which scales logarithmically with K. This also matches with the numerics for Slowest in the
large K limit as shown in figure 14.

Similarly, one can easily show that for λ < 0, the zero point energy is given by
W (φ∗) = 0, which leads to same logarithmic scaling S∗ ∼ logK for Ke−S0 � 1. This, at
the semiclassical level, justifies the induced gravity interpretation mentioned at the end of
section 2.5.

One can continue the condition W (φh) = 0 that defined the endpoint of the spectrum
for ζ < ζcr past the critical value, where φh becomes complex. This corresponds to the
complex part of spectrum in the matrix model. We could consider complex saddles of
Euclidean action simply by analytic continuation of φh to complex numbers in (5.4). As
φh is a free parameter, it is obvious that such a complex metric and dilaton solve the
equations of motion (see figure 16a). For this complex solution to be a saddle, we still need
to require the complex metric is smooth around φh. Expanding in small r, (5.8) still holds.
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Figure 17. <(E∗,+), E∗ and log10 ζ as a function of =(E∗,+). We set 2φb = 1 in both plots.

For t ∈ R, the metric has conical singularity at y = 0 unless W (φh) ∈ R and t have the
same periodicity as (5.9). The condition W (φh) ∈ R gives the allowed complex φh, which
defines the support of the complex part of the spectrum γ∗ via E(φh) (see figure 16b). The
endpoint of γ∗ corresponds to W (φh) = 0 as it is the singularity of metric (5.8).

Let us check what follows from this complex saddle. For a given ζ, the solution of
W (φh) = w is given by

φh = w

2 + 1
2πW(−2πζe−πw) (5.16)

where W(z) is product logrithmic function (or Lambert W function) defined implicitly as
WeW = z. This is a multivalued function but we will only choose branches that connect
to real φh for ζ < ζcr. This leads two solutions φh,±(w) conjugate to each other and thus
splits γ∗ into two pieces γ∗,± joint at E∗, similar to γ± in matrix model (see figure 16b).
Setting w = 0 and using in (5.7), we can solve the two ends of γ∗,±

E∗,± = W(−2πζ)(2 +W(−2πζ))
8π2φb

(5.17)

To have a comparison with matrix model result, we plot <(E∗,+), E∗ and ζ as a function of
=(E∗,+) in figure 17. Qualitatively, this matches with the exact result in figure 11.

5.2 Dirichlet-Neumann EOW branes

We found that for ζ > ζcr, no real solutions for W (φh) = 0 exist. This means that there
is no zero temperature black hole. It is natural to ask what happens if we decrease the
temperature below T∗. This phenomenon is not unique to JT gravity. There is also a
minimum temperature Tmin for d > 3 dimensional AdS-Schwarzschild black holes. For any
fixed temperature above Tmin, two black holes solutions exist and only the bigger one is
thermodynamically stable.

Hawking and Page studied this property in their well-known paper [25] and found a
first order phase transition from black holes to a thermal gas at some higher temperature
THP > Tmin. At T = THP , if we decrease the total energy, black holes will be in equilibrium
with a thermal gas in the microcanonical ensemble. For T < THP , one transitions completely
to the thermal gas phase.
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By analogy with higher dimensional black holes, we consider how a “thermal gas”
could exist in W (Φ) dilaton gravity for temperatures below a Hawking-Page temperature
THP > T∗. The simplest example is to consider another type of EOW brane that leads to
spacetimes different from black holes. All types of EOW branes in pure JT gravity are
classified in [12] based on their boundary conditions. We can perform a similar classification
for W (Φ) dilaton gravity. The Dirichlet-Neumann (DN) EOW brane (in the language
of [12]), corresponding to a location where the dilaton reaches −Φ0, is the dimensional
reduction of the smooth origin of polar coordinates in the center of empty AdS. Thus it is
the natural candidate for states that behave like the thermal gas.

Let us consider the Euclidean action

I = −1
2

∫
drdt
√
g(ΦR+W (Φ))−

∫
AdS

du
√
guuΦ(K − 1)−

∫
∂
dv
√
gvv(ΦK + d) (5.18)

where d is a constant defined on the DN brane world line ∂. The variation of action gives
equations of motion as well as boundary conditions (see appendix A), which on DN brane are

(na∂aΦ + d)habδgab = KδΦ = 0 (5.19)

We fix Φ = φDN (Dirichlet) and also na∂aΦ + d = 0 (Neumann). The bulk solution has the
same form as (5.4) but with a different “horizon” parameter φh̄. Note that this spacetime
does not have any real horizon at φh̄ because we truncate the spacetime at a new boundary
(DN brane) before it, which restricts φDN > φh̄.

Using solution (5.4), we have

na∂aΦ = −
√
A(φDN) =⇒ d =

√
A(φDN) (5.20)

The Hamiltonian defined in (2.30) only depends on the asymptotic behavior of Φ and thus
is given by the same formula as (5.6) with φh → φh̄.10 As d is a fixed constant, (5.20)
determines φh̄ and completely fixes the Hamiltonian to be

H = 1
2φb

(
r2
∞ −

∫ r∞

φDN
dxW (x)− d2

)
(5.21)

This corresponds to the eigenbrane first introduced in [26] that has fixed energy. In the
dual matrix model, it gives delta function in spectrum [12].

To discuss dominance for a given temperature, we will evalute the Euclidean on-shell
action for DN brane and black hole respectively. In both cases, Euclidean time is periodic

t ∼ t+ φ−1
b β (5.22)

For the DN brane, extrinsic curvature is

K = − A′(φDN)
2
√
A(φDN)

= − W (φDN)
2
√
A(φDN)

(5.23)

10No Hamiltonian arises on the DN brane due to the boundary conditions.
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The action on the DN brane is

I∂ = − β

2φb
(2d2 − φDNW (φDN)) (5.24)

Similarly, the extrinsic curvature on the AdS boundary is

K = W (r∞)
2
√
A(r∞)

(5.25)

The action on the AdS boundary is

IAdS = −βφb
ε2

[
W (r∞)

2
√
A(r∞)

− 1
]
→ − β

2φb

(
r2
∞ −

∫ r∞

φDN
dxW (x)− d2

)
(5.26)

The bulk action is

Ibulk = − β

2φb

∫ r∞

φDN
dr(A′(r)− rA′′(r)) = − β

2φb

∫ r∞

φDN
dr(2A(r)− rA′(r))

= β

φb

(
r2
∞ −

∫ r∞

φDN
dxW (x)− φDNW (φDN)

2

)
(5.27)

Altogether we find that the Euclidean on-shell action for DN branes is

IDN = β

2φb

(
r2
∞ −

∫ r∞

φDN
dxW (x)− d2

)
= βEDN (5.28)

which is as expected because the DN brane is an energy eigen state and thus has zero
entropy S = βE − I = 0. Note that there is no topological term linear in S0 in IDN because
the topology is a cylinder.

On the other hand, the Euclidean action for black holes only has two terms, IAdS and
Ibulk, because the geometry is smooth at the horizon φ = φh. For black holes, φh is not a
free parameter and is determined by β using (5.9). We have

IAdS = − β

2φb
(r2
∞ −A(r∞)), Ibulk = β

φb
(r2
∞ −A(r∞)− φhW (φh)/2) (5.29)

As the topology is a disk, we do have the topological term −S0 = −2πφ0. This leads to

Ibh = β

2φb
(r2
∞ −A(r∞))− 2π(φh + φ0) (5.30)

where we used (5.9) to write Ibh in the form of βE − S.

5.3 Hawking-Page phase transition

The Hawking-Page phase transition is determined by dominance of e−IDN versus e−Ibh . A
quick observation is that for any temperature, for large enough d, the DN brane is always
dominant. This corresponds to very low energy eigenbranes.

There is no principle that determines d a priori, thus the Hawking-Page phase transition
is model dependent. However, the upper bound of eigenbrane energies is for d = 0 and we
can compute a lower bound for the phase transition temperature corresponding to this case.
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Figure 18. (a) Plot of Ibh + 2πφ0 as a function of T for different ζ, where blue is for ζ < ζcr, yellow
is for ζ = ζcr, and green is for ζ > ζcr; (b) and (c) are both plots of Ibh and IDN as a function of T ,
where blue curve is for Ibh, yellow curve is for IDN with EDN < EDN,max and green is for IDN with
EDN > EDN,max. We set 2φb = 1 and S0 = 10 in these plots.

For W (Φ) potential (5.1), we have

IDN = β

2φb

(
φ2

DN −
ζ

π
e−2πφDN

)
(5.31)

Ibh = β

2φb

(
φh(β)2 − ζ

π
e−2πφh(β)

)
− 2π(φh(β) + φ0) (5.32)

where φh(β) is found by solving (5.9)

φh(β) = 2πφb
β

+ 1
2πW

(
−2πζe−

4π2φb
β

)
(5.33)

The plot of Ibh + 2πφ0 as a function of T is shown in figure 18a for a few different ζ. For
ζ ≤ ζcr, Ibh + 2πφ0 has a maximum at finite temperature and tends to negative infinity for
both zero and infinite temperature. For ζ > ζcr, Ibh + 2πφ0 still tends to negative infinity
for infinite temperature but ends at a finite value at T∗. The temperature dependence of
IDN is very simple, namely inversely proportional to T .

For large T , it is clear that IDN > Ibh and black holes dominate at high temperature. For
small T , in order to have IDN < Ibh, we must require φ2

DN−
ζ
πe
−2πφDN < φh(β)2− ζ

πe
−2πφh(β)

for β = 1/T∗ (ζ > ζcr) or β → +∞ (ζ ≤ ζcr). Taking the T derivative of IDN− Ibh, we have

∂T (IDN−Ibh) = 8π2φb
W (φh(β))2

[(
φh(β)2− ζ

π
e−2πφh(β)

)
−
(
φ2

DN−
ζ

π
e−2πφDN

)]
> 0 (5.34)

because φh(β) is a monotonically increasing function of T in the allowed range of temperature.
This means that there is only one Hawking-Page phase transition point if it exists. In other
words, a necessary condition for a Hawking-Page phase transition is that the energy of DN
brane must be below the stable black hole spectrum.

For ζ ≤ ζcr, the lowest energy of a stable black hole is E∗,± in (5.17) (it takes real
values in this case). For any EDN below it, the Hawking-Page phase transition always exists
because IDN − Ibh ≤ β(EDN − E∗,±) + 2π(φh(β) + φ0) < 0 for large enough β since φh(β)
is an increasing but bounded function of β. In other words, the upper bound of EDN is
EDN,max = E∗,± for ζ ≤ ζcr. For ζ > ζcr, the upper bound EDN,max depends on the value
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of φ0 because Hawking-Page phase transition must occur above T∗. To find it, we need to
solve IDN = Ibh at β = 1/T∗. It turns out that

EDN,max = − 1
8π2φb

(
1 + (1 + log 2πζ)2 + 4πφ0(1 + log 2πζ)

)
(5.35)

We plot with a few examples in figure 18 to show that Hawking-Page phase transition
occurs only when EDN < EDN,max.

The lesson of above discussion is that including eigenbranes with low enough energy in
the black hole system is necessary to have a canonical ensemble description at all tempera-
tures. If we isolate the black holes, zero temperature (defined by the periodicity of Euclidean
time) can only be achieved by complex geometries.Therefore, it is natural to interpret these
complex black holes as metastable states that decay to eigenbranes in finite time.

On the matrix model side, adding eigenbranes corresponds to fixing some eigenvalues
λi by inserting

∑
i δ(λi−λDN,i) with a set of fixed numbers λDN,i in the matrix integral [26].

If we take λDN,i to be real numbers to the left of the support of spectrum, they will exert
a right-pointing repulsive force on all other eigenvalues, which can balance the left-point
force exerted by the potential of EOW branes in 5.3. It would be interesting to see how this
would change the solution of the matrix model. In particular, we expect to see no complex
part of spectrum if we assign eigenbranes properly. This question is beyond the scope of
this paper and we will leave it for future works.

6 Discussion and conclusion

Matrix model dual to JT gravity with deficit angles. The matrix model dual to
JT gravity with deficit angles has been studied in [14, 15]. For a single type of deficit angle
2π − θ (0 ≤ θ < π) with weight ε, the genus zero one-cut spectral density is

ρ(E) = eS0φb
2π

∫ 2φbE

2φbE0

dξ√
2φbE − ξ

(
I0(2π

√
ξ) + ε

θ√
ξ
I1(θ

√
ξ)
)

(6.1)

where the zero-point energy E0 is determined by the largest real solution to√
2φbE0I1(2π

√
2φbE0) + 2πεI0(θ

√
2φbE0) = 0 (6.2)

If θ 6= 0, the second term in brackets of (6.1) scales like ∼ eθ
√
ξξ−3/4 in the large ξ limit.

This term leads to a spectral density that differs by an exponential amount at large E from
that of pure JT gravity, ρJT (E), in contrast to the behavior of our matrix model dual to
EOW branes. In matrix model language, this corresponds to a huge left-pointing extra
force δFΛ that pushes a large number of eigenvalues into the double-scaled IR regime. In
the following, we will study this matrix model by deriving the corresponding potential
deformation δV .

For JT gravity with deficit angles, the measure is formally an analytic continuation of a
delta function, δ(b− iθ). The way to define this analytic continuation in the matrix model
is as follows. First, we assume the measureM(b) to be δ(b− b0) for b0 > 0, which leads to

m(α) = 1
2π

∫ +∞

−∞
dkδ(α− (δ − ik))e(δ−ik)b0 (6.3)
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where b0 > 0 and infinitesimal δ > 0.11 For any rational function F (α) that is integrated
against m(α), adding a lower half plane infinite arc for k does not change the result because
b0 > 0. Therefore, we can define the analytic continuation of b0 based on a slightly different
m(α) with this extra lower half plane infinite arc

m(α) = 1
2π

∮
C−∞

dkδ(α− (δ − ik))e(δ−ik)b0 (6.4)

where C−∞ is the clockwise contour consisting of the real axis and the lower half plane infinite
arc. Using this definition, the integral of F (α) against m(α) becomes contour integrals
of k around the singularities of F (δ − ik) and thus b0 can be safely continued to complex
numbers. Taking this definition in (3.30), we have

− δV ′(E) = −

√
2φb
E

sin
(√

2φbEb0
)

(6.5)

For generic complex b0, we will have a complex potential along the real axis. Putting (6.4)
into the first line of (3.37), where we need to assign the contour of λ at infinity inside of the
contour of −α2/(2φb),12 (3.38) follows and using the first line of (2.79), we have (assuming
ξ > 0)

ρ(E) ⊃− εeS0φb
(2π)2

∫ 2φbE

2φbE0

dξ√
2φbE − ξ

∮
C−∞

dk
e(δ−ik)b0

((δ − ik)2 + ξ)3/2

=− εeS0φb
(2π)2

∫ 2φbE

2φbE0

dξ√
2φbE − ξ

2πb0√
ξ
J1(b0

√
ξ) (6.6)

For ξ < 0, we simply deform the contour of k in the first line appropriately such that
the second line holds. It is clear that (6.6) matches with the second term in (6.1) after
continuing b0 → iθ. From (6.5), it is also clear that the potential exponentially grows for
large E for b0 → iθ, and this huge potential deformation explains the deviation of ρ from
ρJT as mentioned below (6.2).

As discussed in section 3.3.3, to find the equation determining the zero point energy E0
in the matrix model, we need to input UV data of either a regulated measure or asymptotic
large E behavior of δρ(E). While it is unclear how to define a regulated measure for a
deficit angle, figuring out required asymptotic large E behavior is straightforward. Indeed,
we can rewrite (6.6) as

ρε(E) = εeS0φb
π

∫ 2φbE

2φbE0

dξ√
2φbE − ξ

∂ξJ0(b0
√
ξ)

= εeS0φ
1/2
b√

2Eπ
(1− J0(b0

√
2φbE0)) + εeS0φb

π

∫ 2φbE

0

dξ√
2φbE − ξ

∂ξJ0(b0
√
ξ) + o(E−1)

(6.7)
11Here the complex delta function is a formal device that just means α is taken to a specific value when

integrated over D. A mathematically rigorous formulation of δ(α− α0) could be 1
2πi(α−α0) with D defined

as an anticlockwise closed contour encircling α0. However, this subtlety does not affect computations in this
paper, and we will use the formal but simpler notation.

12This is justified as one could imagine that in the non-double-scaled matrix model the right end of
spectrum is finite and we take the double scaling limit afterward.
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Comparing with the first term in (3.46), it obvious that we need to require that for E → +∞

δρ(E)→ εeS0φb
π

[∫ 2φbE

0

dξ√
2φbE − ξ

∂ξJ0(b0
√
ξ) + 1√

2φbE

]
+ o(E−1) (6.8)

which leads to √
2φbEI1(2π

√
2φbE0) + 2πεJ0(b0

√
2φbE0) = 0 (6.9)

Continuing b0 → iθ, it matches with (6.2). Note that for generic complex b0, the zero point
energy E0 can take multiple complex values because (6.9) has multiple solutions. We will
pick the one smoothly connecting to the E0 of b = iθ case, which is the largest real solution
to (6.2). Given a complex E0, the support of the spectrum Dρ is defined by requiring
ρ(E)dE to be a real nonnegative measure along Dρ asymptotically extending to infinity.
This ODE completely fixes the one-cut spectrum of the matrix models. Indeed, the above
construction defines a class of matrix models labelled by the complex number b0, which
contains two special cases with geometric duals in deformed JT gravity: with deficit angles
(b0 = iθ) and with fixed length EOW branes (b0 > 0).

At first glance, specifying asymptotic behavior (6.8) looks like a fine-tuning starting with
the SSS matrix model because a deviation at any Ep (p > −1/2) order will strongly violate
the zero point equation although it seems negligible compared to the exponentially large
behavior at large E for =b0 6= 0. However, the SSS matrix model is equally fine-tuned in this
sense, since its spectral density also grows exponentially at large E in double scaling limit.

The method used in [14, 15] to solve JT gravity with deficit angles by summing over
topologies only applies to one-cut case. Given the dual matrix model defined above, it
would be straightforward to study the spectrum beyond the critical point in this model
requiring the same asymptotic behavior (6.8) of the spectral density. With this definition,
we expect to see a phase transition similar to our “Y” shape because heavy EOW branes
with λ > 0 can be regarded as the special case θ = 0 for deficit angles as discussed in
section 5.1. Our method should thus offer a reasonable solution to the negative spectrum
(and non-perturbative instability) problem in [14, 15, 19].

Comparison with previous work. Recently, a different non-pertubative completion
for JT gravity and JT supergravity has been discussed [21, 27–29] that in some cases avoids
non-pertubative instability. In their method, the Hermitian matrices are promoted to
squares of complex matrices and the spectrum is nonperturbatively bounded from below.
Alternatively, one could use the original Hermitian matrix but introduce a hard wall in the
potential. This completion was further generalized to JT gravity with deficit angles [19].

There, all eigenvalues are still integrated along the real axis but the matrix model
potential is modified (in particular, by fixing a specific asymptotic behavior for the function
u(x) that appears in the string equation as x → ±∞). The computational method
uses an auxiliary Schrödinger equation that is associated with the orthogonal polynomial
formalism of double-scaled matrix models with even potentials [30]. The standard orthogonal
polynomial technique only applies to the case where all eigenvalues are on the same
integration contour. Generalizing to the case of multiple distinct contours may require
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multi-matrix techniques, in which the coupling among eigenvalues on different contours
from the Vandermonde could be treated as interactions among different matrices.

Our method to nonperturbatively define a double-scaled matrix model starts with the
observation that in a non-double-scaled matrix model with analytic potential, the tree-level
spectral density plus a choice of contours for the eigenvalues completely specify the model.
The double-scaled matrix models in this paper are defined such that this property still
holds.13 We promote the Hermitian matrices to normal matrices along some contour for
each eigenvalue, and the effective potential is defined everywhere by analytically continuing
the spectral curve. The nonperturbative definition is thus supplied by the spectral curve
and the choice of eigenvalue contours. This is along the same lines of [10].

More importantly, one of our results is this completion naturally applies to the multi-cut
case and avoids the non-perturbative instability of [19]. Our completion allows order eS0

eigenvalues to be complex in the “Y” shaped phase, and it seems impossible to interpret
each matrix in the ensemble as an instantiation of a Hermitian Hamiltonian. As argued in
section 5, we can interpret the complex eigenvalues as metastable black hole states that
decay in finite time. Indeed, this implies that JT gravity with EOW branes is not a complete
theory and one must include other objects with lower energy, e.g. DN branes, to have an
unitary theory with Hermitian Hamiltonian.

On the other hand, the formalism of [21, 27–29] can easily compute higher genus
contributions. We only considered the tree-level (genus zero) spectral density that solves
the saddle equation for the matrix model potential. It would be interesting to study higher
genus contribution to our matrix model in future works.

Phase space ofW (Φ) dilaton gravity. Given that heavy EOW branes with λ > 0 lead
to an effective W (Φ) dilaton gravity, it is also interesting to study the phase space for this
theory along the lines of section 2 and [11]. Let us consider the case of one-sided black holes
in W (Φ) dilaton JT gravity with one AdS boundary and one µ = 0 EOW brane boundary,
for simplicity. This is equivalent to half of a single sided black hole. The Hamiltonian is
given by (5.6). Using the solution from [24], one can show that the regularized geodesic
length connecting the AdS boundary at u = 0 to the EOW brane normally is given by

L =
∫ r∞

φ0

dφ√∫ φ
φ0
W (r)dr

− log r∞ (6.10)

where φ0 is the dilaton value at the end of geodesic on the EOW brane, which depends
on the location of the other end at the AdS boundary in a complicated way. After some
algebra, one can show that the Hamiltonian can be written in a canonical form in terms of
L and its conjugate momentum P as

H = 1
2φb

(
P 2 + r2

∞ −
∫ r∞

φ0(L)
W (r)dr

)
≡ P 2

2φb
+ U(L) (6.11)

13This property rules out the existence of a hard wall at E0. It is important to distinguish between
double-scaled and non-double-scaled models here because a double-scaled model with a hard wall may be
obtained as a limit of non-double-scaled models with analytic potentials. One could create a hard wall in the
double-scaling limit by adding a e−Λ(E−E0) term to the potential, where Λ→∞ in the double-scaling limit.
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Figure 19. (a) U(L) for different ζ, where blue is for ζ = 0, yellow is for 0 < ζ < ζcr and green
is for ζ > ζcr. (b) ζ > ζcr. Black curve is AdS boundary, green line is µ = 0 EOW brane, dashed
lines are horizon and red curves are two geodesics. In this case, there is an ambiguity of choice of
geodesics emanating from the same boundary point at u = 0. In both plots, 2φb = 1.

where φ0(L) is defined implicitly by (6.10). One can check that for W (r) = 2r, it reduces
to the pure JT result (2.37) with µ = 0.

For W (Φ) given by (5.1), we plot the potential in figure 19a for different ζ. It turns
out that for 0 < ζ < ζcr, the potential is similar to Liouville potential (ζ = 0) but with a
negative shift of the ground energy. For ζ > ζcr, the potential is double valued for some L
and thus ill-defined. Also, the potential is unbounded from below and the allowed range of
L is finite. This matches with the expectation from Euclidean computations (5.7) that the
spectrum is unbounded from below for ζ > ζcr because φh can take any real value.

In the Lorentzian picture, this ill-defined potential reflects the fact that L is no long an
appropriate phase space variable because of the ambiguity of two geodesics emanating from
same AdS boundary point but ending on two different points on the µ = 0 EOW brane
normally (see figure 19b). In other words, using L as a radial coordinate is no longer a good
gauge for the metric. It would be interesting to find an appropriate gauge in this case and see
how the quantization leads to results consistent with the semiclassical analysis of section 5.

Modified inner product from geodesic separable objects. As formulated in sec-
tion 2, the Hilbert space for gravity in spacetimes with one AdS boundary and one EOW
brane can be found by quantizing in the regularized geodesic length |L〉 basis. Canonical
quantization requires orthogonality of this basis 〈L2|L1〉 = δ(L1 − L2). Such Lorentzian
analysis is based on a fixed spacetime topology whereas full quantum gravity allows for
contributions from all topologies. To take this into account, we can define a modified inner
product between |L〉 states using Euclidean path integrals including handles and loops of
EOW branes between the two geodesic slices as shown in figure 20a.

Similarly to the gluing of partition function in figure 3, the idea is to find the geometric
building block Ψ3 in figure 20e that contains a geodesic loop with length b between two
geodesics L1 and L2 that connect the AdS boundary with the EOW brane. The contribution
of other topologies to modified inner product 〈L2|L1〉 is obtained from Ψ3 by gluing with
all possible geometric objects (handles and EOW brane loops) along the geodesic loop of
length b. In other words, Ψ3 plays a role similar to the trumpet in the computation of
partition functions.
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Figure 20. (a) Modified inner product of 〈L2|L1〉 by including handles and EOW brane loops in
Euclidean path integral. Blue curve is EOW branes and orange curve is geodesic connecting AdS
boundary and EOW brane. The red loop is a closed geodesic which bounds all nontrivial topologies.
(b) to (e) are a few geometric building blocks to compute 〈L2|L1〉, where black curves are AdS
boundaries, green curves are geodesics connecting two points on AdS boundary, and red/blue/orange
curves represent the same objects as (a). (b) Ψ1 is the wavefunction of the Hartle-Hawking state
of two-sided AdS system in JT gravity. (c) Ψµ(`;L1, L2) is a propagator Gµ,β(L2, L1) with a Ψ1
pinched off. (d) Ψ2 is gluing of two Ψµ along l. (e) Ψ3 is gluing of L3 with L4 in Ψ2 with one EOW
brane measureM(b) pinched off. Topological contribution to modified inner product 〈L2|L1〉 is Ψ3
gluing with all other geometric objects (handles and EOW brane loops) along the geodesic b.

To evaluate Ψ3, we need some gluing and pinch-off surgery of the Euclidean propagator
Gµ,β(L2, L1) in (2.43). Diagrammatically in figure 20c, Gµ,β(L2, L1) is the same as the
Euclidean path integral over the region bounded by an AdS boundary arc with length β
(black curve), two geodesics L1 and L2 (orange curves) and an EOW brane (blue curve).
We will first pinch off the region (Ψ1 in figure 20b) bounded by the AdS boundary arc and
the geodesic ` connecting its two ends (green curve). Indeed, Ψ1 is the Hartle-Hawking
state in the two-sided AdS system in JT gravity [31]

Ψ1(β, `) = eS0/2

4π1/2

∫ ∞
0

dke−βk
2/(8φb)ρ0(k)Kik(y) (6.12)

where we defined
ρ0(k) ≡ 2k sinh πk

π
, y ≡ 4e−`/2 (6.13)

Using normalization of Bessel function∫ +∞

−∞
d`Kik(y)Kik′(y) = δ(k − k′)/ρ0(k) (6.14)

one can show that gluing two Hartle-Hawking states along geodesic ` leads to disk partition
function

Zdisk(β1 + β2) =
∫ +∞

−∞
d`Ψ1(β1, `)Ψ1(β2, `) (6.15)
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Pinching off Ψ1 from Gµ,β leads to a piece Ψµ(`;L1, L2) bounded by four geodesics as
labelled in figure 20c. It can be written as

Ψµ(`;L1, L2) = 4π1/2e−S0/2
∫ ∞

0
dkϕ(k)(z1z2)−1/2W−µ,ik(z1)W−µ,ik(z2)K2ik(y) (6.16)

where z ≡ 4e−L and ϕ(k) is given in (2.42), because one can check easily that∫ +∞

−∞
d`Ψµ(`;L1, L2)Ψ1(β, `) = Gµ,β(L2, L1) (6.17)

Then, we will glue two Ψµ along the geodesic ` to get Ψ2 in figure 20d

Ψ2(L1, L2;L3, L4) =
∫ +∞

−∞
d`Ψµ(`;L1, L2)Ψµ(`;L3, L4)

= 2
π2 e

−S0

∫ ∞
0

dk|Γ
(1

2 + µ− ik
)
|4k sinh 2πk

∏
s=1,2,3,4

z−1/2
s W−µ,ik(zs)

(6.18)

Lastly, we glue L3 and L4 of Ψ2, which forms an EOW brane loop∫ ∞
0

dbΨ3(L1, L2, b)M(b) =
∫ +∞

−∞
dLΨ2(L1, L2;L,L), (6.19)

where Ψ3 is depicted in figure 20e, and pinch off the EOW brane measureM(b) on that
loop to get

Ψ3(L1, L2, b) = 8e−S0

∫ ∞
0

dk
cos kb
ρ0(2k)Ψk(z1)Ψk(z2) (6.20)

where Ψk(z) is the normalized eigen function from (2.42), and we used the technique
from (2.43) to (2.47) to separateM(b) from r.h.s. of (6.19).

It follows that the modified inner product in figure 20a is

〈L2|L1〉 = δ(L1 − L2) + 8e−S0

∫ ∞
0

dbX(b)
∫ ∞

0
dk

cos kb
ρ0(2k)Ψk(z1)Ψk(z2) (6.21)

where X(b) represents all topologies of handles and EOW brane loops that are separated
by the geodesic loop of length b. Indeed, (6.21) can be applied to any geometric objects
that are separable by a geodesic loop as they are all accountable by some X(b). We can
rewrite cos kb as the inverse Laplace transformation of the trumpet using (2.48). Note that
the partition function can be written in a similar form as

Z(β) = Zdisk(β) +
∫ ∞

0
dbZtrumpet(β, b)X(b) (6.22)

It follows that

〈L2|L1〉= δ(L1−L2)+8e−S0

∫ ∞
0
dbX(b)

∫ ∞
0

dkk

∫ ε+i∞

ε−i∞
dβ

Ztrumpet(β,b)eβk
2/(2φb)

2φbiρ0(2k) Ψk(z1)Ψk(z2)

= δ(L1−L2)+8e−S0

∫ ∞
0

dkk

∫ ε+i∞

ε−i∞
dβ

(Z(β)−Zdisk(β))eβk
2/(2φb)

2φbiρ0(2k) Ψk(z1)Ψk(z2)

=
∫ ∞

0
dk

ρ(k2/2φb)
ρJT (k2/2φb)

Ψk(z1)Ψk(z2) (6.23)
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where in the second line we assumed that the b integral is interchangeable with the
other two, and in the last line ρ(E) is the full spectral density for E = k2/2φb and
inverse Laplace transformed from the partition function Z(β). If ρ = ρJT , we get back to
〈L2|L1〉 = δ(L1 − L2) as expected.

This result shows that the modified inner product among |L〉 basis can still be diago-
nalized in terms of the positive energy basis of the Morse potential quantum mechanics
even after taking all nontrivial topologies into account. In particular, the contribution from
each energy is proportional to its spectral density.

On the other hand, if the full spectral density allows negative energy, like the tree-level
spectrum with λ > 0 in this paper, the states |L〉 are blind to it. Indeed, if we naively
extend Ψk(z) to imaginary k, this wave function becomes non-normalizable.

Importantly, if the full spectral density is discrete [26], |L〉 becomes overcomplete and
there are infinitely many null states, namely the energy eigenstates that are not on the
support of the spectrum. It would be interesting to understand what geometric objects
are required to have such discrete spectra and how they could lead to a unique α state of
baby universes in such a modified JT gravity, in the language similar to pure topological
2D gravity [32].
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A Variation of JT action

Here we review the variation of the JT action. The spacetime M has the topology of a
strip with two timelike boundaries, ∂M . The outward normal unit vector on ∂M is na.
The metric can be decomposed as gab = nanb + hab and gab = nanb + hab. As we are in
two dimensions, hab can be further written as −tatb, where ta is a tangent unit vector
on ∂M . The volume form on M (resp. ∂M) is ε (resp. ε̂). We define δgab ≡ δ(gab),
δgab ≡ −δ(gab) and δg ≡ gabδg

ab = gabδgab. This unconventional notation is designed so
that δgab = gacgbdδgcd.

The action is as follows

I = IM + I∂M =
∫
M

1
2(R+ 2)Φε+

∫
∂M

(∇anaΦ− CΦ−D)ε̂, (A.1)

where C and D are constants. The variation of the bulk action is

δIM = 1
2

∫
M

[
δgab(∇a∇bΦ− gab∇2Φ) + (R+ 2)δΦ−

(
Rab −

(1
2R+ 1

)
gab

)
δgabΦ

]
ε

+ 1
2

∫
∂M

[
(∇aδgac −∇cδg)Φεc − δgab∇bΦεa + δg∇aΦεa

]
, (A.2)
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where εa = naε̂, and we used Stokes’ theorem twice to obtain the boundary terms. In two di-
mensions, any metric is locally conformally flat and thus the Einstein tensor Rab − 1

2Rgab = 0
trivially.

Next, we consider the variation of the boundary action. Let the boundary be the locus
that obeys f(x) = const for some smooth function f(x). Then the normal 1-form is

na = ∂af√
∂af∂bfgab

. (A.3)

The variation of the normal 1-form becomes

δna = 1
2nanbncδg

bc =⇒ δna = −1
2(hac + δac )nbδgcb. (A.4)

Furthermore, note that

δΓaab = 1
2
(
∇bδg + gdb∇aδgda −∇aδgab

)
, (A.5)

δεa = 1
2εaδg =⇒ δε̂ = δ(naεa) = 1

2habδg
abε̂. (A.6)

The variation of the boundary action becomes

δI∂M =−1
2

∫
∂M

[
hac∇a(nbδgdbhcd)+

(
∇bδgab−∇aδg

)
na−(∇anahbc−∇bnc+na∇ancnb)δgbc

]
Φε̂

+
∫
∂M

[
(∇ana−C)δΦ− 1

2(CΦ+D)habδgab
]
ε̂. (A.7)

Using the fact that
hab∇aV b = ∇̂aV a, if V ana = 0 (A.8)

where ∇̂a is the covariant derivative constructed from the induced metric on ∂M , we can
write the first term in (A.7) as

1
2

∫
∂M

(nbδgdbhcd)∇̂cΦε̂ = 1
2

∫
∂M

(nbδgdbhcd)∂cΦε̂. (A.9)

The third term in δI∂M is nontrivial in general dimensions but vanishes in 2d. This can be
easily seen using hab = −tatb. Putting the bulk and boundary variations together, we have

δI = 1
2

∫
M

[
δgab(∇a∇bΦ− gab∇2Φ + gabΦ) + (R+ 2)δΦ

]
ε

+ 1
2

∫
∂M

[nbhca∂cΦ− na∂bΦ + gabn
c∂cΦ− (CΦ +D)hab] δgabε̂+

∫
∂M

(∇ana − C)δΦε̂

= 1
2

∫
M

[
δgab(∇a∇bΦ− gab∇2Φ + gabΦ) + (R+ 2)δΦ

]
ε

+ 1
2

∫
∂M

[nc∂cΦ− CΦ−D]habδgabε̂+
∫
∂M

(∇ana − C)δΦε̂ (A.10)

The boundary condition for a well defined phase space must be one of the following
two types nc∂cΦ = CΦ +D or habδgab = 0

∇ana = C or δΦ = 0
(A.11)
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B Lagrange inversion theorem

Consider two smooth functions g(x) and f(x) that satisfy f(0) = g(0) = 0 and f(g(x)) = x.
The Lagrange inversion theorem is a formula for the Taylor series coefficients of g(x) in
terms of the Taylor series coefficients of its inverse, f(x). The formula is given by

g(y) =
∞∑
n=1

yn

n! ∂
n−1
x

(
xn

f(x)n
)∣∣∣∣
x=0

. (B.1)

This formula can be slightly generalized to compute h(g(x)) for any smooth function h

defined in a neighborhood of 0. The result is

h(g(y)) = h(0) +
∞∑
n=1

yn

n! ∂
n−1
x

(
xnh′(x)
f(x)n

)∣∣∣∣
x=0

(B.2)

We could choose f(x) = x/φ(x) for φ(0) 6= 0, which leads to

h(g(y)) = h(0) +
∞∑
n=1

1
n! ∂

n−1
x (h′(x)φ(x)n)

∣∣∣
x=0

yn (B.3)

Let fλ(x), gλ(x) be a one-parameter family of pairs of functions obeying the same properties
as f(x) and g(x) above. Let fλ(x) = x/φ(x+ λ). We have

h(λ+ gλ(y)) = h(λ) +
∞∑
n=1

1
n!∂

n−1
λ (h′(λ)φ(λ)n)yn. (B.4)

We may define gλ implicitly in terms of φ as follows:

gλ(x) = xφ(gλ(x) + λ). (B.5)

We now write
h(λ+ gλ(y)) = h(λ) +

∞∑
n=1

1
n!∂

n−1
λ (h′(λ)Φ(λ, y)n), (B.6)

where
gλ(y) = Φ(gλ(y) + λ, y), Φ(λ, y) = yφ(λ). (B.7)

Consider a family of variables yi and functions φi(x), indexed by i. We can generalize the
above as follows:

h(λ+ gλ(~y)) = h(λ) +
∞∑
n=1

1
n!∂

n−1
λ (h′(λ)Φ(λ, ~y)n) (B.8)

where

gλ(~y) = Φ(gλ(~y) + λ, ~y), Φ(λ, ~y) =
K∑
i=1

yiφi(λ). (B.9)

If we integrate λ in (B.8) from a to b, we get∫ b

a
dλh(λ+ gλ(~y)) =

∫ b

a
dλh(λ) +

∫ b

a
dλh′(λ)Φ(λ, ~y) +

∞∑
n=2

1
n! ∂

n−2
λ (h′(λ)Φ(λ, ~y)n)

∣∣∣λ=b

λ=a
.

(B.10)
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Figure 21. The red curves specify the possible cut shapes for Dρ in the complex E plane. The blue
dashed line is C+, which connects e2πi/3∞ to +∞, and the green dashed line is C−, which connects
e−2πi/3∞ to +∞. (a)(b) are one-cut configurations, and (c)(d)(e) are two-cut configurations. Only
(a) and (e) are solutions to our cubic potential matrix model.

If there exists an a such that ∂n−2
a (h′(a)Φ(a, ~y)n) = 0 for all n, we may derive a new series

∞∑
n=2

1
n!∂

n−2
b (h′(b)Φ(b, ~y)n) =

∫ b

a
dλ
[
h(λ+ gλ(~y))− h(λ)− h′(λ)Φ(λ, ~y)

]
(B.11)

We have not discussed the radius of convergence of the above series. In practice, we need to
sum the series within its radius of convergence and then analytically continue ~y as needed.

C Phase transition in matrix model with cubic potential

Let us consider the matrix model with cubic potential V (x) = x3/3− tx2/2. For x→∞,
there are three directions where <V (x)→ +∞, namely x→ +∞ and x→ ±e2iπ/3∞. As
discussed in section 4.1, there are three contour choices for each eigenvalue. We will assign
half of the eigenvalues to the contour C+ and the other half to the contour C−, where C± is
defined to be the contour that connects ±e2iπ/3∞ to +∞ (see figure 21). In this appendix,
we use a slightly different convention and divide both ρ(E) and R(E) in (3.21) and (3.22)
by N such that the density of states is normalized to unity.

For large |t|, we see that the potential has a deep well along the real axis (see figure 22),
and we expect the eigenvalues to stabilize in the well and form a one-cut solution along
the real axis. Because we have evenly assigned the eigenvalues to the two contours C±, the
spectrum must be invariant under a reflection across the real axis. Aside from a single cut
along the real axis, another possibility that respects this symmetry is a single cut along
a complex curve that is invariant under complex conjugation (see figure 21(a) and (b)).
However, this alternate possibility is forbidden by our contour choice because the real part
of the effective potential (3.16) must be minimized on Dρ ∩ C±, where Dρ is the support of
the spectrum [20]. However, a general fact of matrix models [20] is that <Veff decreases
along the direction normal to Dρ (that is, <Veff decreases for some amount along the blue
and green dashed lines on the real axis in figure 21(b)).

Let the support of the one-cut spectrum be [a, b]. For a one-cut solution of a polynomial
potential V with degree d+1, we will closely follow the techniques in section 3.3.3 of [20]. As
R(x) is a two-fold covering of the complex plane with a cut along [a, b], the topology of R(x)
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Figure 22. The potential V (E) (blue), (rescaled) spectral density 2πρ(E) (shaded yellow), and
effective potential Veff(E) (dashed red) in the one-cut case for different t.

is a Riemann sphere. A biholomorphism between the complex plane (with coordinate z)
and the Riemann sphere (with coordinate x) is given as follows:

z 7→ x = a+ b

2 + δ(z + 1/z), δ = a− b
4 (C.1)

This biholomorphism is called the Joukowsky map. The upper (lower) sheet is mapped
to the exterior (interior) of the unit disc, and the cut is mapped to the unit circle |z| = 1.
Sending z → 1/z amounts to switching the sheet for fixed x. The inverse map is

z = 1
2δ

x− a+ b

2 ±

√(
x− a+ b

2

)2
− 4δ2

 (C.2)

where the plus (minus) sign is for the upper (lower) sheet. Using (C.1), we can write√
σ(x) ≡

√
(x− a)(x− b) = δ(z − 1/z) (C.3)

where we choose the sign for the square root such that near x→∞,
√
σ(x)→ x ∼ δz on

the upper sheet, and
√
σ(x)→ −x ∼ −δ/z in the lower sheet. It follows that

R(x) = 1
2

(
V ′(x)−M(x)

√
σ(x)

)
(C.4)

is a rational function of z with poles at z = 0 and z = ∞ because both V ′(x) and
M(x) are polynomials in x. Let us denote R̄(z) = R(x(z)). From the definition (3.19),
R(x)→ 1/x+O(1/x2) for x→∞ on upper sheet, which implies that R̄(z) ∈ C[1/z], or

R̄(z) =
d∑

k=0
vkz
−k, with v0 = 0, v1 = 1/δ (C.5)

where we used the fact that both V ′(x)2 and M(x)2σ(x) have degree 2d. As V ′(x) =
R(x+ iε) +R(x− iε) for x ∈ [a, b], we have

V ′
(
a+ b

2 + δ(z + 1/z)
)

= R̄(z) + R̄(1/z) =
d∑

k=0
vk(zk + z−k) (C.6)

Using (C.5) and (C.6), one can determine a and b and thus the spectrum.
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Taking our potential into (C.6), we have

v0 = 1
8(3a2 + 2ab+ 3b2 − 4(a+ b)t) (C.7)

v1 = 1
4(a− b)(a+ b− t) (C.8)

v2 = 1
16(a− b)2 (C.9)

Solving with the condition (C.5) leads to a = a(t) and b = b(t), though an explicit analytic
expression is not available. It follows that

M(x) = V ′(x)− 2R(x)√
σ(x)

=
∑d
k=0 vk(zk − z−k)
δ(z − 1/z) = x+ a+ b− 2t

2 . (C.10)

For x ∈ [a, b], the spectral density is given by

ρ(x) = 1
2πM(x)

√
−σ(x) = 1

2π

(
x+ a+ b− 2t

2

)√
(x− a)(b− x). (C.11)

For x > b or x < a, the derivative of the effective potential is given by an analytic
continuation of ρ(x),

V ′eff(x) = M(x)
√
σ(x), (C.12)

from which we can compute the effective potential. The critical point occurs when x +
a+b−2t

2 = 0 for x = a, which means that near a, the spectrum scales like (x− a)3/2. Solving
this condition with a(t) and b(t), we find two cases:a = (3

√
3− 5)1/3 ≈ 0.581, b = (3(9 + 5

√
3))1/3 ≈ 3.756 t = tcr

a = −(3
√

3 + 5)1/3 ≈ −2.168, b = (3(9− 5
√

3))1/3 ≈ 1.006 t = −tcr
(C.13)

where tcr = 22/3√3 ≈ 2.749. For t ∈ (−tcr, tcr), one can show that no real solution exists
for a(t) and b(t). We plot the one-cut spectrum for all cases with |t| ≥ tcr in figure 22,
where we see that for |t| > tcr, the effective potential Veff(x) (dashed red lines) in the region
x < a increases and then decreases. For |t| = tcr, Veff(x) monotonically decreases for x < a

and has zero derivative at x = a. This is similar to our matrix model of JT gravity with
EOW branes in (4.6).

Because a one-cut solution does not exist for t ∈ (−tcr, tcr), we need to consider two-cut
solutions. There are three possibilities that respect the symmetry of C±: two cuts symmetric
under complex conjugation (figure 21(c)), one cut along the real axis plus one cut along
a curve symmetric under complex conjugation (figure 21(d)), and a special “Y” shaped
case of the previous type obtained by joining the two cuts at a junction (figure 21(e)).14

The first case cannot be stable because the Coulomb repulsive force between the two cuts
cannot be balanced by V (x). The second case is not allowed due to the requirement that
<Veff is minimized on Dρ ∩ C±. The third case is the only choice. Physically, for |t| small,
the potential well along the real axis is not deep enough to hold all of the eigenvalues; this
naturally leads to complex eigenvalues along C±.

14The case of two cuts along the real axis is forbidden because there is no double-well in the potential
along the real axis.
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Figure 23. (a) The “Y” shaped solution Dρ on the complex E plane for t = 3/2. Note that Y± are
not exactly straight lines. (b) The potential V (E) (blue) and “Y” shaped spectral density (shaded
yellow and red) for t = 3/2. The potential well on the real axis is not deep enough to hold all of the
eigenvalues in a real cut. The shaded red region is the plot of the spectral density on Y+ projected
to the real axis as a function of E (see (C.20)). (c) The plot of cr (blue), ci (yellow), a (green) and b
(red) as functions of t ∈ (−tcr, tcr). The gray dashed lines mark the values that match with (C.13).

Let c± label the two complex ends of the “Y” shaped solution, let b label the real end,
and let a label the junction (see figure 23a). Let Y± denote the two complex branches. As
the degree of M2σ is d = 2, M must be a constant, θ. It follows that

R(x) = 1
2(x2 − tx− θ

√
(x− c+)(x− c−)(x− a)(x− b)). (C.14)

Let c± = cr±ici. The asymptotic condition for R(x) when x→∞ requires that R(x)→ 1/x,
which implies that

θ = 1, (C.15)

ci =
√
cr(cr − t) + 2

t− 2cr
, (C.16)

a, b = t− cr ∓
√
cr(t− cr) + 2

t− 2cr
. (C.17)

To solve for cr, we still need one more equation. This is given by requiring that ρ(x)dx is
a real and nonnegative measure along Y±. This condition fixes the locus of Y± and also
implies that

=
∫ c+

a
ρ(x)dx = 1

2π=
∫ c+

a

√
(x− c+)(x− c−)(x− a)(b− x)dx = 0. (C.18)

Note that the above integral is invariant under deformations of the integration path. We
choose a straight line for computational simplicity. We plot cr, ci, a, b as functions of
t ∈ (−tcr, tcr) in figure 23. From the plot, we see that at the critical point t = ±tcr, ci = 0
and cr = a, which means that the “Y” shaped phase continuously connects to the one-cut
phase. Given a t ∈ (−tcr, tcr), the locations of the branches Y± are determined by the
differential equation

=(ρ(x)dx) = 0 ⇐⇒ dxr/dxi = −ρr(x)/ρi(x), (C.19)
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where x = xr + ixi and ρ(x) = ρr(x) + iρi(x), and the boundary conditions xr(ci) = cr
(or xr(−ci) = cr) and xr(0) = a. As an example, we plot Dρ of the “Y” shape for t = 3/2
in figure 23a and the spectral density in figure 23b. Note that on Y± we can project the
density measure to the real axis as follows:

ρ(x)dx = |ρ(x)|2/ρr(x)dxr (C.20)

where we have used (C.19).

D “Y” shaped spectrum

Universal piece. For the universal piece, we have

δRU (E) = eS0φb
4π2i

∮
C

dλ sin(2π
√

2φb(−λ))
λ− E

√
(E − E+)(E − E−)(E0 − E)√
(λ− E+)(λ− E−)(E0 − λ)

, (D.1)

where C is the contour circling the branch cut γ+ ∪ γ− ∪ [E0, 0] anti-clockwise. We expand
the sine function in a Taylor series and evaluate each term by moving the contour to infinity.
It turns out that the integral becomes the sum over the residues at E and ∞,

δRU (E) =−e
S0φb
2π

[
sin
(

2π
√

2φb(−E)
)
− 1

2πi

∞∑
n=0

(2π
√

2φb)2n+1

(2n+1)!

∮
∞
dλ

λn+1/2

λ−E

√
(E−E+)(E−E−)(E0−E)√
(λ−E+)(λ−E−)(E0−λ)

]
.

(D.2)
The first term contributes to δρU (E) = −ρJT (E) for E > 0 and cancels out ρJT (E) as in
the one-cut case. Therefore the spectral density only comes from the second integral around
infinity. Under the coordinate transformation λ→ 1/z, it becomes

RU (E) ' eS0φb
4π2i

∞∑
n=0

(2π
√

2φb)2n+1

(2n+ 1)!

∮
0

dzz−n

1− Ez

√
(E − E+)(E − E−)(E0 − E)√

(1− E+z)(1− E−z)(1− E0z)

= eS0φb
√

(E − E+)(E − E−)(E0 − E)
2π

∞∑
n=1

(2π
√

2φb)2n+1En−1

(2n+ 1)!

×
∑

n0+n++n−≤n−1
n0,n+,n−=0

(1/2)n0(1/2)n+(1/2)n−
n0!n+!n−!

(
E0
E

)n0 (E+
E

)n+ (E−
E

)n−
(D.3)

where in the second step we used a Taylor expansion and picked out the coefficient of zn−1.
Let us denote the sum over all ni as Sn(Ei/E) (i = 0,±). We will rewrite it in a form
similar to the one-cut case.
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First, we expand each (Ei/E)ni = ((Ei/E − 1) + 1)ni in powers of (Ei/E − 1)

Sn(Ei/E) =
∑∑
ni≤n−1
ni=0

ni∑
ki=0

∏
i=0,±

(1/2)ni

(ni−ki)!ki!
(Ei/E−1)ki

=
∑∑
ki≤n−1
ki=0

∏
i=0,±

(1/2)ki

ki!
(Ei/E−1)ki

∑∑
si≤n−1−

∑
i
ki

ki=0

2∏
i=0

(1/2+ki)si

si!

=
∑∑
ki≤n−1
ki=0

Γ(n+3/2)
Γ(5/2+

∑
i
ki)Γ(n−

∑
i
ki)

∏
i=0,±

(1/2)ki

ki!
(Ei/E−1)ki

=
∑∑
ki≤n−1
ki=0

Γ(n+3/2)
Γ(1/2)3Γ(n−

∑
i
ki)

∫
V3
t
k0−1/2
0 t

k+−1/2
+ t

k−−1/2
− dt0dt+dt−

∏
i=0,±

(Ei/E−1)ki

ki!

= Γ(n+3/2)
Γ(1/2)3(n−1)!

∫
V3

(
1+
∑

i=0,± ti(Ei/E−1)
)n−1

t
1/2
0 t

1/2
+ t

1/2
−

dt0dt+dt− (D.4)

where in the second line we defined si = ni − ki and changed the order of sum. In the third
line we used the identity

∑∑
ki≤m

(a1)k1 · · · (an)kn
k1! · · · kn! = Γ(1 +m+

∑n
i=1 ai)

Γ(1 +
∑n
i=1 ai)Γ(1 +m) , (D.5)

and in the fourth line we used the identity

Γ(k1) · · ·Γ(kn)
Γ(1 + k1 + · · ·+ kn) =

∫
Vn
tk1−1
1 · · · tkn−1

n

n∏
i=1

dti, Vn ≡
{

(t0, · · · , tn−1)|ti ≥ 0,
n−1∑
i=0

ti ≤ 1
}

(D.6)
and in the last line we computed the sum over ki which gives a simple power function of
order n− 1. The sum over n is straightforward,

∞∑
n=1

(2π
√

2φb)2n+1En−1

(2n+1)! Sn(Ei/E) = 2πφb
∫
V3

I1
(
2π
√

2φb[E+
∑
i=0,± ti(Ei−E)]

)
√
E+

∑
i=0,± ti(Ei−E)t1/20 t

1/2
+ t

1/2
−

dt0dt+dt−.

(D.7)
As I1(x) is an entire function, the integrand is analytic for all E. Therefore, the discontinuity
of δRU (E) is purely determined by the factor

√
(E − E+)(E − E−)(E0 − E). We choose

the branch cut to be along γ+ ∪ γ− ∪ [E0,+∞). For E ∈ [E0,+∞), we have

ρU (E) = eS0φ2
b

√
(E−E+)(E−E−)(E−E0)

π

∫
V3

I1
(
2π
√

2φb[E+
∑
i=0,± ti(Ei−E)]

)
√
E+

∑
i=0,± ti(Ei−E)t1/20 t

1/2
+ t

1/2
−

dt0dt+dt−

(D.8)
For E ∈ γ±, ρ(E) differs from the above expression by a phase that depends on the locus
of γ±, which is determined by requiring that ρ(E)dE is real and nonnegative along γ±.
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Potential related piece. Using a similar trick, we have

δRK(E) = i

4π

∮
Dρ
dλ
KδV ′(λ)
λ− E

√
(E − E+)(E − E−)(E0 − E)√
(λ− E+)(λ− E−)(E0 − λ)

= iKφb
2π

∫
D
dαm(α)

∮
C′

dλ

(λ− E)(α2 + 2φbλ)

√
(E − E+)(E − E−)(E0 − E)√
(λ− E+)(λ− E−)(E0 − λ)

(D.9)

where Dρ ≡ γ+ ∪ γ− ∪ [E0,+∞) and C′ circles around Dρ anti-clockwise.15 Similarly, we
can move the contour C′ and this leads to the residues at E and −α2/2φb. The residue at
E obviously does not contribute to δρK(E). The residue at −α2/2φb gives

δRK(E) = Kφb

∫
D
dαm(α)

√
(E − E+)(E − E−)(E0 − E)

(α2 + 2φbE)
√

(α2/2φb + E+)(α2/2φb + E−)(α2/2φb + E0)
(D.10)

where
√

(λ− E+)(λ− E−) in the denominator contributes a minus sign by our branch cut
prescription. For E ∈ [E0,+∞), this leads to

ρK(E) = Kφb
π

∫
D
dαm(α)

√
(E − E+)(E − E−)(E − E0)

(α2 + 2φbE)
√

(α2/2φb + E0)(α2/2φb + E+)(α2/2φb + E−)
(D.11)

and for E ∈ γ± the expression depends on the locus of γ±.

Large E limit. Taking the large E limit of ρ(E)−ρJT (E) only requires (D.8) and (D.11)
and not the specific solution of γ±. One way to see the large E behavior is to go back
to (D.3). Using the identity

sinh(2π
√

2φbE) =
√

(E − E+)(E − E−)(E − E0)
∞∑
n=0

(2π
√

2φb)2n+1En−1

(2n+ 1)!

×
∞∑
ni=0

(1/2)n0(1/2)n+(1/2)n−
n0!n+!n−!

(
E0
E

)n0 (E+
E

)n+ (E−
E

)n−
, (D.12)

we have

δρU (E) = −e
S0φb

√
(E − E+)(E − E−)(E − E0)

2π2

∞∑
n=0

(2π
√

2φb)2n+1En−1

(2n+ 1)!

×
∑

n0+n++n−≥n

(1/2)n0(1/2)n+(1/2)n−
n0!n+!n−!

(
E0
E

)n0 (E+
E

)n+ (E−
E

)n−
. (D.13)

The large E limit is easy to see from this formula. The leading order is E1/2 which
comes from terms where n0 + n+ + n− = n, and the next order E−1/2 involves terms
where n0 + n+ + n− = n + 1. The higher order terms are not relevant for checking the
normalization of the spectrum. Define

Pn(Ei) ≡
∑

n0+n++n−=n

(1/2)n0(1/2)n+(1/2)n−
n0!n+!n−! En0

0 E
n+
+ E

n−
− , (D.14)

15For the unregulated measure (2.54), similar to the one-cut case discussed below (3.37), we assume that
−α2/(2φb) is outside of C′ for all α ∈ D.
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which, similarly to (D.4), can be written as

Pn(Ei)≡En0
n∑

n0=0

(1/2)n0

n0!
∑∑

± ki≤n−n0

∏
i=±

(1/2)ki(Ei0/E0)ki
ki!

∑∑
± si=n−n0−

∑
± ki

∏
i=±

(1/2+ki)si
si!

=En0

n∑
n0=0

(1/2)n0

n0!
∑∑

± ki≤n−n0

(n−n0)!
(k++k−)!(n−n0−k+−k−)!

∏
i=±

(1/2)ki(Ei0/E0)ki
ki!

=En0

n∑
n0=0

(1/2)n0

n0!
∑∑

± ki≤n−n0

(n−n0)!
π(n−n0−k+−k−)!

∏
i=±

(Ei0/E0)ki
ki!

∫ 1

0
uk+−1/2(1−u)k−−1/2du

= 1
π
En0

n∑
n0=0

(1/2)n0

n0!

∫ 1

0

(E−/E0+E+−u/E0)n−n0

u1/2(1−u)1/2 du

= Γ(n+3/2)
π3/2n!

∫ 1

0

dw

(1−w)1/2

∫ 1

0

du

u1/2(1−u)1/2 (E0+w(E+−u−E0−))n. (D.15)

In the second line we used

∑∑
ki=m

(a1)k1 · · · (an)kn
k1! · · · kn! = Γ(m+

∑n
i=1 ai)

Γ(
∑n
i=1 ai)Γ(1 +m) . (D.16)

In the third line we used the integral representation of the beta function. Summing over n
leads to some Bessel functions and we have

δρU (E)'−E1/2 ·
eS0φ

3/2
b√

2π2

∫ 1

0

dw

(1−w)1/2

∫ 1

0
du
I0(2π

√
2φb(E0 +w(E+−u−E0−)))
u1/2(1−u)1/2

+E−1/2 ·
eS0φ

1/2
b

2
√

2π2

[∫ 1

0

dw

(1−w)1/2

∫ 1

0
du

I0(2π
√

2φb(E0 +w(E+−u−E0−)))
(φbE0 +φbE+−(1−2u))−1u1/2(1−u)1/2

−
√

2φbE0I1(2π
√

2φbE0)
]

(D.17)

The large E limit of ρK(E) is straightforward

ρK(E)≈E1/2 · K2π

∫
D
dα

m(α)√
(α2/2φb+E0)(α2/2φb+E+)(α2/2φb+E−)

−E−1/2 · K4π

∫
D
dα

m(α)[2α2E+(α2+2φbE)(E0+E++E−)]
(α2+2φbE)

√
(α2/2φb+E0)(α2/2φb+E+)(α2/2φb+E−)

.

(D.18)

We can take the large E limit inside the dα integral on the second line only when using a
regulated measure.

Integration of ρ(E) from E0 to E+ along the straight line. Define E± = Er± iEi,
Er,i ∈ R and E = uE+ + (1− u)E0. The variable in the Bessel function in (D.8) is

E +
∑
i=0,±

ti(Ei − E) = E0 − E0ry + iEix, (D.19)
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where

x ≡ t+− + (1− t0 − t+ − t−)u, y ≡ t+ + t− + (1− t0 − t+ − t−)u. (D.20)

Define F(x) ≡ I1(2π
√

2φbx)/
√
x. Solving t± in terms of x and y, the integral of the

universal piece ρU (E) from E0 to E+ along the straight line is∫ E+

E0
dEρU (E)

=−e
S0φ2

b

π
E

5/2
0+

∫ 1

0
dy

∫ y

−y
dx

∫ 1−y

0
dt0

∫ x+y
2−2t0+x−y

0
du

u1/2(u−E0−/E0+)1/2F(E0−E0ry+iEix)

t
1/2
0 (2−2t0+x−y)1/2(y−x)1/2

(
x+y

2−2t0+x−y−u
)1/2

=−e
S0φ2

b

2 E2
0+E

1/2
−0

∫ 1

0
dy

∫ y

−y
dx

∫ 1−y

0
dt0
F(E0−E0ry+iEix)(x+y)2F1(−1

2 ,
3
2 ,2,

x+y
2−2t0+x−y

E0+
E0−

)

t
1/2
0 (2−2t0+x−y)3/2(y−x)1/2

=−e
S0φ2

b

2
√

2
E2

0+E
1/2
−0

∫ 1

0
dy

∫ y

−y
dx

(x+y)1/2F(E0−E0ry+iEix)
(y−x)1/2(2+x−y)1/2

∫ 1

x+y
2+x−y

dq
2F1(−1

2 ,
3
2 ,2, q

E0+
E0−

)
(q− x+y

2+x−y )1/2

(D.21)

where we defined q = x+y
2−2t0+x−y in the last line. The integral of the potential related piece is

∫ E+

E0
dEρK(E) = −K16E

2
0+E

1/2
−0

∫
D
dα

m(α)F1(3
2 ;−1

2 ,−
1
2 ; 3; E0+

E0−
, E0+
α2/2φb+E0

)
(α2/2φb + E0)3/2

√
(α2/2φb + E+)(α2/2φb + E−)

(D.22)
where F1 is Appell function.
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