
An effective model for the detection of pneumonia
from chest X-ray images using inner residual
inception
Mohammed M. Nasef ( Mnasef81@yahoo.com)

Menou�a University
Aya El-Sayed Shehata

Menou�a University
Amr M. Sauber

Menou�a University

Research Article

Keywords: Pneumonia, Convolution Neural Network, Inception, Residual

Posted Date: January 13th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2457904/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2457904/v1
mailto:Mnasef81@yahoo.com
https://doi.org/10.21203/rs.3.rs-2457904/v1
https://creativecommons.org/licenses/by/4.0/

1

An effective model for the detection of pneumonia from chest X-ray

images using inner residual inception

Mohammed M. Nasef 1, a, Aya El-Sayed Shehata 1, b, Amr M. Sauber 1, c

1
Mathematics and Computer Science Department, Faculty of Science, Menoufia University, 32511, Egypt

a
Mnasef81@yahoo.com , Mohammed_nasef@science.menofia.edu.eg

b
ayamarzouk83@gmail.com, ayashehata22@science.menofia.edu.eg

c
 amrmausad@computalityit.com, amr@science.menofia.edu.eg

Abstract

Pneumonia is a serious disease that can lead to death if it is not diagnosed in an accurate
manner. This paper presents three models for diagnosing pneumonia based on Chest X-Ray
images. The first proposed model depends on the combination of inception, residual, and dropout.
The second model is based on adding a batch normalization layer to the first model. The third
model adds inner residual inception. The inner residual inception block has four branches, each of
which has a significantly deeper root than any other known inception block, necessitating the use
of residual connections between each branch. Inner residual inception blocks eventually consist
of 4 distinct ResNet architectures. Each branch has a building block that is repeated three times
with residuals, and then a dropout layer is added on top of that. These models used logistic
regression and the Adam optimizer. The metrics used to evaluate the models are accuracy,
precision, recall, F1-score, AUC, and balanced accuracy. From the results, the third proposed
model has achieved the highest accuracy of 96.76%, and the best balance accuracy of 95.08%.

Keywords:

Pneumonia, Convolution Neural Network, Inception, Residual.

1. Introduction

 Pneumonia is responsible for 4 million deaths per year, over 150 million infections each year,
and 15% of all death in children under the age of five. Identifying pneumonia in its early stages
can save many lives. Pneumonia is an infection that causes inflammation in one or both lungs. It
can be caused by a virus, bacteria, fungi, or other germs [1]. Infection usually occurs when a person
breathes air that carries germs. Chest x-ray images are one way to diagnose pneumonia [2-5].

Machine learning techniques can help increase medical diagnosis accuracy. When it comes
to medical diagnosis, the overall accuracy is not a good indication of the model's performance,
however, we need to consider two scenarios in which we examine the two types of errors a model
can make. the first type of error is known as false positive, in that error, the model predicts that a
patient has pneumonia when he does not have pneumonia. In the second type of error which is
known as false negative, the model predicts that a patient does not have pneumonia when he does.
Both errors are very dangerous as the first type will be responsible for delaying the diagnosis and
hence causing deterioration of patient health and increasing the percentage of death. the second
type will cause a healthy person to go through wrong and unnecessary treatment which can have
side effects and affects his life. The relationship between two types of errors is a trade, and some
models choose to decrease the first type at the expense of increasing the second type.

 Several studies have been shown to detect Pneumonia from chest x-ray images. In [6]
proposed an ensemble model that used transfer learning from five pre-trained models namely
AlexNet, DenseNet121, Inception V3, GoogLeNet, and ResNet18. The pre-trained models are
combined and used to extract features which were then passed to a classifier. The model used data

2

augmentation for better generalization and scored an overall accuracy of 96.39%. In [7] studied the
impact of data augmentation and dropout by designing four convolution neural network (CNN)
models. One with both data augmentation and dropout, one with only data augmentation, one with
only dropout, and one without them both. It was found that the model having both augmentation and
dropout scored the highest accuracy of 90.68%. In [8] introduced a CNN model trained from scratch
and doesn’t rely on transfer learning. The model employed many data augmentation methods to
increase the size of the dataset. The model consists of two parts, a feature extractor, and a sigmoid
classifier. The feature extractor is composed of a stack of convolution and max-pooling layers. The
model used different data sizes ranging from 100 to 300. The highest accuracy of 93.73% was
reached at a data size of 200. In [9] proposed a CNN model to classify pneumonia. The CNN consists
of 10 layers, the first 7 are convolution layers, and then 3 dense layers. They scored an accuracy of
95.30%. In [5] introduced a computer-aided classification of pneumonia, called Ensemble Learning
(EL), to simplify the diagnosis process on chest X-ray images. Three well-known CNNs
(DenseNet169, MobileNetV2, and Vision Transformer) pretrained using the ImageNet database. The
proposed EL achieve an accuracy of 93.91% and a F1-score of 93.88% on the testing phase.

All previous studies ignored the study of the balance between classes, and this may affect the

quality of the results. Therefore, this paper has studied the balance between the classes under study
for the three proposed models.
 The rest of the paper is organized as follows, in section 2 we discuss proposed models, in
section 3 introduce experimental results, in section 4 discuss the advances and limitations of
proposed models, and finally, in section 5 give a conclusion and some future works.

2. Proposed Models

This paper presents two baseline models built from different versions of inception models and
three new models that attempt to overcome the issues faced by baselines. These models consist of
two phases. The feature extraction is the first phase. In the second phase, a simple logistic regression
algorithm was used to classify the x-ray image as either normal or pneumonia.

2.1 Feature extraction phase

 when detecting pneumonia, it can be in the upper left corner of the image or in the lower left
corner and so on. This huge variation in the location of the information causes a lot of problems
while learning and choosing the right filter sizes for convolution neural networks become difficult.
Inception Blocks have been first proposed as part of GoogLeNet model [10] to solve problems
caused by the large variations in object size that can be found in the image. The first inception block
proposed in [10] applied four branches of filter on the input at the same time. The first branch
consisted of 𝟏 × 𝟏 convolution filter, the second branch consisted of 𝟏 × 𝟏 convolution filter
followed by 𝟑 × 𝟑 convolution filter, the third branch consisted of 𝟏 × 𝟏 convolution filter followed
by 𝟓 × 𝟓 convolution filter and the last branch consisted of 𝟑 × 𝟑 max pooling filter followed by 𝟏 × 𝟏 convolution filter. GoogLeNet has a stack of nine inception blocks stacked linearly. It consists
of an overall 27 layers including the pooling layers. It uses global average pooling at the end of the
last inception block. Ever since the introduction of inception blocks and GoogLeNet model
(InceptionV1), researchers have been trying to upgrade and modify inception blocks to improve
accuracy. InceptionV2 and InceptionV3 were proposed in [11]. In inceptionV2, the authors
factorized the 𝟓 × 𝟓 convolution filter in the inception block into two 𝟑 × 𝟑 convolution filter and
staking two 𝟑 × 𝟑 convolution filter is 2.78 faster than using a 𝟓 × 𝟓 convolution filter. In
inceptionV2 rather than repeating the same inception block for specific number of times, they also
introduced three main inception blocks where each is repeated for number of times. InceptionV3 did
not include any changes in the inception block from InceptionV2, however the model itself had some

3

improvements such as using RMSProp optimizer, using label smoothing, using Batch Normalization
in the classifier, and using factorized 𝟕 × 𝟕 convolution filters. InceptionV4 and Inception-ResNet
was proposed in [12]. InceptionV4 added a bunch of initial set of convolutions called stem before
introducing inception blocks. In inceptionV4, they introduced reduction blocks that is responsible
for changing the height and the width of the input. Inspired by ResNets, a hybrid Inception-ResNet
model was proposed. The model has the same structure as InceptionV4 but adds residual connections
between inception blocks.

 This paper introduces some modifications to the inception block that can be applied to any
model and help increase accuracy for any inception-based model. We start with two baseline models:
Inception model and Inception-Residual model the first uses the same inception block in
InceptionV1 and the second used the same idea proposed in the last Inception-ResNet model. The
models are a stack of five inception blocks, followed by a classifier.

2.1.1 Baseline 1: Pure Inception

As a baseline, we used the original inception blocks proposed in GoogLeNet model, stacked
5 of them on top of each other, and then a classifier as shown in Fig.1. Although this model looks
nothing like InceptionV1, it will serve as a benchmark to see whether the modifications to the
inception block improves the accuracy or not. The input image of size 64×64 goes through a 3×3
convolution with 64 filters and is then followed by 5 inception blocks. Each inception block has 4
branches. Having an input image X the model can be summarized in algorithm 1.

Algorithm 1: Pure Inception Model

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿 //Chest X-Ray images

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�

1 𝑋 = 𝑋/255.0 //Normalization

2 𝑋 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐: //Apply inception block for 5 times

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

7 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

8 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31, 𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

9 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1)

10 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

11 𝑋 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1, 𝑏22, 𝑏32, 𝑏42)

12 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

13 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋)

14 �̂� = 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

4

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (96) + ReLU

Padding = same, stride = 1
1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

Flatten

Dense (2) + Sigmoid

x 5

NormalPneumonia

b1

b2b3
b4

Fig 1: Pure Inception Model

2.1.2 Baseline 2: Inception + Residual

The second baseline adapted the last upgrade used in inception blocks, which is using
residual connections [13]. Stack 5 of the inception-residual blocks on top of each other followed by
a classifier as shown in Fig.2. Also, the model looks nothing like the Inception-ResNet model, but it
will also serve as a benchmark for the latest update to inception blocks and see whether the
modifications improve the accuracy or not. The input image of size 64×64 goes through a 3×3
convolution with 64 filters and is then followed by 5 inception blocks. Each inception block has 4
branches. The difference here, after concatenation, the output goes through a 1×1 convolution with
64 filters to enable adding the output of the first 3×3 convolution to it. Algorithm 2 summarizes the
model.

5

x 5

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (96) + ReLU

Padding = same, stride = 1
1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

Flatten

Dense (2) + Sigmoid

NormalPneumonia

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Fig 2: Inception + Residual Model

Algorithm 2: Inception + Residual Model

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿 //Chest X-Ray images

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�

1 𝑋 = 𝑋/255.0 //Normalization

2 𝑋 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐: //Apply inception-residual block for 5 times

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

7 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

8 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31, 𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

6

2.1.3 Proposed Model 1: Inception + Residual + Dropout

Dropout [14] has been widely used as a regularization technique to fight overfitting.
Although dropout has become a main component in every model, it never got used inside inception
blocks. The first proposed modification to the inception block is adding dropout after the deeper 3
branches as illustrated in Fig.3. Although inception model goes wider than deeper, but some
branched could learn to much and cause overfitting. The model can be described in algorithm 3.

9 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1)

10 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

11 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1, 𝑏22, 𝑏32, 𝑏42)

12 𝑍 = 𝐶𝑜𝑛𝑣(𝑍, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

13 𝑋 = 𝑍 + 𝑋 //Residuals

14 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

15 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋)

16 �̂� = 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

Algorithm 3: Inception + Residual + Dropout Model

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿 //Chest X-Ray images

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�

1 𝑋 = 𝑋/255.0 //Normalization

2 𝑋 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐: //Apply the block for 5 times

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

5 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

6 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

7 𝑑1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏22, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3)

8 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

9 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31, 𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

10 𝑑2 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏32, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.1)

11 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1)

12 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

13 𝑑3 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏42, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.2)

14 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏1, 𝑑1, 𝑑2, 𝑑3)

15 𝑍 = 𝐶𝑜𝑛𝑣(𝑍, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

7

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (96) + ReLU

Padding = same, stride = 1
1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

x 5

Flatten

Dense (2) + Sigmoid

NormalPneumonia

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Dropout (0.3) Dropout (0.1) Dropout (0.2)

Fig 3: Inception + Residual Model + Dropout Model

2.1.4 Proposed Model 2: Inception + Residual + Dropout + Batch Normalization

In addition to adding dropout in the first proposed model, we added a batch normalization
[15] layer after each branch as shown in Fig.4. Batch Normalization is an effective technique that
consistently accelerates the convergence of deep networks and improves accuracy. Although
InceptionV3 model used batch normalization, it was used in the classifier and never used as part of
the inception block itself. Algorithm 4 summarizes the model.

16 𝑋 = 𝑍 + 𝑋 //Residuals

16 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

18 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋)

19 �̂� = 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

8

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

1 x 1 Conv (96) + ReLU

Padding = same, stride = 1
1 x 1 Conv (16) + ReLU

Padding = same, stride = 1
3 x 3 MaxPool, stride = 1

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

1 x 1 Conv (32) + ReLU

Padding = same, stride = 1

64 x 64

Concatenation

x 5

Flatten

Dense (2) + Sigmoid

NormalPneumonia

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Dropout (0.3) Dropout (0.1) Dropout (0.2)

Batch Normalization Batch Normalization Batch Normalization

Batch Normalization

Fig 4: Inception + Residual + Dropout + Batch Normalization model

Algorithm 4: Inception + Residual + Dropout + Batch Normalization Model

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿 //Chest X-Ray images

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�

1 𝑋 = 𝑋/255.0 //Normalization

2 𝑋 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

3 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐: //Apply the block for 5 times

4 𝑏1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

9

2.1.5 Proposed Model 3: Inner Residual Inception

The first inception model tends to go wider rather than deeper. But what if the model can go
wider and deeper at the same time so that it can learn more complex structure and deal with
information variation across the images at the same time? That was the idea behind inner residual
inception blocks. The inner residual inception block consists of 4 branches, each branch is much
deeper that all known inception blocks which make it essential to apply residual connections between
every branch. Eventually, inner residual inception blocks are an ensemble of 4 unique ResNet
architecture. Each branch has a building block that is repeated 3 times with residuals and then
followed by a dropout layer. The first branch building block consists of a 𝟑 × 𝟑 convolution with 96
filters, followed by a 𝟐 × 𝟐 max pooling filter followed by a batch normalization layer. The second
branch building block is a 𝟓 × 𝟓 convolution with 32 filters, followed by a 𝟐 × 𝟐 max pooling filter
and a batch normalization layer. The third branch building block is a 𝟑 × 𝟑 convolution with 128
filters, followed by a 𝟐 × 𝟐 max pooling filter and a batch normalization layer. The fourth branch is
a factorized 𝟑 × 𝟑 convolution into 𝟏 × 𝟑 convolution and 𝟑 × 𝟏 convolution with 64 filters each,
followed by a 𝟐 × 𝟐 max pooling filter and a batch normalization layer. Before applying dropout,
the first 3 branches go through a 𝟏 × 𝟏 convolution with 64 filters. The output of the four branches
gets concatenated and then go through a × 𝟏 convolution with 64 filters to match the channels of the
input to apply residual connections between Inner Residual Inception blocks. The model is shown
in Fig.5 and algorithm 5 summarizes it.

5 𝑏𝑛1 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋)

6 𝑏21 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

7 𝑏22 = 𝐶𝑜𝑛𝑣(𝑏21, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

8 𝑏𝑛2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏22, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3))

9 𝑏31 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 16, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

10 𝑏32 = 𝐶𝑜𝑛𝑣(𝑏31, 𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

11 𝑏𝑛3 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏32, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.1))

12 𝑏41 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1)

13 𝑏42 = 𝐶𝑜𝑛𝑣(𝑏41, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

14 𝑏𝑛4 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏42, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.2))

15 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑏𝑛1, 𝑏𝑛2, 𝑏𝑛3, 𝑏𝑛4)

16 𝑍 = 𝐶𝑜𝑛𝑣(𝑍, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

16 𝑋 = 𝑍 + 𝑋 //Residuals

18 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

19 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋)

20 �̂� = 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

10

Algorithm 5: Inner Residual Inception

In: 𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑿 //Chest X-Ray images

Out: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 �̂�

1 𝑋 = 𝑋/255.0 //Normalization

2 𝑋 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

3 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹𝑖𝑟𝑠𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋):
4 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 96, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

5 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1, 𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1))

6 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2)

7 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋):
8 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (5, 5), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 32, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

9 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1, 𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1))

10 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2)

11 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑟𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋):
12 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 128, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

13 𝑙2 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1, 𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1))

14 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙2)

15 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑡ℎ𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑋):
16 𝑙1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (3, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

17 𝑙2 = 𝐶𝑜𝑛𝑣(𝑋, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 3), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

18 𝑙3 = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑙1, 𝑘𝑒𝑟𝑛𝑎𝑙 = (2, 2), 𝑠𝑡𝑟𝑖𝑑𝑒 = 1))

19 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑋 + 𝑙3)

20 𝒘𝒉𝒊𝒍𝒆 𝒊 ≠ 𝟓 𝒅𝒐: //Apply inner residual inception block for 5 times

21 𝒃𝟏 = 𝑿, 𝒃𝟐 = 𝑿, 𝒃𝟑 = 𝑿, 𝒃𝟒 = 𝑿

22 𝒘𝒉𝒊𝒍𝒆 𝒋 ≠ 𝟑 𝒅𝒐:
23 𝑏1 = 𝐹𝑖𝑟𝑠𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏1)

24 𝑏2 = 𝑆𝑒𝑐𝑜𝑛𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏2)

25 𝑏3 = 𝑇ℎ𝑖𝑟𝑑𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏3)

26 𝑏4 = 𝐹𝑜𝑟𝑡ℎ𝐵𝑟𝑎𝑛𝑐ℎ𝑏𝑙𝑜𝑐𝑘(𝑏4)

27 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

28 𝑏1 = 𝐶𝑜𝑛𝑣(𝑏1, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

29 𝑏2 = 𝐶𝑜𝑛𝑣(𝑏2, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

30 𝑏3 = 𝐶𝑜𝑛𝑣(𝑏3, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

11

2.2 Classification phase

For each case in the dataset, each of the suggested models generates a feature vector that may be
used to train a classifier. For binary classification used logistic regression [16], which estimates the
probability that a given example belongs to one of the two classes using the sigmoid function
Equation (1). 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝜎(𝑥) = 11 + 𝑒−𝑥 (1) �̂�(𝑖) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑥) = { 0 (𝑛𝑜𝑟𝑚𝑎𝑙) 𝑖𝑓 𝜎(𝑥(𝑖)) ≥ 0.5 1 (𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎) 𝑖𝑓 𝜎(𝑥(𝑖)) < 0.5 (2)

Where �̂�(𝑖) is the prediction of the 𝑖𝑡ℎ training example 𝑥(𝑖).

We used an Adam optimizer [17] with 𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9 and a learning rate = 3𝑒−4 to minimize the binary cross-entropy loss function (log loss) Equation (3). 𝑙𝑜𝑠𝑠 = − 1𝑚 ∑ 𝑦(𝑖) log (𝑚
𝑖=1 �̂�(𝑖)) + (1 − 𝑦(𝑖)) log (1 − �̂�(𝑖)) (3)

Where 𝑦(𝑖) is the true label of an example 𝑥(𝑖), and 𝑚 is the number of training samples.

31 𝑑1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏1, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3)

32 𝑑2 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏2, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3)

33 𝑑3 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏3, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3)

34 𝑑4 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑏4, 𝑑𝑟𝑜𝑝𝑟𝑎𝑡𝑒 = 0.3)

35 𝑍 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑑1, 𝑑2, 𝑑3, 𝑑4)

36 𝑍 = 𝐶𝑜𝑛𝑣(𝑍, 𝑘𝑒𝑟𝑛𝑎𝑙 = (1, 1), 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 64, 𝑝𝑎𝑑 = 𝑠𝑎𝑚𝑒, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒𝑙𝑢)

37 𝑋 = 𝑍 + 𝑋 //Residuals

38 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

39 𝑋 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑋)

40 �̂� = 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑)

12

3 x 3 Conv (96) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Batch Normalization

3 x 3 Conv (96) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

3 x 3 Conv (96) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Batch Normalization

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

5 x 5 Conv (32) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

Batch Normalization

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

3 x 3 Conv (128) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

3 x 1 Conv (64) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

1 x 3 Conv (64) + ReLU

Padding = same, stride = 1

3 x 1 Conv (64) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

1 x 3 Conv (64) + ReLU

Padding = same, stride = 1

3 x 1 Conv (64) + ReLU

Padding = same, stride = 1

2 x 2 MaxPool, stride = 1

Batch Normalization

1 x 3 Conv (64) + ReLU

Padding = same, stride = 1

3 x 3 Conv (64) + ReLU

Padding = same, stride = 1

64 x 64

Dropout (0.3) Dropout (0.3) Dropout (0.3)

Dropout (0.3)Concatenation

Flatten

Dense (2) + Sigmoid

NormalPneumonia

1 x 1 Conv (64) + ReLU

Padding = same, stride = 1

x 5

Fig 5: Inner Residual Inception Model

13

3. Experimental Results

3.1 Dataset

 In this paper, the Chest X-Ray images dataset collected from [18]. The dataset is organized
into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia /
Normal). For this study, the data was grouped and reshuffled and split into two folders (train, test).
The data contains 5,863 X-Ray images split as shown in Table 1.

Table 1: Dataset.

Split Size Normal Pneumonia

Training 4684 1736 2948

Testing 1172 317 855

 The dataset has two types of pneumonia and Fig 6 shows examples of Chest X-Rays in patients
with pneumonia. The normal chest X-ray (left) depicts clear lungs without any areas of abnormal
opacification in the image. Bacterial pneumonia (middle) typically exhibits a focal lobar
consolidation, in this case in the right upper lobe (white arrows), whereas viral pneumonia (right)
manifests with a more diffuse ‘‘interstitial’’ pattern in both lungs.

Bacterial pneumonia Normal Viral pneumonia

Fig 6: Chest X-Ray samples [13]

All models trained on a machine with 8 cores Intel Xeon E5-2620 v4 processor with 128 GB

of RAM installed.

3.2 Results and Discussion

In this section introduce the results for the five models (two baselines and three proposed

modifications). All models have run for 50 epochs and the best fitted model during those epochs

was chosen. For evaluating the models, used 6 metrics to measure the performance defined in

Equations 4-8. The metrics are Accuracy, Precision, Recall, F1-score [2, 19], and AUC [20].

14

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 12 (𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁𝑇𝑁 + 𝐹𝑁)

Where:
True Positives (TP): the number of correct predictions made by the model that a patient suffers
pneumonia.

False Positives (FP): the number of wrong predictions made by the model that a patient does not
suffer from pneumonia.

True Negatives (TN): the number of correct predictions made by the model that a healthy person
does not suffer from pneumonia.

False Negatives (FN): the number of wrong predictions made by the model that a healthy person
suffers from pneumonia.

Balanced accuracy is a good measure for unbalanced datasets like the one being used since one

class (Normal) has many fewer training samples than the other class (Pneumonia). A balance

accuracy defined as equation 9 [21].

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1𝐾 ∑ 𝑟𝑘𝑚𝑘
𝐾

𝑘=1

Where 𝐾 is the number of classes, 𝑚𝑘 is the number of samples belonging to class 𝑘 and 𝑟𝑘 is the

number of samples accurately predicted belonging to class 𝑘.

3.2.1 Baseline 1: Pure Inception results

Pure inception model has been trained for 50 epochs and it reached its heights accuracy at the
10th epoch and did not improve after that as shown in Fig 7.

Pure inception model reached a test accuracy of 95.05% and a near 100% training accuracy
which means that the model is overfitting.

(4)

(5)

(6)

(7)

(8)

(9)

15

Fig 7: Pure Inception model loss and accuracy while training

3.2.2 Baseline 2: Inception + Residual results

The inception-residual model has also been trained for 50 epochs and it reached its heights
accuracy at the 15th epoch and did not improve after that as shown in Fig.8.

Inception-residual model did not improve from the pure inception model as it reached a test
accuracy of 94.96% and a 100% training accuracy which means that the model is also overfitting the
data. However, the inception-residual model scored higher balanced accuracy that pure inception
model as it scored 94.27% compared to 94.13% for pure inception.

Fig 8: Inception + Residual model loss and accuracy while training

3.2.3 Proposed Model 1: Inception + Residual + Dropout results

As seen in the two baseline models, the biggest problem facing them is overfitting. In this
model we use dropout to try to reduce overfitting and increase accuracy. The model is trained for
50 epochs and reached its highest test accuracy of 94.54% at the 37th epoch as shown in Fig.9.

The model reached a training accuracy of 99.6% and a balanced accuracy of 92.39%.

Compared to our two baselines, adding dropout did not neither improve the accuracy nor fighting
overfitting.

16

Fig 9: Inception + Residual + Dropout model loss and accuracy while training

3.2.4 Proposed Model 2: Inception + Residual + Dropout + Batch Normalization results

Unfortunately, adding dropout to inception blocks did not help improving performance. In this

model we add another piece that can help reduce overfitting and increase performance which is Batch
Normalization (BN). The model is trained for 50 epochs and reached its highest test accuracy of
94.8% at the 26th epoch as shown in Fig.10. The model reached a training accuracy of 99.5% and a
balanced accuracy of 92.26%.

Fig 10: Inception + Residual + Dropout + BN model loss and accuracy while training

3.2.2.5 Proposed Model 3: Inner Residual Inception results

Although adding BN to inception block helped reduce the gap between training and testing curve
as shown in Fig.10 and reduce overfitting a little, it did not improve the accuracy compared our two
baselines.

In this model we are taking the inception block to the next level by going both deeper and wider

and learn more complex structure.

The model its best test accuracy of 96.76% at the 40th epoch as shown in Fig.11. The model

reached a training accuracy of 99.3% and the model has a balanced accuracy of 95.08%. The model
succeeded at both reducing overfitting and improve accuracy.

17

Fig 11: Inner Residual Inception model loss and accuracy while training

Fig.12 shown the confusion matrix for the five models.

Pure Inception Inception + Residual

Inception + Residual + Dropout

Inception + Residual + Dropout

+ Batch Normalization

Inner Residual Inception

Fig 12: Confusion Matrix for the five models

18

Table 2 introduce the numerical results of three proposed models. The third model achieve the
higher accuracy value equal 96.76% with higher balance accuracy equal 95.08%.

Table2: The results of the proposed models.

Fig. 13 shows the comparison between the numerical results of precision. The proposed model

3 achieves a higher value of 97.74% As it has a higher success rate than the proposed model 2 with
2.52%, but ResNet 50 [25] achieves a lower value equal to 82.33%.

Fig 13: The precision value for the proposed models and well-known methods

Fig. 14 shows the comparison between the values of recall. The AlexNet[22] achieves a higher
value equal to 98.97%, which is higher than the proposed model 3 with 1.02%. The proposed model
3 achieves 97.99% and has a higher success rate than the proposed model 2 with 0.21%, but ResNet
50 [25] achieves a lower value equal to 82.22%.

90.21
88.97

91.33
90.03

82.33

89.27

92.45
93.96

90.44

95.51 95.22

97.74

PRECISION (%)

AlexNet [22] InceptionV3 [11] DenseNet169 [13]

MobileNetV2 [24] ResNet50[25] DenseNet121 [23]

Vision Transformer (VIT) [26] Ensemble Learning (EL) [5] GoogLeNet [10]

Proposed Model 1 Proposed Model 2 Proposed Model 3

Model
Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

AUC

(%)

Balanced Accuracy

(%)

Proposed

Model 1
94.54 95.51 97.08 96.29 95.92 92.39

Proposed

Model 2
94.8 95.22 97.78 96.48 93.93 92.26

Proposed

Model 3
96.76 97.74 97.99 97.86 97.07 95.08

19

Fig 14: The recall value for the proposed models and well-known methods

Fig. 15 shows the comparison between the values of F1-score. The proposed model 3 achieves a
higher value equal to 97.86%, which is higher than the proposed model 2 with 1.42%.
MobileNetV2[24] achieves a lower value equal to 82.26%.

Fig 15: The F1-score value for the proposed models and well-known methods

98.97
88.71 90.09 90.73

82.22
89.22 92.47 92.99

99.48 97.08 97.78 97.99

Recall (%)

Recall (%)

88.54

90.63

90.34

82.26

89.11

92.44

93.43

96.29

96.48

97.86

70 75 80 85 90 95 100

MODEL

F1-Score %

Proposed Model 3 Proposed Model 2 Proposed Model 1

GoogLeNet [10] Ensemble Learning (EL) [5] DenseNet121 [23]

ResNet50[25] MobileNetV2 [24] DenseNet169 [13]

InceptionV3 [11]

20

Table 3 introduces a numerical comparison between the three proposed models and well-known
algorithms using accuracy values and publish year. The proposed model 3 achieves a higher value
of accuracy equal to 96.76%, which is higher than the proposed model 2 with 1.94%. Ensemble
learning (NL) [5] achieves 93.91% but is still lower than the proposed model 3 with 2.85%. DCGAN
[27] achieves a lower value of accuracy equal to 84.19%

Table 3. Comparative accuracy results for the well-known methods and the proposed models

Method/Ref. Accuracy (%) Year

DCGAN / Moradi, A.; et al. [27] 84.19 2018
Kermany et al. [18] 92.80 2018

VGG16/ Ayan, E.; et al. [28] 87.00 2019
Stephen, O., et al., [8] 93.73 2019
Liang, G.; et al.[29] 90.50 2020

DenseNet121/ Salehi, M; et al. [30] 86.80 2021
Ensemble Learning (EL)/ Alhassan

Mabrouk et al. [5]
93.91 2022

Proposed Model 1 94.54 2022
Proposed Model 2 94.80 2022
Proposed Model 3 96.76 2022

4. Discussion

The proposed model (inner residual inception) improved the inception block and can replace
inception blocks in any model to boost its accuracy. From the results, we highlight some of its
advantages and limitations:

4.1 Advantages

1. The proposed model surpassed current state-of-the-art models on pneumonia using Chest X-
Ray

2. The proposed model introduced a new inception block that is more efficient and powerful
than current inception blocks.

3. The proposed model found a good balance in reducing both Type 1 & 2 errors.
4. The proposed model used 64 size image which is very small compared to other models that

used 224 images and bigger.
5. The proposed model is 14.5 faster than AlexNet, 1.67 faster than DenseNet121, 6.2 faster

than InceptionV3, 1.67 faster than GoogLeNet and 2.6 faster than ResNet18.
6. The proposed model can deal with unbalanced datasets.

4.2 Limitations

1. The proposed model wasn’t tested for real data that can suffer from noisy chest x-ray.
2. The proposed model can ’t fully replaces doctors as the total accuracy didn’t surpass human-

level accuracy.

5. Conclusion

Using machine learning to diagnose pneumonia from chest X-rays increases the accuracy of the
diagnosis that a doctor may rely on in treating patients. The main contribution of this paper is the
development of a model for classifying chest X-ray images according to whether they have pneumonia or
not. This paper has suggested three models relying on machine learning techniques. The first model relied

21

on inception, residual, and dropout, and it achieved a 94.54% accuracy rate. The second model depends on
adding a batch normalization layer to the first model, which achieved a 94.8% accuracy rate. The third
model relied on introducing a new inception block that is more efficient and powerful than current inception
blocks. It achieved a 96.76% accuracy rate. The main conclusion of this paper is the extent to which it is
possible to rely on the third model, as it has achieved the highest accuracy and balance accuracy compared
to other models in the literature. So, an automated model for diagnosing pneumonia with a high degree of
accuracy can be relied upon by the doctor, but we cannot ignore the doctor’s experience in diagnosis. in
the future, suggests trying this model on actual patients’ images that contain some image problems such as
noise or missing parts of the image, as well as adding some improvements to this model for increasing
accuracy, efficiency, and effectiveness.

Funding: This study was not funded by any organization.

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or

animals performed by any of the authors.

Consent for publication: All author gave their consent.

Data availability: Available

References

[1] Gilani, Z., Kwong, Y. D., Levine, O. S., Deloria-Knoll, M., Scott, J. A., O’Brien, K. L., & Feikin, D. R.
(2012). A literature review and Survey of Childhood Pneumonia Etiology Studies: 2000–2010. Clinical
Infectious Diseases, 54(suppl_2). https://doi.org/10.1093/cid/cir1053

[2] Ayan, E., Karabulut, B., & Ünver, H. M. (2021). Diagnosis of pediatric pneumonia with ensemble of deep
convolutional neural networks in chest X-ray images. Arabian Journal for Science and Engineering,
47(2), 2123–2139. https://doi.org/10.1007/s13369-021-06127-z

[3] Suryaa, V. S., R, A. X., & S, A. M. (2021). Efficient DNN ensemble for pneumonia detection in chest X-
ray images. International Journal of Advanced Computer Science and Applications, 12(10).
https://doi.org/10.14569/ijacsa.2021.0121084

[4] Zhang, D., Ren, F., Li, Y., Na, L., & Ma, Y. (2021). Pneumonia detection from chest x-ray images based
on Convolutional Neural Network. Electronics, 10(13), 1512.
https://doi.org/10.3390/electronics10131512

[5] Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz, M., & Kayed, M. (2022). Pneumonia detection
on chest X-ray images using ensemble of deep convolutional Neural Networks. Applied Sciences,
12(13), 6448. https://doi.org/10.3390/app12136448

[6] Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damaševičius, R., & de
Albuquerque, V. H. (2020). A novel transfer learning based approach for pneumonia detection in chest
X-ray images. Applied Sciences, 10(2), 559. https://doi.org/10.3390/app10020559

[7] Sharma, H., Jain, J. S., Bansal, P., & Gupta, S. (2020). Feature extraction and classification of chest X-
ray images using CNN to detect pneumonia. 2020 10th International Conference on Cloud Computing,
Data Science & Engineering (Confluence). https://doi.org/10.1109/confluence47617.2020.9057809

[8] Stephen, O., Sain, M., Maduh, U. J., & Jeong, D.-U. (2019). An efficient deep learning approach to
pneumonia classification in Healthcare. Journal of Healthcare Engineering, 2019, 1–7.
https://doi.org/10.1155/2019/4180949

[9] Saraiva, A., Ferreira, N., Lopes de Sousa, L., Costa, N., Sousa, J., Santos, D., Valente, A., & Soares, S.
(2019). Classification of images of childhood pneumonia using convolutional neural networks.
Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and
Technologies. https://doi.org/10.5220/0007404301120119

22

[10] Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
& Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2015.7298594

[11] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). https://doi.org/10.1109/cvpr.2016.308

[12] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-V4, inception-resnet and the impact
of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence,
31(1). https://doi.org/10.1609/aaai.v31i1.11231

[13] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.90

[14] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–
1958.

[15] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Proceedings of the 32nd International Conference on International Conference
on Machine Learning , 37, 448–456.

[16] Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. Wiley.
[17] Kingma, D.P., & Ba, J. (2017). Adam: A method for stochastic optimization. arXiv preprint

https://arxiv.org/abs/1412.6980v9
[18] Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., McKeown, A.,

Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y. L., Zhu, J., Li, C., Hewett, S.,
Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying medical diagnoses and treatable diseases by image-
based Deep Learning. Cell, 172(5). https://doi.org/10.1016/j.cell.2018.02.010

[19] Kassani, S.H.; Kassani, P.H.; Wesolowski, M.J.; Schneider, K.A.; Deters, R. Classification of
histopathological biopsy images using ensemble of deep learning networks.
https://doi.org/10.48550/arXiv.1909.11870

[20] Ling, C. X., Huang, J., & Zhang, H. (2003). AUC: A better measure than accuracy in comparing learning
algorithms. Advances in Artificial Intelligence, 329–341. https://doi.org/10.1007/3-540-44886-1_25

[21] Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its
posterior distribution. 2010 20th International Conference on Pattern Recognition.
https://doi.org/10.1109/icpr.2010.764

[22] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional
Neural Networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

[23] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected Convolutional
Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
https://doi.org/10.1109/cvpr.2017.243

[24] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted
residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/cvpr.2018.00474

[25] Targ S., Almeida D., & Lyman K.(2016). Resnet in resnet: Generalizing residual architectures.
https://doi.org/10.48550/arXiv.1603.08029

[26] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.; Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit A., & Houlsby N. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. https://doi.org/10.48550/arXiv.2010.11929

[27] Moradi, M., Madani, A., Karargyris, A., & Syeda-Mahmood, T. F. (2018). Chest X-ray generation and
data augmentation for cardiovascular abnormality classification. Medical Imaging 2018: Image
Processing. https://doi.org/10.1117/12.2293971

[28] Ayan, E., & Unver, H. M. (2019). Diagnosis of pneumonia from chest X-ray images using Deep
Learning. 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer
Science (EBBT). https://doi.org/10.1109/ebbt.2019.8741582

[29] Liang, G., & Zheng, L. (2020). A transfer learning method with deep residual network for pediatric
pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 187, 104964.
https://doi.org/10.1016/j.cmpb.2019.06.023

https://doi.org/10.48550/arXiv.1909.11870
https://arxiv.org/search/cs?searchtype=author&query=Houlsby%2C+N

23

[30] Salehi, M., Mohammadi, R., Ghaffari, H., Sadighi, N., & Reiazi, R. (2021). Automated detection of
pneumonia cases using deep transfer learning with paediatric chest X-ray images. The British Journal of
Radiology, 94(1121), 20201263. https://doi.org/10.1259/bjr.20201263

