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Abstract 

Pneumonia is a serious disease that can lead to death if it is not diagnosed in an accurate 
manner. This paper presents three models for diagnosing pneumonia based on Chest X-Ray 
images. The first proposed model depends on the combination of inception, residual, and dropout. 
The second model is based on adding a batch normalization layer to the first model. The third 
model adds inner residual inception. The inner residual inception block has four branches, each of 
which has a significantly deeper root than any other known inception block, necessitating the use 
of residual connections between each branch. Inner residual inception blocks eventually consist 
of 4 distinct ResNet architectures. Each branch has a building block that is repeated three times 
with residuals, and then a dropout layer is added on top of that. These models used logistic 
regression and the Adam optimizer. The metrics used to evaluate the models are accuracy, 
precision, recall, F1-score, AUC, and balanced accuracy. From the results, the third proposed 
model has achieved the highest accuracy of 96.76%, and the best balance accuracy of 95.08%. 
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1. Introduction 
 

       Pneumonia is responsible for 4 million deaths per year, over 150 million infections each year, 
and 15% of all death in children under the age of five. Identifying pneumonia in its early stages 
can save many lives. Pneumonia is an infection that causes inflammation in one or both lungs. It 
can be caused by a virus, bacteria, fungi, or other germs [1]. Infection usually occurs when a person 
breathes air that carries germs. Chest x-ray images are one way to diagnose pneumonia [2-5].  

Machine learning techniques can help increase medical diagnosis accuracy. When it comes 
to medical diagnosis, the overall accuracy is not a good indication of the model's performance, 
however, we need to consider two scenarios in which we examine the two types of errors a model 
can make. the first type of error is known as false positive, in that error, the model predicts that a 
patient has pneumonia when he does not have pneumonia. In the second type of error which is 
known as false negative, the model predicts that a patient does not have pneumonia when he does. 
Both errors are very dangerous as the first type will be responsible for delaying the diagnosis and 
hence causing deterioration of patient health and increasing the percentage of death. the second 
type will cause a healthy person to go through wrong and unnecessary treatment which can have 
side effects and affects his life. The relationship between two types of errors is a trade, and some 
models choose to decrease the first type at the expense of increasing the second type.  

 Several studies have been shown to detect Pneumonia from chest x-ray images. In [6] 
proposed an ensemble model that used transfer learning from five pre-trained models namely 
AlexNet, DenseNet121, Inception V3, GoogLeNet, and ResNet18. The pre-trained models are 
combined and used to extract features which were then passed to a classifier. The model used data 
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augmentation for better generalization and scored an overall accuracy of 96.39%. In [7] studied the 
impact of data augmentation and dropout by designing four convolution neural network (CNN) 
models. One with both data augmentation and dropout, one with only data augmentation, one with 
only dropout, and one without them both. It was found that the model having both augmentation and 
dropout scored the highest accuracy of 90.68%. In [8] introduced a CNN model trained from scratch 
and doesn’t rely on transfer learning. The model employed many data augmentation methods to 
increase the size of the dataset. The model consists of two parts, a feature extractor, and a sigmoid 
classifier. The feature extractor is composed of a stack of convolution and max-pooling layers. The 
model used different data sizes ranging from 100 to 300. The highest accuracy of 93.73% was 
reached at a data size of 200. In [9] proposed a CNN model to classify pneumonia. The CNN consists 
of 10 layers, the first 7 are convolution layers, and then 3 dense layers. They scored an accuracy of 
95.30%. In [5] introduced a computer-aided classification of pneumonia, called Ensemble Learning 
(EL), to simplify the diagnosis process on chest X-ray images. Three well-known CNNs 
(DenseNet169, MobileNetV2, and Vision Transformer) pretrained using the ImageNet database. The 
proposed EL achieve an accuracy of 93.91% and a F1-score of 93.88% on the testing phase.  

 
All previous studies ignored the study of the balance between classes, and this may affect the 

quality of the results. Therefore, this paper has studied the balance between the classes under study 
for the three proposed models. 
 The rest of the paper is organized as follows, in section 2 we discuss proposed models, in 
section 3 introduce experimental results, in section 4 discuss the advances and limitations of 
proposed models, and finally, in section 5 give a conclusion and some future works. 
 

2. Proposed Models 
 

This paper presents two baseline models built from different versions of inception models and 
three new models that attempt to overcome the issues faced by baselines. These models consist of 
two phases. The feature extraction is the first phase. In the second phase, a simple logistic regression 
algorithm was used to classify the x-ray image as either normal or pneumonia. 
 

2.1 Feature extraction phase 
 

 when detecting pneumonia, it can be in the upper left corner of the image or in the lower left 
corner and so on. This huge variation in the location of the information causes a lot of problems 
while learning and choosing the right filter sizes for convolution neural networks become difficult. 
Inception Blocks have been first proposed as part of GoogLeNet model [10] to solve problems 
caused by the large variations in object size that can be found in the image. The first inception block 
proposed in [10] applied four branches of filter on the input at the same time. The first branch 
consisted of 𝟏 × 𝟏 convolution filter, the second branch consisted of 𝟏 × 𝟏 convolution filter 
followed by 𝟑 × 𝟑 convolution filter, the third branch consisted of 𝟏 × 𝟏 convolution filter followed 
by 𝟓 × 𝟓 convolution filter and the last branch consisted of 𝟑 × 𝟑 max pooling filter followed by 𝟏 × 𝟏 convolution filter. GoogLeNet has a stack of nine inception blocks stacked linearly. It consists 
of an overall 27 layers including the pooling layers. It uses global average pooling at the end of the 
last inception block. Ever since the introduction of inception blocks and GoogLeNet model 
(InceptionV1), researchers have been trying to upgrade and modify inception blocks to improve 
accuracy. InceptionV2 and InceptionV3 were proposed in [11]. In inceptionV2, the authors 
factorized the 𝟓 × 𝟓 convolution filter in the inception block into two 𝟑 × 𝟑 convolution filter and 
staking two 𝟑 × 𝟑 convolution filter is 2.78 faster than using a 𝟓 × 𝟓 convolution filter. In 
inceptionV2 rather than repeating the same inception block for specific number of times, they also 
introduced three main inception blocks where each is repeated for number of times. InceptionV3 did 
not include any changes in the inception block from InceptionV2, however the model itself had some 
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improvements such as using RMSProp optimizer, using label smoothing, using Batch Normalization 
in the classifier, and using factorized 𝟕 × 𝟕 convolution filters. InceptionV4 and Inception-ResNet 
was proposed in [12]. InceptionV4 added a bunch of initial set of convolutions called stem before 
introducing inception blocks. In inceptionV4, they introduced reduction blocks that is responsible 
for changing the height and the width of the input. Inspired by ResNets, a hybrid Inception-ResNet 
model was proposed. The model has the same structure as InceptionV4 but adds residual connections 
between inception blocks. 
 
 This paper introduces some modifications to the inception block that can be applied to any 
model and help increase accuracy for any inception-based model. We start with two baseline models: 
Inception model and Inception-Residual model the first uses the same inception block in 
InceptionV1 and the second used the same idea proposed in the last Inception-ResNet model. The 
models are a stack of five inception blocks, followed by a classifier.  
 

2.1.1 Baseline 1: Pure Inception 
 

As a baseline, we used the original inception blocks proposed in GoogLeNet model, stacked 
5 of them on top of each other, and then a classifier as shown in Fig.1. Although this model looks 
nothing like InceptionV1, it will serve as a benchmark to see whether the modifications to the 
inception block improves the accuracy or not. The input image of size 64×64 goes through a 3×3 
convolution with 64 filters and is then followed by 5 inception blocks. Each inception block has 4 
branches. Having an input image X the model can be summarized in algorithm 1. 

 

Algorithm 1:  Pure Inception Model 

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿             //Chest X-Ray images 

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�  

1 𝑋 =  𝑋/255.0                          //Normalization         

2 𝑋 =   𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐:                //Apply inception block for 5 times 

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

7 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

8 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31,   𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

9 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1) 

10 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

11 𝑋 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1,  𝑏22,  𝑏32,  𝑏42) 

12 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

13 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋) 

14 �̂� = 𝐷𝑒𝑛𝑠𝑒(1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 
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3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (96) + ReLU

Padding = same, stride = 1
1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU
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5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

Flatten

Dense (2) + Sigmoid

x 5

NormalPneumonia

b1

b2b3
b4

 
 

Fig 1: Pure Inception Model 

 
 

2.1.2 Baseline 2: Inception + Residual  
  

The second baseline adapted the last upgrade used in inception blocks, which is using 
residual connections [13]. Stack 5 of the inception-residual blocks on top of each other followed by 
a classifier as shown in Fig.2. Also, the model looks nothing like the Inception-ResNet model, but it 
will also serve as a benchmark for the latest update to inception blocks and see whether the 
modifications improve the accuracy or not. The input image of size 64×64 goes through a 3×3 
convolution with 64 filters and is then followed by 5 inception blocks. Each inception block has 4 
branches. The difference here, after concatenation, the output goes through a 1×1 convolution with 
64 filters to enable adding the output of the first 3×3 convolution to it. Algorithm 2 summarizes the 
model. 
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x 5

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU
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1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

Flatten

Dense (2) + Sigmoid

NormalPneumonia

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

 
Fig 2: Inception + Residual Model 

Algorithm 2:  Inception + Residual Model 

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿             //Chest X-Ray images 

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�  

1 𝑋 =  𝑋/255.0                          //Normalization         

2 𝑋 =   𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐:                //Apply inception-residual block for 5 times 

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

7 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

8 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31,   𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 
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2.1.3 Proposed Model 1: Inception + Residual + Dropout 
  

Dropout [14] has been widely used as a regularization technique to fight overfitting. 
Although dropout has become a main component in every model, it never got used inside inception 
blocks. The first proposed modification to the inception block is adding dropout after the deeper 3 
branches as illustrated in Fig.3. Although inception model goes wider than deeper, but some 
branched could learn to much and cause overfitting. The model can be described in algorithm 3. 

9 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1) 

10 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

11 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1,  𝑏22,  𝑏32,  𝑏42) 

12 𝑍 = 𝐶𝑜𝑛𝑣(𝑍,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

13 𝑋 = 𝑍 + 𝑋                       //Residuals 

14 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

15 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋) 

16 �̂� = 𝐷𝑒𝑛𝑠𝑒(1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 

Algorithm 3:  Inception + Residual + Dropout Model 

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿             //Chest X-Ray images 

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�  

1 𝑋 =  𝑋/255.0                          //Normalization         

2 𝑋 =   𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐:                //Apply the block for 5 times 

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

7 𝑑1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏22,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3) 

8 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

9 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31,   𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

10 𝑑2 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏32,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.1) 

11 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1) 

12 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

13 𝑑3 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏42,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.2) 

14 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1,  𝑑1,  𝑑2,  𝑑3) 

15 𝑍 = 𝐶𝑜𝑛𝑣(𝑍,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 
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Fig 3: Inception + Residual Model + Dropout Model 

 

2.1.4 Proposed Model 2: Inception + Residual + Dropout + Batch Normalization 
  

In addition to adding dropout in the first proposed model, we added a batch normalization 
[15] layer after each branch as shown in Fig.4. Batch Normalization is an effective technique that 
consistently accelerates the convergence of deep networks and improves accuracy. Although 
InceptionV3 model used batch normalization, it was used in the classifier and never used as part of 
the inception block itself. Algorithm 4 summarizes the model. 
 

16 𝑋 = 𝑍 + 𝑋                       //Residuals 

16 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

18 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋) 

19 �̂� = 𝐷𝑒𝑛𝑠𝑒(1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 
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Fig 4: Inception + Residual + Dropout + Batch Normalization model 

 

Algorithm 4:  Inception + Residual + Dropout + Batch Normalization Model 

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿             //Chest X-Ray images 

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�  

1 𝑋 =  𝑋/255.0                          //Normalization         

2 𝑋 =   𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐:                //Apply the block for 5 times 

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 
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2.1.5 Proposed Model 3: Inner Residual Inception 
  

The first inception model tends to go wider rather than deeper. But what if the model can go 
wider and deeper at the same time so that it can learn more complex structure and deal with 
information variation across the images at the same time? That was the idea behind inner residual 
inception blocks. The inner residual inception block consists of 4 branches, each branch is much 
deeper that all known inception blocks which make it essential to apply residual connections between 
every branch. Eventually, inner residual inception blocks are an ensemble of 4 unique ResNet 
architecture. Each branch has a building block that is repeated 3 times with residuals and then 
followed by a dropout layer. The first branch building block consists of a 𝟑 × 𝟑 convolution with 96 
filters, followed by a 𝟐 × 𝟐 max pooling filter followed by a batch normalization layer. The second 
branch building block is a 𝟓 × 𝟓 convolution with 32 filters, followed by a 𝟐 × 𝟐 max pooling filter 
and a batch normalization layer. The third branch building block is a 𝟑 × 𝟑 convolution with 128 
filters, followed by a 𝟐 × 𝟐 max pooling filter and a batch normalization layer. The fourth branch is 
a factorized 𝟑 × 𝟑 convolution into 𝟏 × 𝟑 convolution and 𝟑 × 𝟏 convolution with 64 filters each, 
followed by a 𝟐 × 𝟐 max pooling filter and a batch normalization layer. Before applying dropout, 
the first 3 branches go through a 𝟏 × 𝟏 convolution with 64 filters. The output of the four branches 
gets concatenated and then go through a × 𝟏 convolution with 64 filters to match the channels of the 
input to apply residual connections between Inner Residual Inception blocks. The model is shown 
in Fig.5 and algorithm 5 summarizes it.  

 
 
 

5 𝑏𝑛1 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋) 

6 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

7 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

8 𝑏𝑛2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏22,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3)) 

9 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

10 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31,   𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

11 𝑏𝑛3 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏32,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.1)) 

12 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1) 

13 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

14 𝑏𝑛4 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏42,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.2)) 

15 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏𝑛1,   𝑏𝑛2,   𝑏𝑛3,   𝑏𝑛4) 

16 𝑍 = 𝐶𝑜𝑛𝑣(𝑍,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

16 𝑋 = 𝑍 + 𝑋                       //Residuals 

18 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

19 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋) 

20 �̂� = 𝐷𝑒𝑛𝑠𝑒(1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 
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Algorithm 5:   Inner Residual Inception 

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿             //Chest X-Ray images 

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�  

1 𝑋 =  𝑋/255.0                          //Normalization         

2 𝑋 =   𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

3 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹𝑖𝑟𝑠𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋 ): 
4 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

5 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1,   𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1)) 

6 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2) 

7 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋 ): 
8 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

9 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1,   𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1)) 

10 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2) 

11 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑟𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋 ): 
12 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

13 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1,   𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1)) 

14 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2) 

15 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑡ℎ𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋 ): 
16 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

17 𝑙2 = 𝐶𝑜𝑛𝑣(𝑋,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 3),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒,   𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

18 𝑙3 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1,   𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2),   𝑠𝑡𝑟𝑖𝑑𝑒 = 1)) 

19 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙3) 

20 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐:                //Apply inner residual inception block for 5 times 

21 𝒃𝟏 = 𝑿,   𝒃𝟐 = 𝑿,   𝒃𝟑 = 𝑿,   𝒃𝟒 = 𝑿 

22 𝒘𝒉𝒊𝒍𝒆 𝒋 ≠ 𝟑 𝒅𝒐:               
23 𝑏1 = 𝐹𝑖𝑟𝑠𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏1) 

24 𝑏2 = 𝑆𝑒𝑐𝑜𝑛𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏2) 

25 𝑏3 = 𝑇ℎ𝑖𝑟𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏3) 

26 𝑏4 = 𝐹𝑜𝑟𝑡ℎ𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏4) 

27 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

28 𝑏1 = 𝐶𝑜𝑛𝑣(𝑏1,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

29 𝑏2 = 𝐶𝑜𝑛𝑣(𝑏2,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

30 𝑏3 = 𝐶𝑜𝑛𝑣(𝑏3,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 
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2.2 Classification phase 
 

For each case in the dataset, each of the suggested models generates a feature vector that may be 
used to train a classifier. For binary classification used logistic regression [16], which estimates the 
probability that a given example belongs to one of the two classes using the sigmoid function 
Equation (1).            𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  𝜎(𝑥) = 11 + 𝑒−𝑥                                                 (1) �̂�(𝑖) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑥) = { 0 (𝑛𝑜𝑟𝑚𝑎𝑙)               𝑖𝑓      𝜎(𝑥(𝑖)) ≥  0.5 1 (𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 )       𝑖𝑓      𝜎(𝑥(𝑖)) <  0.5                         (2) 

Where �̂�(𝑖) is the prediction of the 𝑖𝑡ℎ training example 𝑥(𝑖). 
 

We used an Adam optimizer [17] with 𝛽1 = 0.9,  𝛽2 = 0.98, 𝜖 = 10−9 and a learning rate = 3𝑒−4 to minimize the binary cross-entropy loss function (log loss) Equation (3). 𝑙𝑜𝑠𝑠 =  − 1𝑚 ∑ 𝑦(𝑖) log (𝑚
𝑖=1 �̂�(𝑖)) + (1 − 𝑦(𝑖)) log (1 − �̂�(𝑖))                (3) 

Where 𝑦(𝑖) is the true label of an example 𝑥(𝑖), and 𝑚 is the number of training samples. 
 

31 𝑑1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏1,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3) 

32 𝑑2 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏2,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3) 

33 𝑑3 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏3,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3) 

34 𝑑4 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏4,   𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 =  0.3) 

35 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑑1,   𝑑2,   𝑑3,   𝑑4) 

36 𝑍 = 𝐶𝑜𝑛𝑣(𝑍,   𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1),   𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64,   𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢) 

37 𝑋 = 𝑍 + 𝑋                       //Residuals 

38 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

39 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋) 

40 �̂� = 𝐷𝑒𝑛𝑠𝑒(1,   𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 
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Fig 5: Inner Residual Inception Model 
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3. Experimental Results  
 

3.1 Dataset 
 

  In this paper, the Chest X-Ray images dataset collected from [18]. The dataset is organized 
into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia / 
Normal). For this study, the data was grouped and reshuffled and split into two folders (train, test). 
The data contains 5,863 X-Ray images split as shown in Table 1. 

Table 1: Dataset. 

Split Size Normal Pneumonia  

Training 4684 1736 2948 

Testing 1172 317 855 

 
 The dataset has two types of pneumonia and Fig 6 shows examples of Chest X-Rays in patients 
with pneumonia. The normal chest X-ray (left) depicts clear lungs without any areas of abnormal 
opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar 
consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right) 
manifests with a more diffuse ‘‘interstitial’’ pattern in both lungs. 
 

Bacterial pneumonia Normal Viral pneumonia 

 
 

 

Fig 6: Chest X-Ray samples [13] 
 
All models trained on a machine with 8 cores Intel Xeon E5-2620 v4 processor with 128 GB 

of RAM installed. 
 

3.2 Results and Discussion  
 

In this section introduce the results for the five models (two baselines and three proposed 

modifications). All models have run for 50 epochs and the best fitted model during those epochs 

was chosen. For evaluating the models, used 6 metrics to measure the performance defined in 

Equations 4-8. The metrics are Accuracy, Precision, Recall, F1-score [2, 19], and AUC [20].  
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 12 ( 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁𝑇𝑁 + 𝐹𝑁) 

 
Where: 
True Positives (TP): the number of correct predictions made by the model that a patient suffers 
pneumonia. 
 

False Positives (FP): the number of wrong predictions made by the model that a patient does not 
suffer from pneumonia. 
 

True Negatives (TN): the number of correct predictions made by the model that a healthy person 
does not suffer from pneumonia. 
 

False Negatives (FN): the number of wrong predictions made by the model that a healthy person 
suffers from pneumonia. 
 
Balanced accuracy is a good measure for unbalanced datasets like the one being used since one 

class (Normal) has many fewer training samples than the other class (Pneumonia). A balance 

accuracy defined as equation 9 [21].  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1𝐾 ∑ 𝑟𝑘𝑚𝑘
𝐾

𝑘=1  

Where 𝐾 is the number of classes, 𝑚𝑘 is the number of samples belonging to class 𝑘 and 𝑟𝑘 is the 

number of samples accurately predicted belonging to class 𝑘. 

3.2.1 Baseline 1: Pure Inception results  
  

Pure inception model has been trained for 50 epochs and it reached its heights accuracy at the 
10th epoch and did not improve after that as shown in Fig 7.  

 

Pure inception model reached a test accuracy of 95.05% and a near 100% training accuracy 
which means that the model is overfitting. 
 
 
 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Fig 7: Pure Inception model loss and accuracy while training 

 

3.2.2 Baseline 2: Inception + Residual results  
 

The inception-residual model has also been trained for 50 epochs and it reached its heights 
accuracy at the 15th epoch and did not improve after that as shown in Fig.8.  

Inception-residual model did not improve from the pure inception model as it reached a test 
accuracy of 94.96% and a 100% training accuracy which means that the model is also overfitting the 
data. However, the inception-residual model scored higher balanced accuracy that pure inception 
model as it scored 94.27% compared to 94.13% for pure inception. 

 
Fig 8: Inception + Residual model loss and accuracy while training 

 

3.2.3 Proposed Model 1: Inception + Residual + Dropout results  
 

As seen in the two baseline models, the biggest problem facing them is overfitting. In this 
model we use dropout to try to reduce overfitting and increase accuracy. The model is trained for 
50 epochs and reached its highest test accuracy of 94.54% at the 37th epoch as shown in Fig.9.  

 
The model reached a training accuracy of 99.6% and a balanced accuracy of 92.39%. 

Compared to our two baselines, adding dropout did not neither improve the accuracy nor fighting 
overfitting. 
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Fig 9: Inception + Residual + Dropout model loss and accuracy while training 

 

3.2.4 Proposed Model 2: Inception + Residual + Dropout + Batch Normalization results  

 
Unfortunately, adding dropout to inception blocks did not help improving performance. In this 

model we add another piece that can help reduce overfitting and increase performance which is Batch 
Normalization (BN). The model is trained for 50 epochs and reached its highest test accuracy of 
94.8% at the 26th epoch as shown in Fig.10. The model reached a training accuracy of 99.5% and a 
balanced accuracy of 92.26%.  

 
Fig 10: Inception + Residual + Dropout + BN model loss and accuracy while training 

 

3.2.2.5 Proposed Model 3: Inner Residual Inception results  
 

Although adding BN to inception block helped reduce the gap between training and testing curve 
as shown in Fig.10 and reduce overfitting a little, it did not improve the accuracy compared our two 
baselines. 

 
In this model we are taking the inception block to the next level by going both deeper and wider 

and learn more complex structure.  
 
The model its best test accuracy of 96.76% at the 40th epoch as shown in Fig.11. The model 

reached a training accuracy of 99.3% and the model has a balanced accuracy of 95.08%. The model 
succeeded at both reducing overfitting and improve accuracy. 
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Fig 11: Inner Residual Inception model loss and accuracy while training 

 

Fig.12 shown the confusion matrix for the five models. 
 

Pure Inception Inception + Residual

Inception + Residual + Dropout

Inception + Residual + Dropout 

+ Batch Normalization

Inner Residual Inception

 
 

Fig 12: Confusion Matrix for the five models 
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Table 2 introduce the numerical results of three proposed models. The third model achieve the 
higher accuracy value equal 96.76% with higher balance accuracy equal 95.08%. 

 
Table2: The results of the proposed models. 

 

 
 

 

 
 
 
 
 
 
 
 
Fig. 13 shows the comparison between the numerical results of precision. The proposed model 

3 achieves a higher value of 97.74% As it has a higher success rate than the proposed model 2 with 
2.52%, but ResNet 50 [25] achieves a lower value equal to 82.33%. 

 
 

 
 

Fig 13: The precision value for the proposed models and well-known methods  
 

 

Fig. 14 shows the comparison between the values of recall. The AlexNet[22] achieves a higher 
value equal to 98.97%, which is higher than the proposed model 3 with 1.02%. The proposed model 
3 achieves 97.99% and has a higher success rate than the proposed model 2 with 0.21%, but ResNet 
50 [25] achieves a lower value equal to 82.22%. 

90.21
88.97

91.33
90.03

82.33

89.27

92.45
93.96

90.44

95.51 95.22

97.74

PRECISION (%)

AlexNet [22] InceptionV3 [11] DenseNet169 [13]

MobileNetV2 [24] ResNet50[25] DenseNet121 [23]

Vision Transformer ( VIT) [26] Ensemble Learning (EL) [5] GoogLeNet [10]

Proposed Model 1 Proposed Model 2 Proposed Model 3

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

AUC 

(%) 

Balanced Accuracy 

(%) 

Proposed 

Model 1 
94.54 95.51 97.08 96.29 95.92 92.39 

Proposed 

Model 2 
94.8 95.22 97.78 96.48 93.93 92.26 

Proposed 

Model 3 
96.76 97.74 97.99 97.86 97.07 95.08 
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Fig 14: The recall value for the proposed models and well-known methods  
 

Fig. 15 shows the comparison between the values of F1-score. The proposed model 3 achieves a 
higher value equal to 97.86%, which is higher than the proposed model 2 with 1.42%. 
MobileNetV2[24] achieves a lower value equal to 82.26%. 
 

 
 

Fig 15: The F1-score value for the proposed models and well-known methods  
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Table 3 introduces a numerical comparison between the three proposed models and well-known 
algorithms using accuracy values and publish year. The proposed model 3 achieves a higher value 
of accuracy equal to 96.76%, which is higher than the proposed model 2 with 1.94%. Ensemble 
learning (NL) [5] achieves 93.91% but is still lower than the proposed model 3 with 2.85%. DCGAN 
[27] achieves a lower value of accuracy equal to 84.19% 
 
Table 3. Comparative accuracy results for the well-known methods and the proposed models  

 

Method/Ref. Accuracy (%) Year 

DCGAN / Moradi, A.; et al.  [27] 84.19 2018 
Kermany et al. [18] 92.80 2018 

VGG16/ Ayan, E.; et al.  [28] 87.00 2019 
Stephen, O., et al., [8] 93.73 2019 
Liang, G.; et al.[29] 90.50 2020 

DenseNet121/ Salehi, M; et al. [30] 86.80 2021 
Ensemble Learning (EL)/ Alhassan 

Mabrouk et al. [ 5] 
93.91 2022 

Proposed Model 1 94.54 2022 
Proposed Model 2 94.80 2022 
Proposed Model 3 96.76 2022 

 

4.  Discussion  
 

The proposed model (inner residual inception) improved the inception block and can replace 
inception blocks in any model to boost its accuracy. From the results, we highlight some of its 
advantages and limitations: 
 

4.1 Advantages 
 

1. The proposed model surpassed current state-of-the-art models on pneumonia using Chest X-
Ray 

2. The proposed model introduced a new inception block that is more efficient and powerful 
than current inception blocks. 

3. The proposed model found a good balance in reducing both Type 1 & 2 errors. 
4. The proposed model used 64 size image which is very small compared to other models that 

used 224 images and bigger. 
5. The proposed model is 14.5 faster than AlexNet, 1.67 faster than DenseNet121, 6.2 faster 

than InceptionV3, 1.67 faster than GoogLeNet and 2.6 faster than ResNet18. 
6. The proposed model can deal with unbalanced datasets. 

 

 

4.2 Limitations 
 

1. The proposed model wasn’t tested for real data that can suffer from noisy chest x-ray. 
2. The proposed model can ’t fully replaces doctors as the total accuracy didn’t surpass human-

level accuracy. 
 

5. Conclusion 
 

Using machine learning to diagnose pneumonia from chest X-rays increases the accuracy of the 
diagnosis that a doctor may rely on in treating patients. The main contribution of this paper is the 
development of a model for classifying chest X-ray images according to whether they have pneumonia or 
not. This paper has suggested three models relying on machine learning techniques. The first model relied 
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on inception, residual, and dropout, and it achieved a 94.54% accuracy rate. The second model depends on 
adding a batch normalization layer to the first model, which achieved a 94.8% accuracy rate. The third 
model relied on introducing a new inception block that is more efficient and powerful than current inception 
blocks. It achieved a 96.76% accuracy rate. The main conclusion of this paper is the extent to which it is 
possible to rely on the third model, as it has achieved the highest accuracy and balance accuracy compared 
to other models in the literature. So, an automated model for diagnosing pneumonia with a high degree of 
accuracy can be relied upon by the doctor, but we cannot ignore the doctor’s experience in diagnosis. in 
the future, suggests trying this model on actual patients’ images that contain some image problems such as 
noise or missing parts of the image, as well as adding some improvements to this model for increasing 
accuracy, efficiency, and effectiveness. 
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