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Abstract In this paper, the problem of hybrid flowshop hybridizing with lot streaming (HLFS) with the 

objective of minimizing the total flow time is addressed. We propose a mathematical model and an 

effective modified migrating birds optimization (EMBO) to solve this problem within an acceptable 

computational time. A so-called shortest waiting time rule (SWT) is introduced to schedule the jobs 

concurrently arriving at stages more reasonably. A combined neighborhood search strategy is 

developed that unites two different neighborhood operators during evolution, not only taking full 

advantage of their specializations but also promoting their joint efforts. Two competitive mechanisms 

are respectively used to increase the probability of locating better solutions at the front of the flock and 

enhance the interaction between two lines. The scout phase on the basis of the Glover operator and a 

well-designed local search is applied to the individuals trapped into local optimums and helps the 

algorithm explore potential promising domains. The dynamic solution acceptance criteria is developed 

to strike a compromise between intensification and diversification mechanisms. The performance of 

our proposed algorithm is evaluated by comparisons with seven other efficient algorithms in the 

literature. And the extensive numerical illustrations demonstrate that the proposed algorithm performs 

much more effectively for the addressed problem. 

Keywords: scheduling problem; hybrid flowshop; lot streaming; meta-heuristics; migrating bird 

optimization 

1 Introduction  

As a branch of flowshop scheduling, hybrid flowshop (HFS) has played a crucial rule in modern 

manufacturing and production systems, e.g., in electronics [1,2], textile [3], paper [4], and 

petrochemical and pharmaceutical industries [5]. In this problem, a set of n jobs have to be processed 

through a series of m stages, each of which has one or more identical machines in parallel. Certain 

stages may have only one machine, but at least one stage that has several machines exists. All jobs 

follow the same production route from the first stage to the final stage, and cannot skip any stage. 

According to [6,7], this shop configuration has the advantages of increasing the throughput of 
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production floors, balancing the speed of stages, and reducing the impact of bottleneck stages. 

Given its superiority and application to real world industries, the HFS has become one of the hot 

topics and many different scheduling approaches have been developed, such as exact solutions, 

heuristics and meta-heuristics. Two mostly used exact solution procedures are the branch-and-bound 

(B&B) [8,9] and mixed-integer programming (MIP) [10], which can produce optimal solutions for 

solving problems that have a small scale or very simple scenario. However, due to the NP-hardness 

property of the HFS [11], it becomes much more difficult or evenly impossible to deal with large scale 

problems using these exact methods. Some heuristics have also presented to find optimal or near 

optimal solutions when solving small problems (see [11-15] for example), but to find satisfactory 

solutions for large problems is very computationally expensive. In recent years, a great amount of 

efforts have been dedicated to meta-heuristics and have achieved satisfactory results in solving large 

scale HFS problems, such as the simulated annealing method [16,17], tabu search algorithm [18], ant 

colony optimization [19,20], genetic algorithm [7,21], quantum-inspired immune algorithm [22], 

artificial immune approach [23], migrating birds optimization [24], artificial bee colony algorithm 

[25,26], and particle swarm optimization [27].  

In the above mentioned HFS studies, each job is not allowed to be moved to the downstream stage 

before its whole operation is completed. Nevertheless, in today’s global competitive environment, such 

flow may negatively affect the scheduling efficiency and cannot cater to many real world production 

systems, such as the electronics, fasteners and ceramic tiles industries in which jobs are composed of 

many identical items or sublots. Thus, lot streaming, first proffered in [28], is now widely applied to 

implement time-based strategies (see [29-35] for example) because of its potential benefits, including 

reductions in the production lead time, interim storage and space requirements. Lot streaming is a 

technique of splitting the given jobs consisting of identical items into a number of sublots to allow their 

operations between successive stages. That is, when a job sublot is completed, it can be immediately 

transferred to the following adjacent stage. However, most studies of lot streaming focus on the pure 

flowshop environment, and seldom research on lot streaming in the hybrid flowshop has been done. To 

the best of our knowledge, there are two published papers that considered lot streaming in the hybrid 

flowshop with large-sized problems. Defersha et al. [36] introduced a parallel genetic algorithm for 

hybrid flexible flowshop lot streaming problem, aiming to minimize the makespan of the schedule. 

Mohsen et al. [37] applied the genetic algorithm and the simulated annealing to solve the multi-job lot 

streaming in a hybrid flow shop scheduling problem to minimize the weighted completion time. A main 

feature of their addressed problems is that the sublots of different jobs can be intermingled and their 

scheduling objective is to determine the sequencing of the sublots. 

In this paper, we strive to study a hybrid flowshop hybridizing with lot streaming, namely HLFS, in 

which the sublots of different jobs cannot be intermingled. This different assumption agrees with many 

real word production shops where the jobs are composed of the same items with different types. For 



example, in the modern iron and steel production systems [38], the process of integrative production 

consists of three stages: steelmaking, refining and continuous casting. Each stage has multiple parallel 

identical machines, which can be selected by any charge that flows through the stage. The charge here 

is referred to as the basic unit in steelmaking process. And in the casting stage, a sequence of charges 

with identical or similar steel grade, which must be consecutively processed on the same continuous 

caster in the form of a batch, forms a cast. That means a charge can be processed only when the its 

adjacent previous charge in the same cast is completed. Thus, this problem is an HFS problem with 

batch production at certain stage, which can be seen as a special case of our considered problem 

detailed in the next section. This considered problem is much more complex than regular HFS, so it is 

apparently NP-hard. To this end, an emerging meta-heuristic, namely migrating birds optimization 

(MBO), is introduced to solve the addressed problem, which was recently presented by Duman et al. 

[39] for the quadratic assignment problem. Since then, the MBO has been successfully applied in other 

fields, such as scheduling problem [24, 41], closed loop layout [40], travelling salesman problem [42], 

sea freight transportation [43] and machine-part cell formation problem [44]. Following [24], we 

propose an effective version of the MBO with several efficient modifications, including a combined 

neighborhood search strategy, two competitive mechanisms, the scout phase and the dynamic solution 

acceptance criteria. The high performance of the proposed algorithm is demonstrated using extensive 

numerical comparisons with seven other efficient algorithms in the literature. 

The remainder of this paper is organized as follows. In Section 2, the HLFS problem is stated in 

detail and a mathematical model is presented. In Section 3, the basic MBO algorithm is introduced. 

Section 4 describes our proposed EMBO algorithm for solving the HLFS problem. The experimental 

design and numerical comparisons are reported in Section 5. Finally, Section 6 provides the concluding 

remarks and possible future studies. 

2 Problem statement   

  Our addressed HLFS contains a series of m processing stages, and each stage k has 1k identical 

machines in parallel. Additionally, there exists at least one stage that possesses more than one machine. 

A collection of n jobs are to be processed on the shop following the same route from stage one to stage 

m consecutively. Also, each job j can be split into 1jl  sublots with equal size to allow overlapping of 

successive operations. That is, the sublots of a job have the same processing time at a stage, and once a 

sublot is completed at the current stage, it can be transferred to the next stage immediately. The 

scheduling problem is to determine the job sequence at the beginning of each stage and the assignment 

of jobs to machines at each stage, so as to minimize the total flow time. The assumptions for the 

addressed HLFS are given as follows. 

 Each machine can process at most one sublot at a time, and each sublot can be processed by at 

most one machine at a time. 



 All sublots of the same job must be processed continuously by the same machine at any stage or 

they are not allowed to be intermingled, i.e., once the first sublot of a job arrives at a machine, the 

other sublots of different jobs cannot be assigned to this machine until all of the sublots are 

processed. 

 Preemption is not allowed, i.e., any sublot cannot be interrupted until the completion of its 

operation. 

 Idle time is allowed for machines, and sublots can wait between successive stages with infinite 

buffer capacity. 

 The machine setup times and sublot transportation times are negligible or included in the sublot 

processing times, which are determined in advance.  

  To present a mathematical model for the problem, we first define the following notations according 

to the above descriptions. 

  M   Set of stages where the stages are indexed by k and .Mm   

  J   Set of jobs where the jobs are indexed by j and .Jn   

  k   The number of machines at stage k where the machines are indexed by i . 

  jl       The number of sublots of job j where the sublots are indexed by e . 

  jkp ,   The processing time of each sublot of job j at stage k. 

  ejkST ,,   The starting time of the eth sublot of job j at stage k. 

  ejkCT ,,      The completion time of the eth sublot of job j at stage k. 

  jC   The completion time of job j through the shop. 

  ijkD ,,   A binary data equal to 1 if job j is assigned to machine i at stage k; 0 otherwise. 

',, jjkY   A binary data equal to 1 if job j precedes job j’ to be assigned to the same machine at 

    stage k; 0 otherwise. 

Q    A very large positive number 

Due to that all the relevant values are integers, the problem can be formulated as a mixed integer 

program as follows. 
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  },,2,1{,,}1,0{,, kijk iMkJjD            (9) 

  MkJjjY jjk  ,',}1,0{',,                 (10) 

The objective function in Eq. 1 considers the minimization of the total flow time, which is equal to 

the sum of the completion times of the last sublots of all the n jobs at the last stage m. The constraint in 

Eq. 2 requires that each job has to traverse through all the stages and be processed by exactly one 

machine at each stage. Eq. 3 states that the starting time of the sublots at any stage must be positive and 

Eq. 4 corresponds to the computation of the completion times of the sublots at any stage. Eq. 5 forces 

the processing of any sublot to be started only after it has been finished at the preceding stage, while Eq. 

6 requires that any sublot can be processed until the completion of the previous sublot at the same stage. 

The constraints in Eqs. 7 and 8 guarantee the machine capacity restriction, that is, the starting time of 

the first sublot of a job must be larger than the completion time of the last sublot of its preceding job 

assigned to the same machine at any stage. And Eqs. 4-8 together ensure that there is no interruption of 

any sublot processing. Constraints (9) and (10) define the value ranges for the decision variables. 



 

Fig. 1. The V flight formation of migrating birds 

3 The Basic MBO algorithm 

  The V flight formation of natural migration of birds (see Fig. 1 [39]) has proven to be saving energy 

based on the positive correlation of wing-tip spacing (WTS), constant angle ( ) and depth. About this, 

the readers can see the reference [39] for more information. Inspired by this special formation, the 

MBO algorithm does not employ the concepts of the constant angle and depth, but has a hypothetical V 

shaped population formed by a leader solution and other solutions in left and right lines following the 

leader and introduces a benefit mechanism corresponding to the WTS. The MBO starts with a number 

of solutions placed on the V population arbitrarily. Then, an evolving loop involving a number of tours 

or iterations proceeds, and each tour evolves beginning with the leader and progressing along the left 

and right lines in parallel by exploring their neighborhood. Particularly, the benefit mechanism that the 

solutions may share their best unused neighbors with the following solutions through a special 

neighbor shared set is applied in the evolutionary process. The unused neighbors are referred to the 

neighbors that are not used to update its current solution. Finally, when a loop is finished, the leader is 

to be changed, and another loop starts. The above procedure is conducted repeatedly until a termination 

condition is met. Generally, the framework of the MBO algorithm is displayed in Fig. 2 and there are 

four main operators [24,39]: algorithm initialization, leader evolution, followers evolution and leader 

change. These will be described in detail below. 



 

Fig. 2. The framework of the basic MBO algorithm 

3.1 Algorithm initialization 

Algorithmic parameters and population should be initialized. In the basic MBO algorithm, there are 

five key parameters to be set, including the number of solutions (ps) in the population, the number of 

neighbors to be explored (k), the number of solutions to be shared with the following solutions(s), the 

number of tours (t) contained in a loop and the termination limit (K). The first four parameters 

correspond to the number of birds in the flock, the flight speed, the wing-tip spacing (WTS) and the 

number of wing flaps, respectively [39]. 

Another aspect is to initialize the population. First, ps solutions are generated in the feasible solution 

space in a random manner. Then, the solutions are arbitrarily placed on a hypothetical V formation 

containing one leader solution, 2/)1( ps solutions in the left line LP and 2/)1( ps solutions in the right 

line .RP  

3.2 Leader evolution 

  The leader solution attempts to seek improvement by exploring its own neighborhood, and k 

neighbors are generated in a predefined rule. Then, if the best neighbor among them has a better fitness, 



the leader is replaced by it; otherwise, the leader remains unchanged. And excluding the best one, the 

remaining 1k  neighbors are collected to create two shared neighbor sets full of s members, namely the 

set L for the left line and the set R for the right line. For the minimization optimization problems, 

these -1k neighbors are sorted in a non-descending order in terms of their objective values and then 

enter into two sets in turn until both are filled with s solutions, i.e., the first one enters into ,L the 

second into ,R the third into ,L the fourth into ,R and so on. 

3.3 Followers evolution 

The followers in )( RL PP generate their own k s neighbors and attempt to improve themselves by 

evaluating not only these k-s neighbors but also the s solutions coming from ).( RL  Each follower in 

)( RL PP is replaced by the best one among these k solutions if it has better fitness; otherwise, stays 

unchanged. After that, the remaining 1k  solutions are sorted in a non-descending order and ( )L R  is 

reset to be null. Finally, the first s solutions from the remaining 1k  solutions are added to ( )L R  that 

is to be shared by the next follower. The above procedure progresses along LP and RP from the first 

solution to the last one in parallel. Such benefit mechanism is totally unique to the MBO, which can 

help the algorithm explore the domains around more promising solutions in greater detail. 

3.4 Leader change 

  After an evolving loop is finished, the leader solution will be changed. The leader moves to the tail 

of LP or RP alternately, then the first solution following it in the corresponding line is forwarded to the 

leader position. That is, if at a time, the first solution from )( RL PP becomes the new leader, then at the 

next time, the leader will come from ).( LR PP Thus, every solution in the population can have the 

chance to become the leader. 

4 The Proposed EMBO for HLFS 

In this section, an effective modified migrating birds optimization (EMBO) for solving the HLFS is 

proposed, aiming to minimize the total flow time of the schedule. We first determine the solution 

representation and present a so-called SWT decoding rule. Then, we make certain modifications to 

enhance the performance of the MBO, including a combined neighborhood search strategy, two 

competitive mechanisms, the scout phase and the dynamic solution acceptance criteria. With these 

modifications, the proposed algorithm is expected to capture the balance between the exploration and 

exploitation abilities and perform well in solving the HLFS. Finally, the procedure of the proposed 

algorithm is provided. 

4.1 Encoding and population initialization 

  For the HLFS, the widely applied permutation-based representation is used for solution encoding, in 

which each integer denotes a job number. Consider a simple example of a HLFS problem with four 

jobs and two stages, each of which contains two identical parallel machines. Table 1 summarizes the 



relevant data, where the first column denotes the four given jobs and the number of their sublots, and 

the other four columns denote the processing times of these jobs at the two stages. If one solution is 

represented by ),3,1,4,2( it means the scheduling order in the first stage is first job 2, then job 4, 

then job 1, and finally job 3. Our proposed algorithm starts with ps randomly generated solutions 

organized in a V formation, including one leader and 2/)1( ps members in
LP and .RP These solutions 

have the same jobs, but their orders are randomly shuffled. 

Table 1  
Relevant data of the given example 

Job(number of sublots) Stage 1 Stage 2 

 M1              M2 M1                M2 

Job 1(3) 6 6 2 2 

Job 2(2) 4 4 3 3 

Job 3(1) 2 2 3 3 

Job 4(2) 2 2 4 4 

4.2 Solution evaluation 

  To evaluate or decode solutions, we should take into account two important decisions: determining 

the job sequence at the beginning of each stage and assigning jobs to machines at each stage. 

Considering the characteristics of the HLFS, a common approach in the literature for solving the HFS 

is adjusted appropriately. For the first stage ,1k each job is scheduled according to its occurrence 

order in the solution that is determined by the algorithm and is assigned to the first available machine 

(FAM) with the earliest release time. For the following stages ,1k the job sequence is determined 

based on a non-decreasing order of the completion times of their first sublots at the previous 

stage ,1k and then, the jobs also use the FAM rule to select a machine.  

  Besides, the scheduling of jobs concurrently arriving at the stages, except the first, i.e., the 

completion times of their first sublots at the previous stage are same, also have to be considered, since 

there usually exist such jobs in the hybrid flowshop environment and they can have an important 

impact on the schedule. The solution dependent rule, referred to as SDR, is widely used [6] to arrange 

these concurrently arriving jobs according to their occurrence order in the solution representation. 

Supposing a job permutation )3,1,4,2( to launch on the aforementioned shop environment and 

adopting the SDR rule, a scheduling Gantt chart is plotted in Fig. 3, where each pair of numbers 

denotes the job and its sublot order. As is shown in Fig. 3, at stage one, the completion times of their 

first sublots are 10 of job 1, 4 of job 2, 10 of job 3 and 2 of job 4. Obviously, job 1 and job 3 will arrive 

at stage two concurrently. Because job 1 appears before job 3 in the solution, the job sequence at stage 

two is (2, 4, 1, 3). Other than the SDR rule, a random rule [45], referred to as RR, schedules the 

concurrently arriving jobs in a random manner. Regarding the given example, job 1 can be scheduled at 

stage two before job 3 (see Fig. 3) or behind job 3 (see Fig. 4) with 50% probability. And the RR rule in 

[45] shows higher performance than the SDR rule.  



 

Fig. 3. Gantt chart for scheduling using the SDR rule 

 

 

Fig. 4. Gantt chart for scheduling using SWT rule 

  However, when considering lot streaming in our problem, the SDR and RR rules are very unlikely to 

be effective because of the assumption that sublots from different jobs are not allowed to be 

intermingled. The reason behind this is that if the processing time of a previously scheduled job at 

stage k is much smaller than at stage ,1k there may exist a situation that the selected machine at stage 

k that has completed one sublot will wait for a long time for the arrival of the next sublot. This waiting 

may result in low efficiency under the total flow time criterion. For that reason, we present the shortest 

waiting time rule, referred to as SWT, and the procedure of which is described below. First, at each 

stage k, except the first, we sort the concurrently arriving jobs in non-decreasing order according to a 

relative value calculated in Eq. 11, which determines the arriving order at stage k. 
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where k is larger or equal to 2. Second, if there are jobs that once again have the same value of , then 

the jobs having smaller jkPT , are assumed to be scheduled in prior. For the given example, the  values 

of job 1 and job 3 are, respectively, 4 and 0, therefore job 3 is scheduled ahead of job 1. Fig. 4 shows 

the Gantt chart using the SWT rule. These three decoding methods will be evaluated later in Section 

5.2. 

4.3 Combined neighborhood strategy   

  Since the MBO algorithm belongs to neighborhood search methodologies, it is very necessary to 

determine the neighborhood search strategy for solutions to improve themselves. For the 

permutation-based encoding, a number of neighborhood operators can be found in the literature [46]. 

Each of them has their own specialization areas, and thus, employing the single method may make it 

difficult to find the optimal or near optimal solutions for solving scheduling problems [37,47,48], 

which generally cover an extremely large solution space with an excessive quantity of local optimums. 

Therefore, in view of the special V shaped population that the
LP and

RP are like two subpopulations in 

the evolutionary process, we propose a combined neighborhood search strategy. In this strategy, two 

different neighborhood operators are simultaneously employed in our algorithm: one is used for the 

individuals in ,LP whereas another is used for the individuals in .RP As for the leader at the beginning 

of the algorithm, any operator can be chosen because this is executed only once and has very little 

impact on the experimental results. But for its following evolutions, the leader conducts the same 

operator with its source line to avoid destroying the neighborhood structure. In this way, on the one 

hand, we can take full advantage of their specializations. And on the other hand, the aforementioned 

leader change and the competitive mechanism among two lines presented in the following section can 

promote their joint efforts. To be specific, when an individual coming from one line becomes the leader, 

it has evolved with the corresponding neighborhood operator for a number of iterations and through the 

benefit mechanism, it will have the chance to continue to evolve by using another operator. The 

solution obtained through the joint efforts of two operators is not easily achieved by any single one, so 

that this combined neighborhood search strategy has, to an extent, global search capability. 

  Various neighborhood operators are tested for the MBO algorithm addressing TSP problems in [42], 

including Insertion (I), Insertion Greedy (IG), Insertion Best (IB), Swap (S), Swap Greedy (SG) and 

Swap Best (SB). The Insertion removes the randomly selected job and reinserts it into another 

randomly position to obtain a neighbor. The Insertion Greedy reinserts the randomly selected job into 

all other positions in sequence and this will generate 1n solutions where n is the number of jobs, and 

then the best one in terms of the objective function is selected to be the neighbor. While for the 

Insertion Best, there will be n solutions generated using the Insertion, and then the best one is chosen as 

the neighbor. In the Swap, two randomly selected jobs exchange their positions. In the Swap Greedy, a 

randomly selected job in turn exchanges the position with all other jobs, and the best one of the 



generated 1n solutions is to be the neighbor. While in the Swap Best, n solutions are produced using 

the Swap, and the best one is selected as the neighbor. To maintain different neighborhood structures 

and balance the evolution speed in two lines, the above six operators are formed into five neighborhood 

combinations, which are referred to as IS, IGSG, IBSB, IGSB and IBSG. The experiments in Section 

5.2 show that the combined neighborhood strategy is more effective than applying only the single 

neighborhood and that the Insertion and Swap constituting the strategy works much better than the 

other neighborhood combinations. 

4.4 Competitive mechanisms 

  The benefit mechanism plays a very important rule in the MBO algorithm, the philosophy of which 

is that the solutions have the chance to benefit from the ones in front of them. However, because of the 

arbitrarily arranged population, if promising solutions appear in the rear, they may have few 

opportunities to share their neighbors with others. To improve this situation, we develop a competitive 

mechanism in the internal LP and ,RP which is executed when each loop is finished. First, for each line, 

two individuals are picked randomly and compared to each other in terms of their fitness. Next, if the 

better individual is behind the worse one, their positions are exchanged; otherwise, they remain 

unchanged. This procedure is repeated the value of t times where t is defined as the number of tours 

contained in a loop. Consequently, more promising individuals can be given more opportunities to be 

located in the front of the lines and further exploited in more detail. This mechanism is analogous to the 

natural phenomenon that, when migrating, stronger migrating birds always attempt to fly in front of the 

flock. 

  Excluding the leader change, LP and RP mostly seem like two parallel sub-populations with no 

interactions. Due to the benefit mechanism, they may be quickly grouped by the copies of a few 

solutions, resulting in poor population diversity. According to [36], the frequent exchanges of 

individuals among the different populations can alleviate this problem. Hence, we also introduce a 

competitive mechanism between two lines. This mechanism includes two steps and is as well carried 

out after each loop is finished. The first step is to randomly select t pairs of individuals at the same 

positions of two lines and exchange the individuals in each pair. This step can also improve the joint 

efforts of the two neighborhood operators. The second step is to conduct a two point crossover (TPOX) 

[34,36] for the individuals in each pair, and the worse one is replaced by the generated solution if it has 

better fitness. Such attained offspring inherit good features from their parents and may lead the 

algorithm to potential promising areas. 

  As is known, the global exploration and the local exploitation dominate the design of the global 

search method. The above two competitive mechanisms indeed play different roles in the evolutionary 

process. The first one can be seen as an intensification mechanism, while the second one as well as the 

scout phase detailed in Section 4.5 can be referred to as diversification mechanisms. They respectively 



correspond to the local exploitation and global exploration abilities of the algorithm. And the 

convergence curves presented in Section 5.4 demonstrate that they are well balanced in our algorithm 

that is these modifications not only satisfy the search efficiency but also enhance the capacity of the 

algorithm to converge to the global optimal solution. 

4.5 Scout phase 

In our algorithm, its two main myopic behaviors (the neighborhood-based searching and the benefit 

mechanism) focus excessively on the local exploitation ability. Hence, inspired by the artificial bee 

colony algorithm (ABC) [31,49], we apply the scout phase to highlight the important requirement of 

balancing between global exploration and local exploitation, which is triggered after r unsuccessful 

tours for any solution have been conducted. Considering the basic scout phase, if a solution has not 

been improved through predefined r tours, it is assumed to be a local optimum, and then, it is 

substituted by a solution generated at random in the feasible solution space. 

  Instead of the completely randomized method, we introduce the Glover operator [50] to produce a 

substitute with the abandoned solution as a seed. This substitute can spread out from the abandoned 

solution, leading the algorithm move to the domain that has not been explored yet. Also, this substitute 

can inherit certain location information of jobs from the evolutionary process. Supposing an abandoned 

solution ),,,,( 21 n  the process of the Glover operator is detailed as follows. First, several job 

sub-permutations
2( : ) ( , , , , )sub w w h w h w v hh w        are extracted from , where h is a random 

integer from the uniform distribution ],2/,1[ n and w takes turns to get a value from 1 to n and v 

increases one by one until w v h  achieves the largest value that is less than or equal to n. Then, a new 

solution is re-constructed as )).1:(,),1:(),:(()( hhhhhh subsubsubnew    Fig. 5 shows a 

schematic example to illustrate the Glover operator, where h is set as 3.  

 

Fig. 5. The Glover operator 

  Given the above, the Glover operator is indeed a stochastic method and would most likely lead to 

poor solutions, which negatively affect the search efficiency. Hence, a local search procedure [51] is 



conducted to enhance their qualities to improve this situation, the pseudo code of which is depicted in 

Fig. 6. As shown in this figure, a modified solution is obtained by relocating the job in the first 

position of the current solution c to a different randomly selected position. If ( ) ( ),f f c  the solution c 

is replaced by the solution . This procedure is repeated for all positions sequentially until no 

improvement is found. 

Fig. 6. The pseudo code of the local search 

4.6 Dynamic solution acceptance criteria 

  Except the leader, each solution can be improved by the best neighbor from its own neighbors or the 

best neighbor from the shared neighbor set. And no matter where the neighbor performing best comes, 

it always replace the current solution. Apparently, this performs efficiently when the population has a 

high level of diversity. Nonetheless, with the evolutionary process proceeding, the population diversity 

would decrease and a number of solutions would be likely to converge, so the benefit mechanism may 

work with low efficiency in the latter stage. In addition, the leaped solutions obtained through the scout 

phase are generally poor, such that they may be rapidly replaced by the ones from the shared neighbor 

set and cannot be used well. Hence, in order to strike a compromise between intensification and 

diversification mechanisms, we develop a dynamic solution acceptance criteria, where a candidate 

solution ' from the shared neighbor set is accepted as the current solution depending on a dynamic 

acceptance probability p, which decreases linearly as in Eq. 12. And Fig. 7 gives the complete 

procedure of the solution acceptance. 

     
if  '  is the best among all the evaluated solutions

0    else

o f

o
g

p p
p g

p L



 

 



 (12) 

where ,op fp and gp are the initial probability, the final probability and the certain probability in the 

Procedure for local search 

  improvement = true 

  while improvement = true do 

    improvement = false     

    for i = 1 to n do 

        = insert the job in position i into another new randomly selected position of current c 

      if ( ) ( )f f c  then 

        c   

        improvement = true     

        break 

      endif 

    endfor 

  endwhile 



iteration g, respectively. L is the desired number of probabilities between op and .fp The value 

of p should be large in the early stage to favor the intensification mechanism and be small in the latter 

stage to favor the diversification mechanism. Here, we set 99.0op and .1.0fp The value of L will 

be studied in Section 5.1. 

 

Procedure for solution acceptance in the iteration g 

  c is the current solution 

   is the best one among the neighbors of c 

  ' is the best one in the shared neighbor set 

  if ( ') ( ) && ( ') ( )f f f f c   
 
 

    random is a random number between 0 and 1 

    if
grandom p  

     'c    

    else if ( ) ( )f f c    

     c    

    endif 

  else if ( ) ( ') && ( ) ( )f f f f c     

    c    

  else 

    c remains unchanged 

  endif 

Fig. 7. The pseudo code of the solution acceptance 

4.7 Procedure of the presented algorithm 

  Having described the details of the EMBO algorithm, we provide its complete procedure as follows 

and the framework of this algorithm is displayed in Fig. 8. 

  Step1: Algorithm initialization. 

Step 1.1: Initialize parameters. Set parameters ps, k, s, t, r, Land the stopping criterion K. 

Step 1.2: Initialize population. Randomly generate ps solutions in the feasible solution space and

 arbitrarily place them on a hypothetical V formation containing one leader solution, 

 2/)1( ps solutions in LP and 2/)1( ps solutions in .RP  

  Step 2: A loop evolution. Repeat the tour process including steps 2.1-2.3 for t times. 

Step 2.1: Evolve the leader. The leader solution is to be improved by randomly generating k 

neighbors, and excluding the best one, the remaining -1k neighbors are adopted to create two 

shared neighbor sets L and R , each of which contains s members. 

Step 2.2: Evolve the solutions in LP and RP in parallel. Each solution in )( RL PP is to be improved 

by randomly generating k-s its own neighbors and s neighbors from )( RL  by using the dynamic 

solution acceptance criteria. Then excluding the best one among these k solutions, the 

remaining 1k  solutions are used to be added to ( )L R  after they are reset to be null. This 



process is conducted for the solutions in )( RL PP sequentially from the first to the last. 

Step 2.3: Check each solution and perform the scout phase for the solutions that meet the limit r. 

 Step 3: Select a new leader alternately from LP and .RP  

 Step 4: Modify the solutions order using the competitive mechanisms. 

 Step 5: Check the termination condition. If the stopping condition K is satisfied, output the best 

 solution; otherwise, return to step 2. 

 

Fig. 8. The framework of the EMBO algorithm 

5 Experimental study 

In this section, we discuss the computational experiments that are used to evaluate the proposed 

EMBO algorithm using the maximum CPU elapsed time as the stopping criterion. The capability of 

obtaining satisfactory solutions within an acceptable time has the practical significance. Because we 

cannot find the benchmarks for our considered problem in the literature, we generate a collection of 

100 test instances in a random way to provide detailed comparisons between the algorithms. Ten 

different problems with different sizes can be grouped by different combinations of n and m, 

where }100,80,60,40,20{n and }.10,5{m For each mn combination, ten instances are generated 

at random: the processing times jkp , are obtained from a uniform distribution [1, 31], whereas the 

number of sublots jl and the number of parallel machines k are sampled from the uniform 



distributions [1, 6] and [1, 5], respectively. These settings are common in the scheduling literature and 

the test data in this paper can be found from http://pan.baidu.com/s/1qX4jIJq. The proposed algorithm 

is coded in C++ and run on a 2.3 GHZ Intel Core i5 processor in a WIN7 Operation System. 

5.1 Parameter settings 

  The appropriate setting of parameters has a significant influence on the effectiveness and efficiency 

of stochastic algorithms. To begin with, the neighborhood combination IS and the decoding rule SWT 

are selected to constitute our algorithm and their effectiveness will be demonstrated in the following 

two sections. The proposed EMBO contains six control factors, including ps, k, s, t, L and r. Among 

these, parameters k and s should be set under a limit that the value of k must be greater than or at least 

equal to (2 1)s  such that the Taguchi method mentioned below is not suitable for their settings. This 

limit ensures that the leader solution has a sufficient number of neighbors except for the best one to fill 

two shared neighbor sets with s members. We set the parameter k to 3, which is recommended in 

several studies [24,39,52,53] considering similar neighborhood-based evolutionary methods for solving 

combinatorial optimization problems. Then, the value of s can only be set to 1. And in our preliminary 

experiments, these two settings overall behave very well. 

  With regard to setting the other four parameters efficiently under 3k and ,1s the Taguchi method 

of design of experiment (DOE) [54] with a randomly generated 1060 instance is applied. We 

determine four reasonable levels for each of the four parameters listed in Table 2 and utilize the 

orthogonal array 16L to conduct the experiment. Then, setting the maximum elapsed CPU time of 

201060  milliseconds as the termination criterion, the proposed algorithm EMBO is independently 

run 20 times for each combination of parameters, and the average value (AVG) is collected as the 

response variable. The selected orthogonal array and the corresponding AVG values are summarized in 

Table 3, and thus, we can obtain the factor level trend shown in Fig. 9 and the response values 

indicating the significance rank of each parameter given in Table 4. From Table 4, it can be observed 

that the delta of response values for the parameter ps is highest, but for the other three parameters the 

delta is much lower. This can indicate that the parameter ps has the important significance, whereas the 

other three parameters are less critical. And as is seen from Fig. 9, the proposed algorithm yields better 

performance with ps=51, t=10, L=1000 and r=50. Thus, we will fix these values to conduct the 

following experiments. 

 

 Table 2  

 Levels of the parameters for the proposed algorithm 

Parameters Parameter Level    

 1 2 3 4 

ps 25 51 81 101 

t 2 5 10 20 

L 500 800 1000 1500 

r 30 50 80 100 



 

 

 

 

 

Table 3  
Orthogonal array and AVG values 

Experiment 

number 

Parameter AVG 

ps t L r 

1 25 2 500 30 51876.6 

2 25 5 800 50 51803.7 

3 25 10 1000 80 51589.1 

4 25 20 1500 100 51958.9 

5 51 2 800 80 51893.0 

6 51 5 500 100 51602.6 

7 51 10 1500 30 51836.3 

8 51 20 1000 50 51523.9 

9 81 2 1000 100 51774.4 

10 81 5 1500 80 51725.1 

11 81 10 500 50 51849.1 

12 81 20 800 30 51934.6 

13 101 2 1500 50 52164.7 

14 101 5 1000 30 52388.3 

15 101 10 800 100 52155.8 

16 101 20 500 80 52207.9 

 

 

Fig. 9. The trend of the factor level 

 

 

 

 



 

 

 

 

Table 4 

The mean response values 

Level ps t L r 

1 51807.1 51927.2 51884.1 52009.0 

2 51713.9 51879.9 51946.8 51835.4 

3 51820.8 51857.6 51818.9 51853.8 

4 52229.2 51906.3 51921.3 51872.9 

Delta 515.3 69.6 127.9 173.6 

Rank 1 4 3 2 

5.2 Evaluation of different decoding rules 

  To evaluate the three different decoding rules’ effectiveness, they are separately embedded in the 

proposed algorithm, namely, EMBOSWT, EMBOSDR and EMBORR, and they are tested on all of the 100 

randomly generated instances. It cannot be guaranteed to obtain the optimum solution value due to the 

NP-hardness of the addressed problem. Therefore, the commonly used percentage deviation of the 

solution from the lower bound in the scheduling literature (see [7,55,56] for example) is not considered 

here. Instead, for comparisons, the relative percentage increase (RPI) values [17,57] over the obtained 

best result are calculated as the performance measure as follows. 

                  (13)  

where ic is the total flow time obtained by a given algorithm and is the minimum value among the 

results generated by all of the algorithms. Clearly, lower RPI values are preferred in comparison. We 

set the maximum CPU elapsed time of milliseconds as the stopping criterion, where n is the 

number of jobs and m is the number of stages in the tested instances. For the tested instances, this 

termination allows for more time as the number of jobs or stages increases, and has been used in [7, 17, 

55-57]. Naderi et al. [7] pointed out that if fixing the same CPU time for all instances, the effect of the 

instance size cannot be easily studied. To be specific, if the same time is given to all instances, one 

cannot attribute the worse results for large instance to only instance size due to insufficient CPU time. 

Moreover, setting a time limit like this allows for a much better statistical analysis. To obtain more 

reliable experimental results, 20 independent replications are run for each of the 100 instances. The 

average RPI values, grouped by ten instances with the same problem size ,mn are reported in Table 5, 

where the overall RPI values are presented in the last row and the best values of each row are marked 

in bold. 

It can be observed from Table 5 that EMBOSWT performs best for all of the ten problems and 

generates a lowest overall RPI value of 0.66% compared with EMBOSDR (0.96%) and EMBORR (0.80%). 

We can also find that EMBOSWT performs much better than EMBOSDR when the problem sizes are large. 

The reason behind this can be explained that with the increasing of the problem size, there will be more 

%100/)()(  bestbesti ccciRPI

,i bestc

20mn



opportunities for the jobs arriving at stages concurrently. These findings suggest that the decoding rule 

SWT is more effective than the other two rules.  

        

           Table 5  

           Computational results for the RPI values of the different decoding methods 

Problem EMBOSWT EMBOSDR EMBORR 

 0.34 0.37 0.34 

 0.52 0.53 0.54 

 0.89 0.99 0.87 

 0.70 0.86 0.65 

 0.51 0.67 0.62 

 0.94 1.29 1.21 

 0.48 0.98 0.79 

 0.92 1.34 1.03 

 0.45 1.15 0.81 

100 10   0.86 1.46 1.15 

Mean 0.66 0.96 0.80 

5.3 Evaluation of the combined neighborhood strategy 

  We proceed now is to investigate the effectiveness of the combined neighborhood strategy by 

comparing EMBOI, EMBOS and EMBOIS, which are obtained by respectively applying single Insertion, 

single Swap and neighborhood combination IS in the proposed algorithm. Then, to evaluate the five 

different neighborhood combinations detailed in Section 4.3, the other four neighborhood combinations 

are also separately included in the proposed algorithm and four algorithms are obtained, namely 

EMBOIGSG, EMBOIBSB, EMBOIGSB and EMBOIBSG. We also compare these algorithms with the RPI 

values and the maximum CPU elapsed time of 20n m  as the stopping criterion. And the results are 

given in Table 6. 

 

Table 6 

Computational results for the RPI values of different neighborhood methodologies 

Problem EMBOI EMBOS EMBOIS EMBOIGSG EMBOIBSB EMBOIGSB EMBOIBSG 

20 5  0.38 0.39 0.36 0.53 0.39 0.52 0.43 

20 10  0.66 0.56 0.47 0.78 0.54 0.51 0.41 

40 5  1.18 1.03 0.80 4.46 3.66 3.82 4.08 

40 10  0.83 0.74 0.55 4.28 3.42 3.59 3.86 

60 5  0.50 0.55 0.42 9.61 5.40 7.11 6.98 

60 10  1.27 1.14 0.70 13.34 8.64 10.05 11.55 

80 5  0.90 0.68 0.49 21.02 17.26 17.39 20.81 

80 10  1.25 1.10 0.87 19.95 17.07 17.10 19.68 

100 5  0.73 0.59 0.45 26.06 21.39 21.46 24.89 

100 10  1.35 1.28 0.87 22.80 19.63 19.66 22.33 

Mean 0.91 0.81 0.60 12.28 9.74 10.12 11.50 
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  From Table 6 it can be seen that the EMBOIS performs best for all of the ten problems and generates 

a lower RPI value of 0.60% when comparing with EMBOI (0.91%) and EMBOS (0.81%). Thus, we can 

conclude that the combined neighborhood search strategy is more effective than only applying the 

single neighborhood. It also can be observed that the IS outperforms the other four combinations when 

comparing EMBOIS with the last four algorithms. As the number of jobs increases, the last four 

algorithms degrade noticeably. Their poor performance can be explained that their explorations in the 

feasible space may not be enough under the limited condition of CPU elapsed time. As we have stated 

before, a neighbor is generated by evaluating n or 1n solutions using the members of the last four 

combinations and this is computationally expensive for searching the neighborhood when n is large.  

5.4 Evaluation of the co-evolutionary strategies 

  In the previous section, we have demonstrated the effectiveness of the combined neighborhood 

strategy. As applying the combined neighborhood strategy in our algorithm, the left and right lines can 

be viewed as two different sub-populations, which have different neighborhood structures and have 

different specialization searching areas. Thus, the leader change strategy presented in Section 3.4 and 

the second competitive mechanism proposed in Section 4.4 can be seen as the co-evolutionary 

strategies to help implement the population-collaboration between two lines [58]. Through immigrating 

of the solutions, these two strategies can realize the searching information sharing and interaction 

between two lines to avoid the premature convergence in a single line. And this section will study the 

effects of the co-evolutionary strategies by comparing four algorithms embedding different strategies 

with the RPI values. They are the proposed EMBO, the EMBOR1 that removes the leader change 

strategy, the EMBOR2 that removes the competitive mechanism, and EMBOR3 that removes all of them. 

The stopping criterion for all these four algorithms is set as the maximum CPU elapsed time 

of 20n m  and Table 7 reports the results.  

 

Table 7   

Computational results for the RPI values of the evolutionary strategies 

Problem EMBO EMBOR1 EMBOR2 EMBOR3 

20 5   0.32 0.33 0.39 0.39 

20 10   0.43 0.43 0.45 0.48 

40 5   0.79 0.80 1.27 1.27 

40 10   0.55 0.58 0.95 0.96 

60 5   0.46 0.49 0.82 0.84 

60 10   0.72 0.74 1.24 1.26 

80 5   0.50 0.54 0.95 1.00 

80 10   0.85 0.90 1.44 1.49 

100 5   0.41 0.43 0.91 0.94 

100 10   0.81 0.81 1.42 1.44 

Mean 0.58 0.61 0.98 1.01 

  



 As is seen from Table 7, among these four algorithms, the EMBO generates the best results for all of 

the ten problems and this can indicate the effectiveness of the two strategies. To be specific, the 

performance of EMBO (EMBOR2) is slightly better than that of EMBOR1 (EMBOR3) when comparing 

EMBO with EMBOR1 and EMBOR2 with EMBOR3. However, comparing EMBO with EMBOR2 and 

EMBOR1 with EMBOR3, the EMBO and EMBOR1 all yield much lower RPI values than their 

competitors. From the above observations, we can conclude that the competitive mechanism between 

two lines can improve the performance of the algorithm much more significantly than the leader 

change strategy. This can be explained by their different solution immigrating behaviors. In the leader 

change strategy, the leader is to be exchanged with a follower from one line after each loop is finished, 

and then it only can affect another line in the next loop through the benefit mechanism. Whereas in the 

competitive mechanism, when an evolving loop ends, t pairs of individuals at the same position of the 

two lines are exchanged and conduct a TPOX in each pair. Obviously, the interaction between two lines 

through the competitive mechanism is more intensive than that through the leader change. However, 

exchanging solutions between two lines too frequently may lose their differences and this can also 

reflect the importance of the fine tuning of the parameter .t  

5.5 Effectiveness of the proposed EMBO algorithm 

  This section intends to investigate the effectiveness of the proposed EMBO and the pure EMBO 

algorithm, namely EMBOP that removes the local search strategy, by comparing them with seven other 

existing meta-heuristics in the literature. They are MBO (Duman et al. [39]), IMBO (Pan et al. [24]), 

MMBO (Niroomand et al. [40]), GA (Mohsen et al. [37]), GAR (Ruiz et al. [59]), DPSO (Tseng et al. 

[35]), and DABC (Pan et al. [25]), which were proposed for other combinatorial optimization problems 

and have shown high performance. To compare against MBO, IMBO and MMBO, which are variants 

of the migrating birds algorithm, we can demonstrate the effectiveness of our modifications to the basic 

MBO. And by comparing with the other four algorithms, which are variants of well-known 

meta-heuristics and were proposed for various flowshop problems, we can further demonstrate the 

validity of our proposed algorithm. Since these seven algorithms were not dealing with the HLFS 

problem addressed in this paper, necessary adaptions should be made to make comparisons possible. 

To be specific, the IMBO was presented for the flowshop problem and also used the permutation-based 

representation, so the adaption is carried out by changing the objective evaluation. However, for 

another two MBO variants, which were dealing with quadratic assignment problem and closed loop 

layout problem respectively, they are adapted by modifying the solution encoding and the objective 

evaluation. Moreover, their neighborhood structures are all set the same as the IMBO, namely mixed 

neighborhood that was illustrated to be more effective than a single neighborhood search in [24]. As for 

the other four meta-heuristics, similar with the IMBO, they are also changed with the objective 

evaluation. All of these compared algorithms generate an initial population randomly and their 

parameters are directly taken from the literature. We have fully re-implemented and coded them in 



C++. 

For each of the 100 instances, the average RPI values as well as the standard deviations (SD) are 

gained across 20 independent replications, and they are also grouped under the same problem size. 

Moreover, in order to conduct more comprehensive comparisons, we consider three different levels for 

the maximum elapsed CPU time of mn with  set as 10, 20 and 30. The choice of this stopping 

criterion is motivated by the fact that all the compared algorithms have been coded in the same 

programming language (C++)) using many common functions and structures, and are tested on the 

same aforementioned PC. The computational results under three different stopping criteria are reported 

in Tables 8-10, respectively. Besides, to verify the statistical validity of the results presented, they are 

analyzed by one-factor analysis of variance (ANOVA) where the type of algorithms is considered to be 

a single factor. Figs. 10-12 display the means plots with Tukey HSD (honestly significant difference) 

intervals at the 95% confidence level for the compared algorithms under different stopping criteria, 

respectively. It should be noted that if the confidence intervals of any two algorithms are overlapped, 

there is no statistically significant difference between them. 

  It can be seen from Tables 8-10 that the EMBO performs best among all algorithms in terms of the 

overall RPI values, which is followed by the EMBOP. Comparing with the EMBOP in more detail, the 

EMBO yields better results for 9 out of 10 problems except for 20 10 when 10  and 20,  and for 

all of the problems when 30.  These observations can indicate the effectiveness of the local search 

strategy. As is depicted in Figs. 10-12, although the EMBOP performs less well than the EMBO but 

still keeps competitive. Whereas comparing with the other seven algorithm, the EMBOP generally 

works better under different stopping criteria, and statistically better than all the other algorithms 

when 10  and 6 out of 7 algorithms except for the GA when 20  and 30.    

  Next, we will compare the whole proposed algorithm EMBO with other seven algorithms more 

detailedly. When ,10 it can be seen from Table 8 that the EMBO algorithm obtains the minimum 

RPI values for all of the ten problems and generates a much lower overall RPI value of 0.75% when 

compared with MBO (3.74%), IMBO (2.97%), MMBO (4.75%), GA (2.83%), GAR (3.52%), DPSO 

(4.86%) and DABC (4.85%). When  achieves the values of 20 and 30, Tables 9 and 10 show that our 

algorithm yields the best results for all the problems and produces much lower overall RPI values once 

again. For the three different stopping criteria, considering the overall RPI values, the performance of 

the EMBO is obviously better than the other algorithms. And regarding the standard deviations, the 

EMBO algorithm also generates smallest values on the whole, which suggest that our algorithm is 

robust. Furthermore, Figs. 10-12 show that the EMBO performs statistically better than the others at 

different elapsed CPU times. In conclusion, the above experimental results allow us to conclude that 

the proposed EMBO is much more effective and robust than the other compared algorithms for the 

HLFS problem with the objective of minimizing the total flow time. 



 

 

Table 8  

The computational RPI (SD) values when 10  

Instance EMBO EMBOP MBO IMBO MMBO GA GAR DPSO DABC 

20 5   0.43(0.26) 0.45(0.27) 0.91(0.30) 0.65(0.20) 2.18(0.79) 1.55(0.66) 1.95(0.99) 3.46(1.98) 1.06(0.92) 

20 10   0.58(0.25) 0.57(0.25) 1.15(0.49) 0.71(0.33) 3.36(0.89) 2.23(0.92) 2.35(1.11) 3.68(1.89) 1.74(0.56) 

40 5   0.97(0.41) 1.03(0.46) 3.70(0.70) 2.76(0.54) 4.05(1.36) 3.63(0.84) 3.03(1.70) 4.97(2.78) 4.83(2.45) 

40 10   0.76(0.33) 0.81(0.35) 3.38(0.71) 2.67(0.49) 5.03(1.59) 2.99(0.91) 3.44(1.44) 4.65(3.36) 5.27(2.60) 

60 5   0.55(0.26) 0.67(0.33) 4.02(0.77) 3.26(0.56) 2.66(1.87) 2.53(0.70) 2.40(1.52) 3.53(2.54) 5.06(2.12) 

60 10   1.06(0.38) 1.15(0.43) 4.13(0.80) 3.47(0.55) 4.85(1.48) 2.83(0.85) 3.91(1.95) 4.09(2.00) 3.50(2.90) 

80 5   0.57(0.30) 0.68(0.34) 4.17(0.73) 3.44(0.55) 5.08(1.89) 2.71(0.66) 3.98(1.83) 6.56(3.52) 7.89(2.89) 

80 10   1.00(0.45) 1.13(0.45) 4.85(0.97) 4.24(0.87) 6.41(1.68) 3.13(0.87) 3.02(2.06) 6.09(4.18) 6.64(3.29) 

100 5   0.50(0.34) 0.64(0.39) 4.98(0.85) 3.81(0.69) 6.31(1.85) 3.00(0.85) 5.18(2.02) 6.97(3.93) 5.55(3.24) 

100 10   1.08(0.61) 1.31(0.71) 6.09(0.96) 4.66(0.69) 7.60(1.51) 3.65(0.96) 5.97(1.86) 4.59(3.64) 6.95(2.86) 

Mean 0.75(0.36) 0.84(0.40) 3.74(0.73) 2.97(0.55) 4.75(1.49) 2.83(0.82) 3.52(1.65) 4.86(2.98) 4.85(2.38) 

 

 

Table 9 

The computational RPI (SD) values when 20  

Instance EMBO EMBOP MBO IMBO MMBO GA GAR DPSO DABC 

20 5   0.34(0.18) 0.35(0.18) 0.96(0.23) 0.76(0.18) 2.18(0.51) 1.81(0.66) 1.42(0.86) 0.66(0.45) 0.87(0.44) 

20 10   0.47(0.16) 0.47(0.17) 1.40(0.41) 0.69(0.31) 2.99(0.65) 1.95(0.93) 1.84(1.03) 0.78(0.53) 1.54(0.52) 

40 5   0.87(0.31) 0.91(0.33) 3.06(0.56) 3.27(0.54) 4.19(0.95) 3.04(0.76) 4.00(0.74) 5.55(1.22) 2.61(0.36) 

40 10   0.69(0.37) 0.78(0.39) 3.01(0.53) 2.61(0.35) 4.32(1.05) 2.38(0.79) 2.80(0.55) 4.66(0.87) 3.67(1.04) 

60 5   0.50(0.26) 0.69(0.27) 2.78(0.48) 2.75(0.47) 5.65(1.51) 2.59(0.58) 1.42(0.59) 5.43(0.94) 4.15(0.65) 

60 10   0.90(0.34) 1.15(0.39) 3.49(0.62) 2.81(0.47) 4.28(1.27) 2.52(0.74) 3.22(1.09) 7.74(1.24) 8.47(1.16) 

80 5   0.48(0.22) 0.88(0.22) 2.67(0.52) 2.87(0.44) 5.64(1.42) 2.22(0.52) 2.94(0.61) 5.21(0.99) 4.23(1.29) 

80 10   0.91(0.45) 1.34(0.44) 4.19(0.83) 3.66(0.57) 6.29(1.40) 3.17(0.76) 3.27(0.70) 8.22(1.21) 4.56(0.89) 

100 5   0.40(0.22) 0.83(0.24) 3.45(0.61) 3.11(0.52) 5.18(1.48) 3.03(0.51) 4.10(0.77) 7.86(1.16) 3.20(0.41) 

100 10   0.86(0.36) 1.38(0.38) 4.35(0.70) 4.17(0.53) 4.51(1.19) 3.26(0.73) 5.68(1.09) 4.52(0.97) 4.11(1.18) 

Mean 0.64(0.29) 0.88(0.30) 2.94(0.55) 2.67(0.44) 4.52(1.14) 2.60(0.70) 3.07(0.80) 5.06(0.96) 3.74(0.79) 

 

 

Table 10 

The computational RPI (SD) values when 30  

Instance EMBO EMBOP MBO IMBO MMBO GA GAR DPSO DABC 

20 5   0.29(0.15) 0.31(0.16) 1.97(0.24) 1.31(0.18) 1.03(0.31) 1.33(0.66) 1.21(0.70) 0.39(0.13) 0.80(0.78) 

20 10   0.40(0.24) 0.44(0.24) 1.60(0.41) 1.40(0.20) 1.08(0.39) 1.96(0.93) 1.66(0.98) 0.54(0.15) 1.41(1.24) 

40 5   0.80(0.42) 0.95(0.49) 2.60(0.53) 2.69(0.38) 5.01(0.66) 2.39(0.78) 2.36(1.25) 1.99(0.99) 4.12(1.81) 

40 10   0.65(0.24) 0.83(0.27) 2.58(0.43) 2.13(0.26) 5.37(0.62) 3.10(0.80) 3.56(1.05) 3.24(2.25) 4.12(1.77) 

60 5   0.46(0.15) 0.72(0.16) 3.66(0.35) 3.37(0.33) 7.07(0.78) 3.29(0.82) 4.25(0.88) 5.27(1.71) 3.92(1.60) 

60 10   0.82(0.39) 1.11(0.38) 3.33(0.52) 3.11(0.42) 6.01(0.81) 2.40(0.72) 3.32(1.63) 4.22(1.91) 7.62(2.29) 

80 5   0.43(0.18) 0.68(0.20) 2.37(0.42) 2.17(0.35) 4.72(0.86) 2.36(0.48) 2.11(1.24) 4.40(2.26) 6.66(1.99) 

80 10   0.86(0.31) 1.25(0.33) 4.05(0.69) 3.99(0.42) 4.45(1.00) 2.72(0.72) 3.61(1.65) 6.80(2.44) 4.47(2.84) 

100 5   0.39(0.18) 0.68(0.20) 3.22(0.48) 2.53(0.29) 5.41(1.01) 2.36(0.51) 4.97(1.23) 4.05(1.81) 3.74(1.86) 

100 10   0.79(0.30) 1.19(0.32) 3.51(0.64) 3.94(0.44) 5.85(1.96) 3.07(0.72) 5.01(1.44) 4.58(1.26) 4.72(1.97) 

Mean 0.59(0.26) 0.82(0.28) 2.89(0.47) 2.66(0.33) 4.60(0.84) 2.50(0.71) 3.21(1.21) 3.55(1.49) 4.16(1.82) 



 

Fig. 10. The mean plot and 95% Tukey HSD confidence intervals between the algorithms when 10  

 

Fig. 11. The mean plot and 95% Tukey HSD confidence intervals between the algorithms when 20  

 

Fig. 12. The mean plot and 95% Tukey HSD confidence intervals between the algorithms when 30
 



 

Fig.13. The convergence curve for one instance of 40 10  

 

 

Fig. 14. The convergence curve for one instance of 80 10   

  To verify the convergence ability of the proposed algorithm, Figs. 13-14 respectively present the 

convergence curves of three MBO variants, including MBO, IMBO and EMBO for two instances 

randomly selected from the groups of 40 10 and 80 10. Note that the MMBO is removed because this 

algorithm is great difference from the basic MBO algorithm. It can be observed from the two figures 

that when comparing with the MBO and IMBO algorithms, the EMBO shows better convergence 

performance and can also converge to a better optimal result. Thus, it can be further demonstrated that 

the EMBO algorithm can obtain a good balance between the exploration and exploitation abilities. 

6 Conclusions 

  This study proposes an effective modified migrating birds optimization (EMBO) for hybrid flow 

shop hybridizing with lot streaming (HLFS). The objective is to minimize the total flow time. We first 

present a mathematical model, and to the best of our knowledge, there are no published papers 



addressing this problem. For this problem, we employ the commonly used permutation-based solution 

representation and introduce a new decoding rule, namely SWT to schedule the jobs arriving at stages 

concurrently more reasonably, which is demonstrated to be more effective than the other two rules in 

the literature. Then, we present several effective modifications to enhance the performance of the MBO 

algorithm, including a combined neighborhood search strategy, two competitive mechanisms, the scout 

phase and the dynamic solution acceptance criteria. Finally, computational simulations and 

comparisons based on 100 randomly generated instances demonstrate the effectiveness and efficiency 

of the EMBO algorithm. 

Our future research could focus on exploration of problem-specific characteristics to develop more 

effective heuristics for the HLFS problem. Another clue is to analyze the effectiveness of the EMBO 

with the other optimization objectives, such as maximum tardiness and multi-objective cases, or to 

consider the problem with realistic and practical assumptions, such as machine setup time, machine 

eligibility and interim buffer constraints. Moreover, it could be interesting to investigate the 

performance of the EMBO in other combinatorial optimization problems, such as the blocking 

flowshop, job shop and the certain realistic scheduling problems. 
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This above figure illustrates the flowchart of our proposed algorithm (EMBO). The proposed 

algorithm starts with a number of initial solutions randomly generated in the solution space, including a 

leader solution and the other members in left and right lines. Then, an evolving loop involving a 

number of tours proceeds, and each tour evolves beginning with the leader and processing along the 

left and right lines in parallel by exploring their neighborhood and using the dynamic solution 

acceptance criteria. The insertion and the pairwise exchange neighborhood operators are respectively 

applied for the individuals in PL and PR. And two competitive mechanisms are used to modify the 

solutions order when a tour is finished. Finally, when a loop is finished, the scout phase for the 

solutions is conducted, the leader is to be changed, and another loop starts. 

 

 


