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ABSTRACT 

This paper aims to develop an effective multiscale simulation technique for the deformation analysis of nanotube-
based nanoswitches. In the multiscale simulation, the key material parameters, (e.g., Young’s modulus and moment 
of inertia) are extracted from the MD simulation which can explore the atomic properties. Then, the switches are 
simplified to continuum structure which is discretized and simulated by the advanced RBF meshfree formulation. 
The system of equations is nonlinear because the nonlinear loading is calculated from coupled the electrostatic, the 
elastostatic, and the van der Waals energy domains. Besides the normal deformation analysis, the pull-in voltage 
characteristics of different nanoswitches based on the double-walled nanotubes are analyzed. Comparing with the 
results in the literature and from experiments, it has proven that the developed multiscale approach is accurate and 
efficient. 
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1. INTRODUCTION 

Due to the new development of science and technology, the size of devices is becoming smaller and smaller. Beyond 
the microelectromechanical systems (MEMS), recently, the nano-devices which are called nanoelectromechanical 
systems (NEMS) are attracting the researchers. In the family of NEMS, the nanoswitch is an important type of 
devices with broad applications and can be made based on carbon nanotubes which have excellent electronic, 
chemical and mechanical properties. Because of the small dimensional scale, experiments on nanoswitches are 
limited or even impossible for many cases and devices. Numerical modelling and simulations have therefore become 
important tools in analysis and design of NEMS especially of nanoswitches. Molecular dynamics (MD) is a powerful 
numerical simulation tool for the problems in nanoscales. There are several ways to describe an MD analysis, 
physically [1] or mathematically [2]. MD has been widely used in the simulation of nanotubes.  

Let’s firstly brief the development of multiscale modeling techniques. For many cases in advanced engineering and 
science, molecular dynamics and continuum-based theories are not applicable across the full range of scales. For 
molecular dynamics, the systems are usually too large to be analyzed; for continuum-based theories, the atomic 
behaviour of the systems is too small to be analyzed. Because of these intractable problems, there have been 
significant international efforts to develop multiscale theories to integrate the atomistic and continuum theories [3-5], 
especially crossing length scale, by applying an atomistic theory in a small length scale in which an accurate capture 
of atomic dynamics is crucial, and employing a continuum theory in large scales where deformation is smooth 
enough to make the theory applicable. This is the multiscale modelling technique, which is widely recognized as an 
essential part of computational science and engineering.  Some research teams have embedded the intrinsic atomic 
properties of a solid in their continuum formulations. However, their theories are based on the assumption of 
homogeneous lattice deformation and are therefore unsuitable for solving problems with defects in atomic lattices, 
such as dislocations and phase changes. Some other teams have used a more flexible approach[6]. At each spatial 
scale, they apply the theories that are valid for that scale to attempt a smooth coupling of the data. However, there are 
critical problems associated with this approach, due to the lack of theoretically robust techniques to identify the 
transition region between the scales and to integrate the data. Clearly, the development of the multiscale simulation 
techniques is still at its infancy, and there are many technical problems remained.  

In recent years, a group of advanced meshfree numerical techniques [7][8], have been developed and achieved 
remarkable progress for the continuum analysis. The meshfree methods using various weak-forms of the ordinary 
differential equations (ODEs) or the partial differential equations (PDEs) of the problems, e.g., the element-free 
Galerkin (EFG) method [9], the meshless local Petrov-Galerkin (MLPG) method [10], and the local radial point 
interpolation method (LRPIM) [8][11], have shown many distinguished advantages in the applications for 
engineering and sciences. In summary, the meshfree methods have the following distinguished advantages[7]: 
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• They do not use a mesh, so that the burden of mesh generation in FEM is overcome and a smooth atomic-
continuum transition becomes possible. 

• They are usually more accurate than FEM due to the use of higher order trial functions. 

• They are capable of solving complex problems that are difficult for the conventional FEM to apply. 

Because of these advantages, meshfree methods seem to have a good potential for multiscale analysis and have 
attracted the attention of the research community [5][12]. However, the topic is relatively new, and calls for a 
significant development. 

Considering the properties of nanotube-based nanoswitches, this paper will develop an effective multiscale method 
for the characterizing the deformation of typical Nanoswitches whose key components are a double-walled carbon 
nanotube (DWNT) and a fixed ground plane. The reason that we call the newly developed technique as a “general 
multiscale” method is because both nanoscale technique, MD, and the continnum technique, meshfree method, are 
used at the same time. When a potential difference is created between the nanotube and the ground plane, 
electrostatic charges, which will lead to electrostatic force, are introduced. Meanwhile, elastostatic  and van der 
Waals forces co-exist. Under an applied voltage, an equilibrium position of the tube is defined by the balance of the 
elastostatic, electrostatic and the van der Waals forces. To simulate these nanoswitches, an effective multiscale 
technique is developed based on the MD and a parameterized continuum model. The product of Young’s modulus 
and moment of inertia of the DWNT will be determined by a molecular dynamics simulation with a linear deflection 
approximation. The switch will ten be simplified to a beam system, and the loading be calculated from three coupled 
energy domains: the electrostatic energy domain, the elastostatic energy domain, and the van der Waals energy 
domain. A meshfree formulation [7] will then be developed to discretize the domain of the switch to establish the 
non-linear equations for deformation analysis. The pull-in voltage characteristics of fixed-fixed and cantilever 
nanoswitches based on the DWNT are analyzed. 

 

2. MATERIAL PARAMETERS FROM MD  

This paper will deal with two typical nanoswitches[13], as shown in figures 1, whose key components are a double-
walled carbon nanotube (DWNT) and a fixed ground plane. When a potential difference is created between the 
nanotube and the ground plane, electrostatic charges, which will lead to electrostatic force, are introduced. 
Meanwhile, elastostatic  and van der Waals forces co-exist. Under an applied voltage, an equilibrium position of the 
tube is defined by the balance of the elastostatic, electrostatic and the van der Waals forces. 

 

       

 

Fig. 1. fixed-fixed and cantilever nanoswitches based on DWNT 

 

When the deflection of the nanotube is small and its cross-section shape change during bending is negligible, the 
nanotube in the switch can be simplified to a beam structure[14]. To use this beam continuum model, Young’s 
modulus, E, and the moment of inertia, I, should be determined. There are many techniques to determine Young’s 
modulus [15], but to date, there is no agreement about the exact value of the effective thickness, h, and E of a carbon 
nanotube. Some studies assumed that a nanotube was a solid cylinder, and the equivalent h and E are then calculated. 
Vodenitcharova and Zhang[15] pointed out that this assumption is incorrect because the tube is evidently not solid 
and continuous among atoms. Their model predicted that the equivalent thickness of a single-walled carbon nanotube 
should be 0.617 Å, which is 43.8% of the theoretical diameter of a carbon atom, and that the Young’s modulus of 
this tube is 4.88Tpa. However, there is few study of equivalent thickness of a multi-walled carbon nanotube, which 
will be used to determine E and I.   
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In this paper, the linear elasticity model for the DWNT is considered, and E and I are therefore constants.  Hence, the 
linear deflection approximation, in which the peak deflection of the tube is considered as a linear function of the 
applied load, can be used to get the E and I together. The peak deflections for different loadings are firstly obtained 
by the MD simulation[16], as figure 2, and then using the classic beam theory to calculate EI. For example, for a 
cantilever or fixed-fixed tube, if the peak deflection is w1 (obtained by MD simulation) when the force is f1, and w2 
when the force is f2, we can simply obtain EI: 

 4 4

1 2

1
( )

2 8 8

l l
EI

S S
= +   for a cantilever tube, and (1) 

 4 4

1 2

1
( )

2 384 384

l l
EI

S S
= +   for a fixed-fixed tube (2) 

where l is the length of the tube, and S1 and S2 are the slopes of the MD load-deflection curve, i.e.,  

 1
1

1

w
S

f
=     and  2

2
2

w
S

f
=  (3) 

 
 

 
 

Fig. 2. Peak deflection versus applied force for a fixed–fixed DWNT 
 

 
 

3. CONTINUNIM MESHFREE FORMULATION 

When the deflection of the nanotube is small and its cross-section shape change during bending is negligible, the 
nanotube in the switch can be simplified to a beam structure. According to the continuum theory, the governing 
equation for the beam can be written as [14] 

 4

4

d w
EI f

dx
=  (4) 

where w is the deflection of the nanotube, E is its Young’s modulus, I is its moment of inertia, and  f is the force per 
unit length on the tube. There are four boundary conditions, two at each end. The boundary conditions are given at 
the global boundary, Γ, as 

for a fixed-fixed tube 

 (0) 0,w =   (0) 0,θ =  

( ) 0,w l =   ( ) 0lθ = ; 
(5) 
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for a cantilever tube 

 (0) 0,w =   (0) 0,θ =  

( ) 0,M l =    ( ) 0,Q l =  
(6) 

where θ, M and Q denote the deflection slope, the bending moment and the shear force, respectively, and l is the 
length of the tube.  

A local weak form of the differential equation (4), over a local domain Ωq bounded by Γq, can be obtained using the 
local weighted residual method [7] 

 2

2
( ) 0

q

d w
w EI f dx

dxΩ
− =∫

⌢  (7) 

where w
⌢

 is the weight function. The first term on the left hand side of equation (7) can be integrated by parts to 
become[11] 

 [ ] [ ]( )d 0
q qq

EIw w wf x nEIw w nEIww
Γ ΓΩ

′′ ′′ ′ ′′ ′′′− − + =∫
⌢ ⌢ ⌢ ⌢  (8) 

where n  is the unit outward normal to domain Ωq. 

An arbitrary shape quadrature domain can be used, such as a linear support domain for one-dimensional problems. It 
can be found that the boundary Γq for the support domain usually comprises five parts: the internal boundary Γqi, the 
boundaries Γqw, Γqθ, ΓqM, and ΓqQ, over which the essential boundary conditions w, θ and natural boundary conditions 
M, Q are specified. The boundaries Γqw with ΓqQ and Γqθ with ΓqM are mutually disjoint. Imposing the natural (force) 
boundary condition, we obtain: 

 [ ] [ ]

[ ] [ ]

( )d

0

q qwqM qQ

q

qi qi

EIw w wf x nMw nVw nEIw w nwEIw

nw EIw nwEIw

θΓ ΓΓ Γ
Ω

Γ Γ

′′ ′′ ′ ′ ′′ ′′′   − − − − +   

′ ′′ ′′′− + =

∫
⌢ ⌢ ⌢ ⌢ ⌢ ⌢

⌢ ⌢
 

(9) 

If the value and the derivatives of the weight function w
⌢

 are taken to be zero at Γqi, the last two terms in equation (9) 
vanish.  

The problem domain Ω is represented by properly scattered field nodes, and the Hermite point interpolation [7][11] 
is used to approximate the value of a point x 

 T T( ) ( ) ( )ww x x xθ= +Φ w Φ θ  (10) 

where w and θθθθ denote the nodal deflections and slopes, respectively, and ΦΦΦΦw(x) and  ΦΦΦΦθ(x) are meshfree shape 
functions for deflection and slope, respectively. ΦΦΦΦw(x) and  ΦΦΦΦθ(x) will be discussed in Section 4.  

As this local meshfree method is regarded as a weighted residual method, the weight function plays an important role 
in the performance of the method. It can be found that a weight function with the local property will yield better 
results, such as the quartic spline function. Following the idea of the Galerkin FEM, the weight function w

⌢
can be 

taken as 

 T T( ) ( ) ( )Q ww x x xθ= +Ψ α Ψ β
⌢  (11) 

where αααα and ββββ denote the fictitious nodal coefficients, ΨΨΨΨw and ΨΨΨΨθ are constructed using meshfree shape functions. It 
should be noted that the support domain used to construct ΨΨΨΨw and ΨΨΨΨθ can be independent of the support domain used 
to construct ΦΦΦΦw and ΦΦΦΦθ.         

Substituting equations (10) and (11)  into the local weak form equation (9) for all field nodes leads to the following 
discrete equations 

 e =Kw f  (12) 

It can be found that the above equation is nonlinear because that f is also the function of the deflection. Thus an 
iteration technique, the Newton-Raphson method, is required for its solution.  

The total force in equation (4),  f can be calculated as   
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 1 2f f f= +  (13) 

where f1 is the electrostatic force per unit length and f2 is van der Waals force. The electrostatic force can be 
computed by using a standard capacitance model [17], in which the nanotube is considered as a perfect cylindrical 
conductor. This implies that the potential is constant along the length of the tube. The capacitance per unit length for 
the cylindrical beam over a conductive ground plane is given by [18]. The electrostatic energy per unit length is 
given by 

 2 2 0

2
1 1

1 1
( )

2 2 log 1 / ( / 1) 1
elec C r V V

g r g r

πε
Φ = =

 + + + −
 

 (14) 

where ε0 is the permittivity at vacuum, g is the gap between the nanotube and ground plane, and r1 is the radius of the 
conductor (i.e. the exterior radius of the tube), V is the voltage applied. Therefore, the electrostatic force per unit 
length can be written as 

 { }{ } 1
1/ 2 1/ 22 2 2 2

1 0 1 1 1 1 1 1( 2 ) / log 1 / ( 2 ) /elecd
f V r g g r r g r g g r r

dr
πε

−Φ
   = = − + + + +     (15) 

The van der Waals force can be computed through the van der Waals energy, which describes the interaction of 
nanotube with ground plane, using an atomic Lennard-Jones (L-J) potential. In the L-J potential, there are attractive 
and repulsive parts. The repulsive part decays very fast and plays an important role only when the nanotube is to 
contact with the ground. Since the major aim of this paper is to calculate the pull-in voltages, which leads to a 
deflection before contacting, it is reasonable to only consider the attractive part in the calculation of the van der 
Waals energy W using a pair-wise summation over all the atoms. As shown in figure 3, when a DWNT interacts with 
m layers of grapheme in the substrate, and if the interlayer distance of the grapheme is d, the van der Waals force of 
the DWNT can be written as [16] 

 2 2 4 3 2 2 3 4
6 0 1 1 1 1 1 1

2 5 5
1 1

2 2 4 3 2 2 3 4
6 0 0 0 0 0 0 0

5 5
0

( 2 ) (8 32 72 80 35 )

2 ( 2 )

( 2 ) (8 32 72 80 35 )

2 ( 2 )

m i i i i i i

i i i

i i i i i i

i i
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g g r

C r g g r g g r g r g r r

g g r

σ π

σ π

=

  + + + + +  = − + +

 + + + + +  
+ 

∑

 

(16) 

where r0 and r1 are the radii of the inner and outer nanotubes of the DWNT. 

 

 
 

 
Fig. 3. A DWNT over a graphite ground plane Fig. 4. The RBF meshfree shape function 
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4. CONSTRUCTION OF RBF MESHFREE SHAPE FUNCTION 

In equations (10) and (11), we need to construct the meshfree shape functions. At present, a number of ways to 
construct meshfree shape functions have been proposed. In this paper, the radial basis function (RBF) interpolation is 
used to construct the meshfree shape functions, because it is stable and accurate[7].  The locally supported RBF 
interpolation formulation can be written as: 

 { }
1 1

( ) ( ) ( )
n m

T T
i i j j

i j

u R r a p b
= =

 
= + = + =  

 
∑ ∑

a
x x R a B b R B

b
 (17) 

where Ri(r) is the RBF, n is the number of nodes in the interpolation domain of point x, pj(x) is monomials in the 
space coordinates xT=[x,y], m is the number of polynomial basis functions, and coefficients ai and bj  are interpolation 
constants. The unique variable in a RBF is the distance, r, between the interpolation point x and a field node xi, and it 
makes the RBF interpolation easily extend to three-dimensional problems.  

There are a number of RBFs, and their characteristics in meshfree methods have been widely investigated [7].  In this 
paper, the following locally supported multi-quadrics (MQ) RBF is used to construct the meshfree shape function 
based on the local interpolation domains, which is written as 

 2 2
0( ) [ ( ) ] q

i i iR r dα= +x  (18) 

where α0  is a dimensionless coefficient, and di is a parameter of the nodal spacing. The selections of two parameters 
(α0 and q) will significantly influence the performance of MQ RBF.  The effects of α0 and q have been studied in 
details in many publications [7]. It has been found that α0=1.0 and q=1.03 lead to good results for most problems in 
solids, and therefore, these values will be used in this paper.  

Coefficients ai and bi in equation (17) can be solved by enforcing equation (17) to be satisfied at the n nodes 
surrounding a point x. Then, Equation (17) can be re-written as the matrix form as follows 

 0
0T
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m

    
= =    

    

R Bu a
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B 00 b
 (19) 
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(20) 

From equation (19), coefficients a0 can be solved and substituting a0 back into equation (17), the following RBF 
interpolation formulation is then obtained 

 { } { }1( ) ( ) ( )e eu −    
= =   

   

u u
x R B G Φ x Λ x

0 0
 (21) 

where the RBF shape function ( )Φ x  is defined by 

 { }( )1
1 2

1
( ) [ ( ), ( ),......, ( )]n

n
φ φ φ −

−
= =Φ x x x x R B G  (22) 

where ( )Φ x  is a vector which includes 1 − n elements of { } 1−R B G . A sample of ( )Φ x  is plotted in figure 4.  

It has been proven that the RBF shape functions given in equation (22) satisfy the Kronecker delta condition, which 
makes it easy to enforce the boundary conditions in the meshfree method based on the RBF shape functions. 

 

5. RESULTS AND DISCUSSIONS 

A cantilever switch is considered to consist of a DWNT of 50 nm in length, with r1 = 1 nm, and r0 = 0.665 nm. The 
initial gap between the DWNT and the ground plane is 4 nm. There are 30 sheets of grapheme for the ground plane, 
and the inter-layer distance of graphite, d, is 0.335 nm, and  12 2 2

0 8.854 10 C N/mε −= ×  [17].  
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To analyze this switch, the MD is firstly used to extract the material parameters. The equivalent product of EI is 
obtained  25 27.58 10 m N−× . Then, the above meshfree formulation is used and 51 regularly distributed field nodes are 
employed to discretized this tube. It can be found that with the increase of the applied voltage, the deflection of the 
DWNT increases, and the gap between the tube and the ground plane decreases. When the voltage increases to a 
certain value, the tube becomes unstable suddenly and the free end of the tube will touch the bottom plane. This 
process is defined as the pull-in behavior [13] and the corresponding voltage value is called the critical pull-in 
voltage, at which the deflection of the tube tip equals to the initial gap. In the practical applications of nanoswitches, 
the critical pull-in voltage is one of the most important parameters.  

Figure 5 demonstrates the result of the deflection of this DWNT tube tip under different voltages. It can be seen that 
the critical pull-in voltage is 0.47 volt. Compared with the same value, 0.5 volt, obtained by an analytical method 
[16][18] and other method [13], the presented method gives a very good result. It should be mentioned here that the 
above model is only valid when the tube deflection is small. Because of the decrease of the gap between the DWNT 
and the ground plane, both the electrostatic and van der Waals forces increase significantly, which pull the tube down 
suddenly. To simulate the deflection process after the critical pull-in voltage, a geometrically non-linear model must 
be developed. 

Figure 6 demonstrates the relationship between the critical pull-in voltage and the initial gap for this switch. It clearly 
shows that the critical pull-in voltage increases with the increase of the initial gap. When the initial gap is larger than 
6 nm, the slope for the curve changes very slowly, because with a large gap the effect of the van der Waals force is 
negligible. When the gap is very small, on the other hand, the van der Waals force will play a key role. At a critical 
gap value ( 3.5nmg ≈  in the present case), pull-in will occur even without an external voltage[13].  

A fixed-fixed switch based on the same DWNT is also simulated. All computational parameters are the same as those 
listed above. The critical pull-in voltage is obtained now becomes 6.2 volt which is much higher than that of the 
cantilever switch. It is reasonable because a fixed-fixed tube is harder to be bended.  
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Fig. 5. The gap under different voltages for the cantilever 
DWNT based switch 

Fig. 6.  Pull-in voltages vs. gaps for the cantilever DWNT based 
switch 

 

6. CONCLUSION 
This paper has developed an effective multiscale simulation technique for the deformation analysis of nanotube-
based nanoswitches. The key material parameters, (e.g., Young’s modulus and moment of inertia) are extracted from 
typical MD simulation which can explore the atomic properties. Then, the switches are simplified to continuum beam 
structure which is discretized and simulated by the advanced meshfree formulation. The pull-in voltage 
characteristics of nanoswitches based on the double-walled nanotube are studied. From studies of this paper, it has 
proven that the proposed technique is effective to give satisfactory deformation results for nanoswitches when the 
gap between the nanoswitch arm and the ground is not too small and not too big. 
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