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Abstract. In this paper an exact and complete analysis of the Lloyd–Max’s algorithm and its ini-
tialization is carried out. An effective method for initialization of Lloyd–Max’s algorithm of op-
timal scalar quantization for Laplacian source is proposed. The proposed method is very simple
method of making an intelligent guess of the starting points for the iterative Lloyd–Max’s algo-
rithm. Namely, the initial values for the iterative Lloyd–Max’s algorithm can be determined by the
values of compandor’s parameters. It is demonstrated that by following that logic the proposed
method provides a rapid convergence of the Lloyd–Max’s algorithm.
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Introduction

Quantizers play an important role in theory and practice of modern day signal processing.
A vast amount of research has been made in the area of quantization. One of the most
important issues from the engineer’s point of view is the design and implementation of
quantizers to meet the performance objectives. Lloyd (1982) and Max (1960) indepen-
dently proposed an algorithm to compute optimum quantizers using mean-square error
distortion measure. The algorithm is widely used in practice because it can be easily
implemented. It is frequently called in literature the Lloyd–Max’s I algorithm to distin-
guish it from the second algorithm. Namely, Lloyd developed the second algorithm for
the scalar quantizers, known as Lloyd–Max’s II algorithm (Wu, 1990). These two al-
gorithms differ in regard to stopping criteria that interrrupts the algorithm. Namely, the
Lloyd–Max’s I algorithm stops when further iteration no longer produce any changes in
distortion or changes are below the suitable threshold, while Lloyd–Max’s II algorithm
stops when suggested absolute accuracy of the last representation level is achieved. Here,
we consider Lloyd–Max’s I algorithm and propose choosing of initial values by deter-
minig them when nonuniform scalar quantizer is realised by using companding tech-
nique. The stopping criteria used in this paper compares the value of relative disortion
error with small constant 0.005. Accordingly, interruption of the Lloyd–Max’s algorithm
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Fig. 1. Illustration of the inner region and the outer region of the scalar quantizer.

is allowed if the value of relative disortion error is below the given threshold. A great
number of researchers has been occupied by the Lloyd–Max’s algorithm initialization
problem (Wu, 1990). Different techniques were proposed to obtain better initial condi-
tions of the Lloyd–Max’s algorithm in order to improve its convergence speed. The initial
conditions suggested in this paper are easily obtained and they contribute to a rapid con-
vergence of the Lloyd–Max’s algorithm.

1. Nonuniform Scalar Quantization

Let an N -level scalar quantizer Q be characterized in terms of a set of N real-valued
quantization points, i.e., representation levels {y1, y2, . . . , yN} and decision thresholds
{t0, t1, . . . , tN}, shown in Fig. 1. The negative thresholds and representation levels are
symmetric to their nonnegative counterparts:

t0 = −∞ < t1 < ... < tN−1 < tN = ∞. (1)

Decision thresholds are used to define the cells for the quantizer, which are given by:

αj = (tj−1, tj ], j = 1, 2, ..., N. (2)

Cells α2, ..., αN−1 are referred to as the inner cells, while α1 and αN are referred to
as the outer cells. Cells that are unbounded (t0 = −∞ and tN = ∞), α1 and αN , are
called overload cells, while cells that are bounded, α2, ..., αN−1, are called granular cells.
The collection of all overload cells is called the overload region, while collection of all
granular cells is called the granular region. A quantized signal has value yj when the
original signal belongs to the quantization cell αj . Hence, N -level scalar quantizer is
defined as a functional mapping of an input value x onto an output representation, such
that:

Q(x) = yj , x ∈ αj . (3)
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2. The Quantizer Distortion

The quality of a quantizer can be measured by the distortion of the resulting reproduction
in comparison to the original. The most convenient and widely used measure of distor-
tion between the input signal x and the quantized signal yj is the average mean-squared
error, i.e., quantization noise. If a quantizer is optimal, then no other N -level scalar quan-
tizer can provide lower distortion. We can consider that total distortion consists of two
components, inner Di and outer distortion D0, defined as:

Di =
N−2∑
j=1

∫ tj+1

tj

(x − yj+1)2p(x) dx, (4)

Do = 2
∫ ∞

tN−1

(x − yN )2 p(x) dx, (5)

D =
N−2∑
j=1

∫ tj+1

tj

(x − yj+1)2p(x) dx + 2
∫ ∞

tN−1

(x − yN )2p(x) dx. (6)

The primary goal when designing an otimal Lloyd–Max’s quantizer is to select the
representation levels and decision thresholds so as to provide the minimum possible aver-
age distortion for a fixed number of quantization levels N . Considerable amount of work
has been focused on the design of optimal quantizers for compression sources in image,
speech, and other applications. The sources with exponential and Laplacian probability
density functions are commonly encountered and the methods for designing quantizers
for these sources are very similar. In this paper we consider the Laplacian input signals
with unrestricted amplitude range. Laplacian probability density function (pdf) of the
original random variable x with unit variance can be expressed by:

p(x) =
√

2
2

e−|x|
√

2. (7)

Here, we consider the case when there is no restriction in ampltude of input signal. Op-
timal maximal amplitude of the input signal is required when designing of an optimal
scalar quantzer. Its determination exists as a current problem which was considered be-
fore in (Na, 2004; Na and Neuhoff, 2001).

While working (Peric et al., 2005) we derived the expression for determining the value
of the decision threshold tN−1, denoted here as tcom

N−1, when the observed quantizer was
realised by using the companding technique:

tcom
N−1 =

3√
2

ln
(N

2

)
. (8)

Using the well known fact that the width of the last cell αN for Lloyd–Max’s quantiz-
ers is

√
2 (Na, 2004; Na and Neuhoff, 2001; Peric et al., 2005) we can estimate the initial

value of the maximal amplitude of the input signal, denoted here as tcom
max, assuming that
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the width of the last cells for Lloyd–Max’s quantizer and nonuniform quantizer, realised
by using companding technique, are equal.

tcom
max =

3√
2

ln
(N

2

)
+
√

2. (9)

This value of the maximal input signal is needed when determining the values of the
decision thresholds and the representation levels of nonuniform scalar quantizer, which
is realised by using companding technique. The values of decision thresholds and the
representation levels calculated in such a way can be used as initial values for the Lloyd–
Max’s algorithm.

3. Companding Technique

In this paper, the commonly used nonlinear quantization scheme (Judell and Scharf,
1986), Fig. 2., is analyzed. This scheme forms the core of the ITU-T G.711 PCM stan-
dard, recommended for coding speech signals. Namely, here we consider nonuniform
scalar quantizers based on the companding technique. Nonuniform quantization can be
achieved by the following procedure: compress the signal x using nonlinear compressor
characteristic c(·), quantize the compressed signal c(x) with a uniform quantizer, expand
the quantized version of the compressed signal using a nonlinear transfer characteristic
c−1(·) inverse to that of the compressor as in Fig. 2. The corresponding structure of a
nonuniform quantizer consisting of a compressor, a uniform quantizer, and expandor in
cascade is called compandor.

Let us define the compressor function c(x) similar as in (Judell and Scharf, 1986):

c(tj) = −tmax + 2tmax

∫ tj

−tmax
p1/3(x) dx∫ +tmax

−tmax
p1/3(x) dx

, (10)

c(yj) = −tmax + 2tmax

∫ yj

−tmax
p1/3(x) dx∫ +tmax

−tmax
p1/3(x) dx

. (11)

Also, the following equations are valid for the compressor function c(x) (Jayant and Noll,
1984):

Fig. 2. Block diagram of companding technique.
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c(tj) = −tmax +
2j

N
tmax, (12)

c(yj) = −tmax +
2(j − 1/2)

N
tmax. (13)

Decision thresholds tj , j = 1, 2, ..., N − 1 and the representation levels yj , j =
1, 2, ..., N can be determined by combining the last four equations:

tj =
3√
2

ln
(

2j + (N − 2j) exp(−
√

2
3 tmax)

N

)
tj <0, 1�j � N

2
, (14)

yj =
3√
2

ln
(

2j−1+(N−2j+1) exp(−
√

2
3 tmax)

N

)
yj <0, 1�j � N

2
, (15)

tj =
3√
2

ln
(

N

2N−2j+(2j−N) exp(−
√

2
3 tmax)

)
tj >0,

N

2
<j <N, (16)

yj =
3√
2

ln
(

N

2N − 2j + 1 + (2j − 1 − N) exp(−
√

2
3 tmax)

)

yj > 0,
N

2
< j � N. (17)

The values of decision thresholds {t1, t2, . . . , tN−1} and the representation levels
{y1, y2, . . . , yN} of nonuniform scalar quantizer, realised by using companding tech-
nique, are function of maximal amplitude of restricted input signal, tmax. Using the value
for tmax calculated in (9), i.e., tcom

max, from (14), (15), (16) and (17) we can calculate ini-
tial values for starting the Lloyd–Max’s algorithm. Namely, due to the symmetry of the
parameters of the N -level nouniform scalar quantizer it is sufficient to calculate only
one-sided decision thresholds and representation levels using (16) and (17).

4. Lloyd–Max-ov Algorithm

Max (1960) showed that the optimum decision levels are half-way between the neighbor-
ing representation levels. He also showed that representation levels should be the centroid
of the probability density function in the appropriate interval. Lloyd–Max’s algorithm for
designing optimal scalar quantizers (Max, 1960; Jayant and Noll, 1984), starts with an
estimate of the decision thresholds and the representation levels, and the convergence is
better if the estimate is better. Here, we calculate the initial values for starting the Lloyd–
Max’s algorithm by using (16) and (17) when the value of the maximal amplitude of input
signal is tcom

max. By using (6), distortion, denoted Dcom(0) can be calculated. The impor-
tant fact is that the values for the thresholds t0 and tN are unchangeable (t0 = −∞ and
tN = ∞), and there is no need to calculate them again by using Lloyd–Max algorithm.
However, they are indispensable when determining the representation levels y1 and yN .



284 Z. Peric, J. Nikolic

Lloyd–Max’s algorithm consists of following steps:
Step 1. The iterative process starts for i = 0, and the initial values for the decision

thresholds {t(0)1 , t
(0)
2 , . . . , t

(0)
N−1} and the representation levels {y(0)

1 , y
(0)
2 , . . . , y

(0)
N } are

taken from:

t
(0)
j =

3√
2

(
ln(

N

2N − 2j + (2j − N) exp(−
√

2
3 tcom

max)

)

t
(0)
j > 0,

N

2
< j < N, (18)

y
(0)
j =

3√
2

ln
(

N

2N − 2j + 1 + (2j − 1 − N) exp(−
√

2
3 tcom

max)

)

y
(0)
j > 0,

N

2
< j � N, (19)

and are used for calculating the initial values for the distortions Dcom(0).
Step 2. Iteratively determining of new values for the decision thresholds and the rep-

resentation levels using following relations:

t
(i+1)
j =

(y(i)
j + y

(i)
j+1)

2
1 � j < N, (20)

y
(i+1)
j =

∫ t
(i+1)
j

t
(i+1)
j−1

xp(x) dx

∫ t
(i+1)
j

t
(i+1)
j−1

p(x) dx

1 � j � N. (21)

Step 3. Calculation of new distortion’s value Dcom(i+1) as well as value of the relative
distortion errors δcom(i):

δcom(i) =
Dcom(i+1) − Dcom(i)

Dcom(i)
. (22)

Step 4. Checking of the stopping criteria (Gray, 2004):

δcom(i) < 0.005, (23)

if the algorithm break is satisfied, if not back to Step 2. and repeating the algorithm to the
stopping criteria.

The performance of a quantizer is often specified in terms of signal-to-noise ratio
(SNR), given by (Chu, 2003):

SNR = 10 log10

(σ2

D

)
, (24)
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measured in decibels, with σ2denoting the variance of x. We assume here the unit vari-
ance input signal, therefore SNR can be given by:

SNR = 10 log10

( 1
D

)
. (25)

In analyzing the behavior of the quantizer, it is preferable to use relative quantities,
like signal-to-noise ratio instead of absolute quantities, such as distortion. Relative pa-
rameters portray the behavior of the quantizer in a way that is independent of the signal
level and hence is more general. Let us denote the signal to noise ratio with SNRcom(2),
when the value of the distortion is Dcom(2). Also, let us denote with SNRopt the optimal
value for SNR. Numerical values of SNRopt are given in (Jayant and Noll, 1984), when
the number of quantization cells N varies.

5. Numerical Results

Table 1 provides numerical values of the relative distortion errors δcom(i) that are
calculated for two iterations, when the number of quantization levels varies (N =
16, 32, 64, 128). From Table 1, it is obvious that the stopping criteria that is considered in
this paper is satisfied after two iteratons for optimal scalar quantizers with small number
of quantization levels, while the algorithm is interrrupted after only one iteration for opti-
mal scalar quantizers with large number of quantization levels. It is therefore obvious that
the sugessted method for Lloyd–Max algorithm initializtion enables a rapid convergence
of the algorithm. Table 2 provides positive numerical values of the decision thresholds
t
com(i)
j , j = 8, . . . 15, that are calculated for two iterations, when the number of quantiza-

tion levels is N = 16. Numerical positive values of the decision thresholds, denoted here

Table 1
Numerical values of the relative distortion errors δcom(i), calculated for two
iterations, when the number of quantization levels varies (N = 16, 32, 64, 128)

N 16 32 64 128

δcom(1) 0.0178 0.0101 0.0054 2.7712 10−3

δcom(2) 3.2856 10−5 2.7134 10−5 2.1227 10−5 –

Table 2

Numerical positive values of the decision thresholds t
com(i)
j , j = 8, . . . , 15, calculated for two iterations,

when the number of quantization levels is N = 16

i t
com(i)
8 t

com(i)
9 t

com(i)
10 t

com(i)
11 t

com(i)
12 t

com(i)
13 t

com(i)
14 t

com(i)
15

0 0 0.2639 0.5654 0.9169 1.3384 1.8651 2.5673 3.6241

1 0 0.2686 0.5716 0.9255 1.3513 1.8864 2.6089 3.7408

2 0 0.2675 0.5716 0.9255 1.3513 1.8863 2.6085 3.7389
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Table 3
Optimal positive reference of the decision thresholds (Jayant and Noll, 1984)
topt
j , j = 8, . . . , 15, when the number of quantization levels is N = 16

topt
8 topt

9 topt
10 topt

11 topt
12 topt

13 topt
14 topt

15

0 0.264 0.567 0.920 1.345 1.878 2.597 3.725

Table 4

Numerical positive values of the representation levels y
com(i)
j , j = 9, . . . , 16, calculated for two iterations,

when the number of quantization levels is N = 16

i y
com(i)
9 y

com(i)
10 y

com(i)
11 y

com(i)
12 y

com(i)
13 y

com(i)
14 y

com(i)
15 y

com(i)
16

0 0.1279 0.4093 0.7338 1.1172 1.5855 2.1872 3.0305 4.4511

1 0.1258 0.4093 0.7338 1.1172 1.5854 2.1871 3.0299 4.4479

2 0.1254 0.4087 0.7338 1.1172 1.5854 2.1870 3.0292 4.4460

Table 5
Optimal positive reference of the representation levels (Jayant and Noll, 1984)
yopt

j , j = 9, . . . , 16, when the number of quantization levels is N = 16

yopt
9 yopt

10 yopt
11 yopt

12 yopt
13 yopt

14 yopt
15 yopt

16

0.124 0.405 0.729 1.111 1.578 2.178 3.017 4.432

topt
j , j = 8, . . . 15, are given in Table 3. These values present optimal positive reference of

the decision thresholds (Jayant and Noll, 1984) for an optimal scalar quantizer when the
number of quantization levels is N = 16 and Laplacian input signal is used. Table 4 lists
numerical positive values of the representation levels y

com(i)
j , j = 9, . . . , 16, that are cal-

culated for two iterations, when the number of quantization levels is N = 16. Similar as
in Table 3, Table 5 presents optimal reference positive values of the representation levels
(Jayant and Noll, 1984), denoted here yopt

j , j = 9, . . . 16, for an optimal scalar quantizer
when the number of quantization levels is N = 16 and Laplacian input signal is used.
Table 6 lists the numerical values of the signal-to-noise ratio SNRcom(2)and SNRopt,
when the number of quantization levels varies (N = 16, 32, 64, 128). Considering Table
6, one can notice that the calculated values for SNRcom(2) are almost identical to the ap-
propriate optimal values of SNRopt (Jayant and Noll, 1984). Optimal, reference values
of the decision thresholds and the representation levels are primarily of theoretical im-
portance while distortion or relative distortion error is useful in practice when designing
scalar quantizers.
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Table 6
Numerical values of the SNRcom(2) and SNRopt when the number
of quantization levels varies (N = 16, 32, 64, 128)

N 16 32 64 128

SNRcom(2) 18.1322 23.8695 29.7427 35.6881

SNRopt 18.13 23.87 29.74 35.69

6. Conclusion

The proposed method makes possible simple initialization of Lloyd–Max’s algorithm.
Choosing initial values for the iterative Lloyd–Max’s algorithm by determinig them when
nonuniform scalar quantizer is realised by using companding technique provides algo-
rithm rapid convergence. The stopping criteria used in this paper compares values of
relative disortion error with small constant 0.005. Interruption of the Lloyd–Max’s algo-
rithm is allowed if the values of the relative disortion error are below a given threshold.
The results demonstrate that by using the proposed initialization the Lloyd–Max’s algo-
rithm for the scalar quantizer with a large number of quantization levels, the algorithm
converges after only one iteration. Analysis presented in this paper has the practical im-
portance since it could be of great help to engineers. Particularly, it provides fast and
efficient design of optimal scalar quantizers that are used for source coding of speech
(Chu, 2003) and images (Gersho and Gray, 1992).
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Efektyvus Lloyd–Max optimalaus skaliarinio kvantavimo
algoritmo inicializacijos metodas Laplaso šaltiniui

Zoran PERIC, Jelena NIKOLIC

Šiame straipsnyje yra atliekama Lloyd–Max algoritmo ir jo inicializacijos tiksli ir pilna analizė.
Yra pasiūlytas Lloyd–Max optimalaus skaliarinio kvantavimo algoritmo inicializacijos metodas
Laplaso šaltiniui. Tai labai nesudėtingas metodas, atliekantis intelektual ↪u iteratyvaus Lloyd–Max
algoritmo pradini ↪u reikšmi ↪u spėjim ↪a. Konkrečiai, pradinės reikšmės iteratyviam Lloyd–Max algo-
ritmui gali būti nustatytos pagal kodavimo-dekodavimo parametr ↪u reikšmes. Yra parodyta, kad,
sekant ši ↪a logik ↪a, pasiūlytas metodas užtikrina greit ↪a Lloyd–Max algoritmo konvergavim ↪a.


