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Abstract

In this paper, the problem of best subset selection in logistic regression is addressed. 

In particular, we take into account formulations of the problem resulting from the 

adoption of information criteria, such as AIC or BIC, as goodness-of-fit measures. 

There exist various methods to tackle this problem. Heuristic methods are computa-

tionally cheap, but are usually only able to find low quality solutions. Methods based 

on local optimization suffer from similar limitations as heuristic ones. On the other 

hand, methods based on mixed integer reformulations of the problem are much more 

effective, at the cost of higher computational requirements, that become unsustaina-

ble when the problem size grows. We thus propose a new approach, which combines 

mixed-integer programming and decomposition techniques in order to overcome 

the aforementioned scalability issues. We provide a theoretical characterization of 

the proposed algorithm properties. The results of a vast numerical experiment, per-

formed on widely available datasets, show that the proposed method achieves the 

goal of outperforming state-of-the-art techniques.

Keywords Logistic regression · Information criterion · Best subset selection · Sparse 

optimization · Block coordinate descent

1 Introduction

In statistics and machine learning, binary classification is one of the most recurring 

and relevant tasks. This problem consists of identifying a model, selected from a 

hypothesis space, able to separate samples characterized by a well-defined set of 

numerical features and belonging to two different classes. The fitting process is 

based on a finite set of samples, the training set, but the aim is to get a model which 

correctly labels unseen data.
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Among the various existing models to perform binary classification, such as 

k-nearest-neighbors, SVM, neural networks or decision trees (for a review of clas-

sification models see, e.g., the books of [9, 22] or [24]), we consider the logistic 

regression model. Logistic regression belongs to the class of Generalized Linear 

Models and possesses a number of useful properties: it is relatively simple; it is 

readily interpretable (since the weights are linearly associated to the features); out-

puts are particularly informative, as they have a probabilistic interpretation; statisti-

cal confidence measures can quickly be obtained; the model can be updated by sim-

ple gradient descent steps if new data are available; moreover, in practice it often has 

good predictive performance, especially when the size of train data is too limited to 

exploit more complex models.

In this work, we are interested in the problem of best features subset selection 

in logistic regression. This variant of standard logistic regression requires to find 

a model that, in addition to accurately fitting the data, exploits a limited number of 

features. In this way, the obtained model only employs the most relevant features, 

with benefits in terms of both performance and interpretation.

In order to compare the quality of models that exploit different features, i.e., mod-

els with different complexity, goodness-of-fit (GOF) measures have been proposed. 

These measures allow to evaluate the trade-off between accuracy of fit and com-

plexity associated with a given model. Among the many GOF measures that have 

been proposed in the literature, those based on information criteria (IC) such as AIC 

[1], BIC [39] or HQIC [21] are some of the most popular [23]. Models based upon 

these Information Criteria are very popular in the statistics literature. Of course 

it is evident that no model is perfect and different models might had been consid-

ered. However, as nicely reported by [13], a reasonable model should be comput-

able from data as well as based on a general statistical inference framework. This 

means that “model selection is justified and operates within either a likelihood or 

Bayesian framework or within both frameworks”. So, although many alternative 

models can be proposed and successfully employed, like, e.g., those described in 

[6, 8, 26], in this paper we prefer to remain on the classical ground of Information 

Criteria like the AIC, which is an asymptotically unbiased estimator of the expected 

Kullback–Leibler information loss, or the BIC, which is an easy to compute good 

approximation of the Bayes factor.

In case the selection of the model is based on one of the aforementioned IC, the 

underlying optimization problem consists of minimizing a function which is the sum 

of a convex part (the negative log-likelihood) and a penalty term, proportional to the 

number of employed variables; it is thus a sparse optimization problem.

Problems of this kind are often solved by heuristic procedures [17] o by �
1
-regu-

larization [27, 29, 45]. In fact, specific optimization algorithms exist to directly han-

dle the zero pseudo-norm [4, 31, 32]. However, none of the aforementioned methods 

is guaranteed to find the best possible subset of features under a given GOF measure.

With problems where the convex part of the objective is simple, such as least 

squares linear regression, approaches based on mixed-integer formulations allow to 

obtain certified optima, and have thus had an increased popularity in recent years [7, 

14, 19, 34, 35]. Logistic likelihood, although convex, cannot however be inserted in 

a standard MIQP model. Still, [38] showed that, by means of a cutting-planes based 
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approximation, a good surrogate MILP problem can be defined and solved, at least for 

moderate problem sizes, providing a high quality classification model.

The aim of this paper is to introduce a novel technique that, exploiting mixed-inte-

ger modeling, is able to produce good solutions to the best subset selection in logistic 

regression problem, being at the same time reasonably scalable w.r.t. problem size. To 

reach this goal, we make use of a decomposition strategy.

The main contributions of the paper consist in:

• the definition of a strong necessary optimality condition for optimization problems 

with an �
0
 penalty term;

• the definition of a decomposition scheme, with a suitable variable selection rule, 

allowing to improve the scalability of the method from [38], with convergence 

guarantees to points satisfying the aforementioned condition;
• practical suggestions to improve the performance of the proposed algorithm;
• a thorough computational study comparing various solvers from the literature on 

best subset selection problems in logistic regression.

The rest of the manuscript is organized as follows: in Sect. 2, we formally introduce 

the problem of best subset selection in logistic regression, state optimality conditions 

and provide a brief review of a related approach. In Sect. 3, we present our proposed 

method, explaining in detail the key contributions and carrying out a theoretical analy-

sis of the procedure. Then, we describe and report in Sect. 4 the results of a thorough 

experimental comparison on a benchmark of real-world classification problems; these 

results highlight the effectiveness of the proposed approach with respect to state-of-

the-art methods. We finally give some concluding remarks and suggest possible future 

research in Sect. 5. In Appendix we also provide a detailed review of the algorithms 

considered in the computational experiments.

2  Best subset selection in logistic regression

Let X ∈ ℝ
N×n be a dataset of N examples with n real features and Y ∈ {−1, 1}N a set of 

N binary labels. The logistic regression model [22] for binary classification defines the 

probability for an example x of belonging to class y = 1 as

Substantially, a sigmoid nonlinearity is applied to the output of a linear regression 

model. Note that the intercept term is not explicitly present in the linear part of the 

model; in fact, it can be implicitly added, by considering it as a feature which is 

equal to 1 in all examples; we did so in the experimental part of this work. It is easy 

to see that

ℙ(y = 1 ∣ x) =
1

1 + exp(−w⊤x)
.

ℙ(y = −1 ∣ x) = 1 − ℙ(y = 1 ∣ x) =
1

1 + exp(w⊤x)
.
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Hence, the logistic regression model can be expressed by the single equation here 

below:

Under the hypothesis that the distribution of (y ∣ x) follows a Bernoulli distribution, 

we get that model (1) is associated with the following log-likelihood function:

A function f (v) = log(1 + exp(−v)) is referred to as logistic loss function and is 

a convex function. The maximum likelihood estimation of (1), which requires the 

maximization of �(w) , is thus a convex continuous optimization problem.

Identifying a subset of features that provides a good trade-off between fit quality 

and model sparsity is a recurrent task in applications. Indeed, a sparse model might 

offer a better explanation of the underlying generating model; moreover, sparsity 

is statistically proved to improve the generalization capabilities of the model [44]; 

finally, a sparse model will be computationally more efficient.

Many different approaches have been proposed in the literature for the best sub-

set selection problem which, we recall, is a specific form of model selection. Every 

model selection procedure has advantages and disadvantages as it is difficult to think 

that there might exist a single, correct, model for a specific application. Among the 

many different proposals, those which base subset selection on information crite-

ria [12, 13, 28] stand out as the most frequently used, both for their computational 

appeal as well as for their deep statistical theoretical support. Information criteria 

are statistical tools to compare the quality of different models in terms of quality of 

fit and sparsity simultaneously. The two currently most popular information criteria 

are:

• the Akaike Information Criterion (AIC) [1, 2, 11]: 

 Comparing a set of candidate models, the one with smallest AIC is considered 

closer to the truth than the others. Since the log-likelihood, at its maximum 

point, is a biased upward estimator of the model selection target [12], the penalty 

term 2‖w‖
0
 , i.e., the total number of parameters involved in the model, allows to 

correct this bias;
• the Bayesian Information Criterion (BIC) [39]: 

 It has been shown [12, 28] that given a set of candidate models, the one which 

minimizes the BIC is optimal for the data, in the sense that it is the one that max-

imizes the marginal likelihood of the data under the Bayesian assumption that all 

candidate models have equal prior probabilities.

(1)ℙ(y ∣ x) =
1

1 + exp(−yw⊤x)
.

(2)�(w) = −

N
∑

i=1

log
(

1 + exp
(

−y(i)w⊤x(i)
))

.

AIC(w) = −2�(w) + 2‖w‖0;

BIC(w) = −2�(w) + log(N)‖w‖0;
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Although other models can be proposed for model selection, those based on the 

AIC and BIC, or their variant, are extremely popular thanks to their solid statistical 

properties.

In summary, when referred to logistic regression models, the problem of best 

subset selection based on information criteria like AIC or BIC has the form of the 

following optimization problem:

where L ∶ ℝ
n
→ ℝ is twice the negative log-likelihood of the logistic regression 

model ( L(w) = −2�(w) ), which is a continuously differentiable convex function, 

� > 0 is a constant depending on the choice of the information criterion and ‖ ⋅ ‖
0
 

denotes the �
0
 semi-norm of a vector. Given a solution w̄ , we will denote the set 

of its nonzero variables, also referred to as support, by S(w̄) ⊆ {1,… , n} , while 

S̄(w̄) = {1,… , n}⧵S(w̄) , denotes its complementary. In the following, we will also 

refer to the objective function as F(w) = L(w) + �‖w‖
0
.

Because of the discontinuous nature of the �
0
 semi-norm, solving problems of the 

form (3) is not an easy task. In fact, problems like (3) are well-known to be NP-hard,  

hence, finding global minima is intrinsically difficult.

Lu and Zhang  [32] have established necessary first-order optimality conditions 

for problem (3); in fact, they consider a more general, constrained version of the 

problem. In the unconstrained case we are interested in, such conditions reduce to 

the following.

De�nition 1 A point w⋆
∈ ℝ

n satisfies Lu–Zhang first order optimality conditions 

for problem (3) if ∇jL(w
⋆) = 0 for all j ∈ {1,… , n} such that w⋆

j
≠ 0.

As proved by [32], if L(w) is a convex function, as in the case of logistic regres-

sion log-likelihood, there is an equivalence relation between Lu–Zhang optimal-

ity and local optimality, meaning there exists a neighborhood V of w
⋆ such that 

F(w⋆) ≤ F(w) for all w ∈ V .

Proposition 1 Let w⋆
∈ ℝ

n . Then, w⋆ is a local minimizer for Problem (3) if and 

only if it satisfies Lu–Zhang first order optimality conditions.

This may appear surprising at first glance. However, after a more careful think-

ing, it should be evident. Being L convex, a Lu–Zhang point is globally optimal 

w.r.t. the nonzero variables. As for the zero variables, since L is continuous, there 

exists a neighborhood such that the decrease in L is bounded by � , which is the pen-

alty term that is added to the overall objective function as soon as one of the zero 

variables is moved.

Unfortunately, the number of Lu–Zhang local minima is in the order of 2
n . 

Indeed, for any subset of variables, minimizing w.r.t. those components, while 

keeping fixed the others to zero, allows to obtain a point which satisfies Lu–Zhang 

conditions. Hence, satisfying the necessary and sufficient conditions of local opti-

mality is indeed a quite weak feature in practice. On the other hand, being the 

(3)min
w∈ℝn

L(w) + �‖w‖0,
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search of an optimal subset of variables a well-known NP-hard problem, requir-

ing theoretical guarantees of global optimality is unreasonable. In conclusion, 

it should be clear that the evaluation and comparison of algorithms designed to 

deal with problem (3) have to be based on the quality of the solutions empirically 

obtained in experiments.

However, we can further characterize candidates for optimality by means of 

the following notion, which adapts the concept of CW-optimality for cardinality 

constrained problems defined by [4]. To this aim, we introduce the notation w≠i
 to 

denote all the components of w except the i-th.

De�nition 2 A point w⋆
∈ ℝ

n is a CW-minimum for Problem (3) if

for all i = 1,… , n.

Equivalently, (4) could be expressed as

CW-optimality is a stronger property than Lu–Zhang stationarity. We outline this 

fact in the following proposition.

Proposition 2 Consider Problem (3) and let w
⋆
∈ ℝ

n . The following statements 

hold: 

1. If w⋆ is a CW-minimum for (3), then w⋆ satisfies Lu–Zhang optimality conditions, 

i.e., w⋆ is a local minimizer for w⋆.

2. If w⋆ is a global minimizer for (3), then w⋆ is a CW-minimum for (3).

Proof We prove the statements one at a time. 

1. Let w⋆ be a CW-minimum, i.e., 

 for all i = 1,… , n . Assume by contradiction that w⋆ does not satisfy Lu–Zhang 

conditions; then, there exists h ∈ {1,… , n} such that w⋆

h
≠ 0 and ∇

h
L(w⋆) > 0 . 

Hence, −∇
h
L(w⋆) is a descent direction for L(wh;w⋆

h≠j
) at w⋆

h
≠ 0 , which contra-

dicts (6).

(4)
w
⋆

i
∈ argmin

w
i

F(w
i
;w⋆

≠i
)

(5)

w
⋆ ∈ argmin

w

F(w)

s.t. ‖w − w
⋆‖0 ≤ 1

(6)
w
⋆

i
∈ argmin

w
i

F(w
i
;w⋆

≠i
)
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2. Let w⋆ be a globally optimal point for (3). Assume by contradiction that w⋆ is not 

a CW-minimum, i.e., there exists h ∈ {1.… , n} such that there exists ŵ
h
 such that 

F(ŵh;w⋆

h≠j
) < F(w⋆) . This clearly contradicts that w⋆ is a global optimum.

  ◻

Note that CW-optimality is a sufficient, yet not necessary, condition for local 

optimality. Indeed, Lu–Zhang conditions, and hence local optimality, certify that 

an improvement cannot be achieved without changing the set of nonzero variables. 

CW-optimality allows to also take into account possible changes in the support, 

although limited to one variable. We show this in the following examples, where, for 

the sake of simplicity, we consider a simpler convex function than L.

Example 1 Consider the problem

It is easy to see that Lu–Zhang conditions are satisfied by the points wa = (0, 0) , 

wb = (1, 2) , wc = (0, 2) and wd = (1, 0) . We have �(wa) = 5 , �(wb) = 4 , �(wc) = 3 , 

�(wd) = 4 . We can then observe that wc and wd are CW-minima, as their objective 

value cannot be improved by changing only one of their components, while wa and 

wb are not CW-optima, as the solutions can be improved by zeroing a component or 

setting the first component to 1, respectively.

We can conclude by remarking that searching through the CW-points allows to 

filter out a number of local minima that are certainly not globally optimal.

2.1  The MILO approach

Many approaches have been proposed to tackle cardinality-penalized problems in 

general and for problem (3) specifically. We provide a detailed review of many of 

these methods in Appendix. Here, we focus on a particular approach that is relevant 

for the rest of the paper.

Sato et al. [38] proposed a mixed integer linear (MILO) reformulation for prob-

lem (3), which is, to the best of our knowledge, the top performing one, as long as 

the dimensions of the underlying classification problem are not exceedingly large. 

Such approach has two core ideas. The first one consists of the replacement of the �
0
 

term by the sum of binary indicator variables.

The second key element is the approximation of the nonlinearity in L , i.e., the 

logistic loss function, by a piecewise linear function, so that the resulting reformu-

lated problem is a MILP problem. The approximating piecewise linear function is 

defined by the pointwise maximum of a family of tangent lines, that is,

min
w∈ℝ2

�(w) = (w
1
− 1)2 + (w

2
− 2)2 + 2‖w‖

0
.

f (v) = log(1 + exp(−v)) ≈ f̂ (v) = max{f �(vk)(v − vk) + f (vk) ∣ k = 1, 2,… , K}

= min{t ∣ t ≥ f �(vk)(v − vk) + f (vk), k = 1,… , K}
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for some discrete set of points {v
1,… , v

K} . The function f̂  is a linear underestima-

tor to the true loss logistic function. The final MILP reformulation of problem (3) is 

given by

where M is a large enough positive constant.

The choice of the tangent lines is clearly crucial for this method. For large values 

of K, problem (7) becomes hard to solve. On the other hand, if the number of lines 

is small, the quality of the approximation will reasonably be low. Hence, points vk 

should be selected carefully. Sato et al. [38] suggest to adopt a greedy algorithm that 

adds one tangent line at a time, minimizing the area of gap between the exact logis-

tic loss and the linear piece-wise approximation. In their work, Sato et al. [38] show 

that the greedy algorithm provides, depending on the desired set size, the following 

sets of interpolation points:

As problem (7) employs an approximation of L , the optimal solution ŵ obtained by 

solving it is not necessarily optimal for (3). However, since the objective of (7) is an 

underestimator of the original objective function, it is possible to make a posteriori 

accuracy evaluations. In particular, letting w⋆ be the optimal solution and

we have

Hence, if L(ŵ) − L̂(ŵ) is small, it is guaranteed that the value of the real objective 

function at ŵ is close to the optimum.

3  The proposed method

The MILO approach from [38] is computationally very effective, but it suffers from 

a main drawback: it scales pretty badly as either the number of examples or the num-

ber of features in the dataset grows. This fact is also highlighted by the experimental 

results reported in the original MILO paper.

(7)

min
w,z,t

2

N
∑

i=1

ti + �

n
∑

i=1

zi

s.t. − Mzi ≤ wi ≤ Mzi ∀ i = 1,… , n,

z ∈ {0, 1}n,

ti ≥ f �(vk)(y(i)(w⊤x(i)) − vk) + f (vk) ∀ k = 1,… , K, ∀ i = 1,… , N,

V1 = {0,±1.9,±∞}, V2 = V1 ∪ {±0.89,±3.55},

V3 = V2 ∪ {±0.44,±1.37,±2.63,±5.16}

L̂(w) = 2

N
∑

i=1

max
k

f �(vk)(y(i)(w⊤x(i)) − vk) + f (vk),

L̂(ŵ) + �‖ŵ‖
0
≤ L(w⋆) + ‖w

⋆‖
0
≤ L(ŵ) + �‖ŵ‖

0
.
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On the other hand, heuristic enumerative-like approaches present the limitation of 

performing moves with a limited horizon. This holds not only for the simple stepwise 

procedures, but also for other possible more complex and structured strategies that one 

may come up with. Indeed, selecting one move among all those involving the addition 

or removal from the current best subset of multiple variables at one time is unsustain-

able except for tiny datasets.

In this work, we propose a new approach that somehow employs the MILO formula-

tion to overcome the limitations of discrete enumeration methods, but also has better 

scalability features than the standard MILO approach itself, in particular w.r.t. the num-

ber of features. The core idea of our proposal consists of the application of a decompo-

sition strategy to problem (3). The classical Block Coordinate Descent (BCD) [5, 42] 

algorithm consists in performing, at each iteration, the optimization w.r.t. one block of 

variables, i.e., the iterations have the form

where B
�
⊂ {1,… , n} is referred to as working set, B̄

�
= {1,… , n}⧵B

�
 . Now, if the 

working set size |B| is reasonably small, the subproblems can be easily handled by 

means of a MILO model analogous to that from [38]. Carrying out such a strategy, 

the subproblems to be solved at each iteration have the form

At the end of each iteration, we can also introduce a minimization step of L w.r.t. 

the current nonzero variables. Since this is a convex minimization step, it allows to 

refine every iterate up to global optimality w.r.t. the support and to Lu–Zhang sta-

tionarity, i.e., local optimality, in terms of the original problem. This operation has 

low computational cost and a great practical utility, since it guarantees, as we will 

show in the following, finite termination of the algorithm.

3.1  The working set selection rule

Many different strategies could be designed for selecting, at each iteration � , the vari-

ables constituting the working set B
�
 , within the BCD framework. In this work, we 

propose a rule based on the violation of CW-optimality.

Given the current iterate x� , we can define a score function

(8)
w
�+1
B
�

∈ argmin
w

B�

F(w
B
�
;w�

B̄
�

),

(9)w
�+1

B̄
�

= w
�

B̄�

,

(10)

min
wB�

,z,t
2

N
∑

i=1

ti + �

∑

i∈B
�

zi

s.t. − Mzi ≤ wi ≤ Mzi ∀ i ∈ B
�
,

zi ∈ {0, 1} ∀ i ∈ B
�
,

ti ≥ f �(vk)(yi(w
⊤xi) − vk) + f (vk) ∀ k = 1,… , K, ∀ i = 1,… , N.

wB̄
�
= w�

B̄
�
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The rational of this score is to estimate what the objective function would become if 

we forced the considered variable w
i
 alone to change its status, entering/leaving the 

support.

We finally select the working set B� , of size b, choosing, in a greedy way, the b 

lowest scoring variables, i.e., by solving the problem

3.2  The complete procedure

The whole proposed algorithm is formally summarized in Algorithm 1. Basically, 

it is a BCD where subproblems are (approximately) solved by the MILO reformula-

tion and variables are selected by (12).

In addition, there are some technical steps aimed at making the algorithm work 

from both the theoretical and the practical point of view.

In the ideal case where the subproblems are solved exactly, thanks to our selec-

tion rule, we would be guaranteed to do at least as well as a greedy descent step 

along a single variable. However, subproblems are approximated and it happens 

that, solving the MILO, the true objective may sometimes not be decreased, even if 

the simple greedy step would. In such cases, we actually perform the greedy step to 

produce the next iterate.

Moreover, at the end of each iteration we perform the refinement step previously 

discussed. Note that this step cannot increase the value of F  , as we are lowering the 

value of L by only moving nonzero variables.

Last, we make the stopping criterion explicit; the algorithm stops as soon as an 

iteration is not able to produce a decrease in the objective value; we then return the 

point w�.

(11)p(w� , i) =

�
L(0, w�

≠i
) − � + �‖w�‖0 if w�

i
≠ 0,

minwi
L(wi, w�

≠i
) + � + �‖w�‖0 if w�

i
= 0.

(12)

B� ∈ arg min B

∑

h∈B

p(w� , h)

s.t. B ⊆ {1,… , n},

|B| = b.
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Algorithm 1: MILO-BCD

1 Input: w0 = 0, b < n.
2 for ℓ = 0, 1, . . . do

3 Select the working set Bℓ using rule (12)

4 Compute νℓ+1

Bℓ
by solving problem (10).

5 Set νℓ+1

B̄ℓ
= wℓ

B̄ℓ

6 if F(νℓ+1) ≥ F(wℓ) then

7 Set

νℓ+1 ∈ arg min
w

F(w)

s.t. ‖wℓ − w‖0 ≤ 1

w
B̄ℓ = wℓ

B̄ℓ

8 Set

wℓ+1 ∈ arg min
w

L(w)

s.t. wi = 0 for all i ∈ S̄(νℓ+1)

9 if F(wℓ+1) = F(wℓ) then

10 return wℓ

3.3  Theoretical analysis

In this section, we provide a theoretical characterization for Algorithm 1.

We begin by stating a nice property of the set of local minima of problem (3).

Lemma 1 Let Γ = {F(w) ∣ w is a local minimum point for problem (3)} . Then 

|Γ| ≤ 2
n
.

Proof For each support set S ⊆ {1,… , n} let L⋆

S
 be the optimal value of the problem

Let w⋆ be a local minimizer for problem (3). Then, from Lu–Zhang conditions and 

the convexity of L , it is a global minimizer of

and F(w⋆) = L
⋆

S(w⋆)
+ �|S(w⋆)| . We hence have

and so

min
w∶w

S̄
=0

L(w).

min
w∶w

S̄(w⋆)=0
L(w),

Γ = {L
⋆

S(w⋆)
+ �|S(w⋆)| ∣ w

⋆ is a local minimizer for (3)}

⊆ {L
⋆

S
+ �|S| ∣ S ⊆ {1,… , n}}
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  ◻

We go on with a statement about the relationship between the objective func-

tion F(w) and the score function p(w, i).

Lemma 2 Let p be the score function defined as in (11) and let w̄ ∈ ℝ
n . Moreover, 

for all h = 1,… , n , let w̄h ∈ argmin
wh

F(w
h
, w̄≠h

) . Then the following statements 

hold 

(1) If F(w̄h) = F(w̄) then p(w̄, h) ≥ F(w̄);

(2) If F(w̄h) < F(w̄) and w̄ satisfies Lu–Zhang conditions, then p(w̄, h) = F(w̄h).

Proof We prove the two statements one at a time: 

 (i) Let us assume that the thesis is false, i.e., F(w̄h) = F(w̄) and p(w̄, h) < F(w̄) . 

We distinguish two cases: w̄
h
= 0 and w̄

h
≠ 0 . In the former case we have 

 which is absurd. In the latter case, we have 

 which is again a contradiction; hence we get the thesis.

 (ii) We again distinguish two cases: w̄
h
= 0 and w̄

h
≠ 0 . In the first case we have 

 But since we know F(w̄h) < F(w̄) , we can imply that 

|Γ| ≤ |{L
⋆

S
+ �|S| ∣ S ⊆ {1,… , n}}| ≤ |{S ∣ S ⊆ {1,… , n}}| = 2

n
.

F(w̄) > p(w̄, h) = min
wh

L(wh, w̄≠h) + � + �‖w̄‖0

= min
wh

L(wh, w̄≠h) + � + �‖w̄≠h‖0

≥ min
wh

L(wh, w̄≠h) + �‖wh‖0 + �‖w̄≠h‖0

= min
wh

L(wh, w̄≠h) + �‖(wh, w̄≠h)‖0

= F(w̄h) = F(w̄),

F(w̄) > p(w̄, h) = L(0, w̄≠h) − � + �‖w̄‖0

= L(0, w̄≠h) + �‖(0, w̄≠h)‖0

≥ F(w̄h) = F(w̄),

F(w̄h) = min
wh

F(w
h
, w̄≠h

)

= min

{

min
wh≠0

F(w
h
, w̄≠h

), F(0, w̄≠h
)

}

= min

{

min
wh≠0

F(w
h
, w̄≠h

), F(w̄)

}
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 and we can also write 

 In the second case, since w̄ satisfies Lu–Zhang conditions, we have 

w̄
h
∈ arg min

wh
L(w

h
, w̄≠h

) . Therefore 

 Since F(w̄h) < F(w̄) = min
wh≠0 F(w

h
, w̄≠h

) , we get w̄h = (0, w̄≠h
) . We finally 

obtain 

  ◻

We are finally able to state finite termination and optimality properties of the 

returned solution of the MILO-BCD procedure.

Proposition 3 Let {w
�} be the sequence generated by Algorithm 1. Then {w

�} is a 

finite sequence and the last element w̄ is a CW-minimum for problem (3).

Proof From the instructions of the algorithm, for all � = 1, 2,… , we have that

hence ∇
i
L(w�) = 0 for all i ∈ S(w�) , i.e., w� satisfies Lu–Zhang conditions and is 

therefore a local minimum point for problem (3). From Lemma 1, we thus know 

that there exist finite possible values for F(w�) . Moreover, {F(w�)} is a nonin-

creasing sequence. We can conclude that in a finite number of iterations we get 

F(w�) = F(w�+1) , activating the stopping criterion.

min
wh≠0

L(w
h
, w̄≠h

) < L(0, w̄≠h
)

F(w̄h) = min
wh≠0

F(wh, w̄≠h)

= min
wh≠0

L(wh, w̄≠h) + �‖(wh, w̄≠h)‖0

= min
wh≠0

L(wh, w̄≠h) + � + �‖w̄≠h‖0

= min
wh≠0

L(wh, w̄≠h) + � + �‖w̄‖0

= min
wh

L(wh, w̄≠h) + � + �‖w̄‖0

= p(x̄, h).

w̄
h
∈ arg min

wh≠0L(wh
, w̄≠h

) + �‖(w
h
, w̄≠h

)‖0 = arg min
wh≠0F(w

h
, w̄≠h

).

F(w̄h) = L(w̄h) + �‖w̄h‖0

= L(0, w̄≠h) + �‖(0, w̄≠h)‖0

= L(0, w̄≠h) + �‖w̄≠h‖0

= L(0, w̄≠h) + �‖w̄‖0 − �

= p(w̄, h).

w
� ∈ argmin

w

L(w)

s.t. w
i
= 0 for all i ∈ S̄(w�),
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We now prove that the returned point, w̄ = w
�̄ for some �̄ ∈ ℕ , is CW-optimal. 

Assume by contradiction that w̄ is not CW-optimal. Then, there exists h ∈ {1,… , n} 

such that min
wh

F(w
h
, w̄≠h

) < F(w̄).

We show that this implies that there exists t ∈ {1,… , n} such that t ∈ B
�̄ and 

min
w

t

F(w
t
, w̄≠t

) < F(w̄) . Assume by contradiction that for all j ∈ B�̄ it holds 

minwj
F(wj, w̄≠j) = F(w̄) . Letting i any index in the working set B

�̄ and recalling 

Lemma 2, we have

which contradicts the working set selection rule (12).

Now, either F(��+1) < F(w�̄) after steps 4–5 of the algorithm, or, after step 7, we 

get

Therefore, since step 8 cannot increase the value of F  , we get F(w�̄+1) < F
�̄ , but 

this contradicts the fact that the stopping criterion at line 9 is satisfied at iteration �̄  .  

 ◻

3.4  Finding good CW‑optima

We have shown in the previous section that Algorithm 1 always returns a CW-optimal 

solution. Although this allows us to cut off a lot of local minima, there are in practice 

many low-quality CW-minima. For this reason, we introduce in our algorithm an heu-

ristic aimed at leaving bad CW-optima where it may get stuck.

In detail, we do as follows. Instead of stopping the algorithm as soon as the objec-

tive value does not decrease, we try to repeat the iteration with a different working set. 

In doing this, we obviously have to change the working set selection rule. This opera-

tion is repeated up to a maximum number of times. If after testing a suitable amount 

of different working sets a decrease in the objective function cannot be achieved, the 

algorithm stops.

Specifically, we define a modified score function

∑

j∈B�̄

p(w�̄
, j) =

∑

j∈B�̄⧵{i}

p(w�̄
, j) + p(w�̄

, i)

≥

∑

j∈B�̄⧵{i}

p(w�̄
, j) + F(w�̄)

>

∑

j∈B�̄⧵{i}

p(w�̄
, j) + p(w�̄

, h)

=
∑

j∈B�̄∪{h}⧵{i}

p(w�̄
, j),

F(��+1) ≤ min
w

t

F(w
t
, w

�̄

≠t
) < F(w�̄).

(13)p̂(w�
, i) = p(w�

, i) + 2
ri − 1,
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where r
i
 is the number of times the i-th variable was in the working set in the previ-

ous attempts.

The idea of this working set selection rule is to first try a greedy selection. Then, 

if that first attempt failed, we penalize (exponentially) variables that were tried more 

times and could not provide improvements in the end. This penalty is heuristic. In 

fact, we may end up with repeating the search over the same working set from the 

same starting point. However, we can keep track of the working set used throughout 

the outer iteration, in order to avoid duplicate computations.

Note that such a modification does not alter the theoretical properties of the algo-

rithm; on the other hand, it has a massive impact on the empirical performance.

4  Computational results

This section is dedicated to a computational comparison between the approach 

proposed in this paper and the state-of-the-art algorithms described in Sect. 2 and 

Appendix. In our experiments we took into account 11 datasets for binary classifi-

cation tasks, listed in Table 1, from the UCI Machine Learning Repository [15]. In 

fact, the digits dataset is inherently for multi-class classification; we followed the 

same binarization strategy as [38], assigning a positive label to the examples from 

the largest class and a negative one to all the others. Moreover, we removed data 

points with missing variables, encoded the categorical variables with a one-hot vec-

tor and normalized the other ones to zero mean and unit variance. In Table 1 we also 

reported the number n of data points and the number p of features of each dataset, 

after the aforementioned preprocessing operations.

These datasets constitute a benchmark to evaluate the performance of the 

algorithms under examination, namely: Forward Selection and Backward Elimi-

nation Stepwise heuristics, LASSO, Penalty Decomposition, Concave approxi-

mation, the Outer Approximation method in its original form, in the adapted 

version for cardinality-penalized problems and also in the variant exploiting the 

Table 1  List of datasets used for the experiments on best subset selection in logistic regression

Dataset n p Abbreviation

Parkinsons 195 22 parkinsons

Heart (statlog) 270 25 heart

Breast cancer wisconsin (prognostic) 194 33 breast

QSAR biodegradation 1055 41 biodeg

SPECTF heart 267 44 spectf

Spambase 4601 57 spam

Optical recognition of handwritten digits 3823 62 digits

Libras movement 360 90 libras

a2a 2265 123 a2a

w2a 2470 300 w2a

Madelon 2000 500 madelon
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approximated dual problems, MILO and our proposed method MILO-BCD. All 

of these algorithms are described in Appendix and Sect. 2.

All the experiments described in this section were performed on a machine 

with Ubuntu Server 18.04 LTS OS, Intel Xeon E5-2430 v2 @ 2.50 GHz CPU 

and 16GB RAM. The algorithms were implemented in Python 3.7.4, exploiting 

Gurobi 9.0.0 [20] for the outer approximation method, MILO and MILO-BCD. 

The scipy [43] implementation of the L-BFGS algorithm defined in [30] was 

employed for local optimization steps of all methods. A time limit of 10,000  s 

was set for each method.

Both the stepwise methods (forward and backward) exploit L-BFGS [30] as inter-

nal optimizer. The forward selection version uses L-BFGS to optimize the logistic 

with respect to one variable, whereas backward elimination defines his starting point 

exploiting L-BFGS to optimize the model w.r.t. all the variables.

Concerning LASSO, we solved Problem (14) using the scikit-learn imple-

mentation [36], with LIBLINEAR library [18] as internal optimizer, for each value 

of the hyperparameter � . Each � value was chosen so that two different hyperparam-

eters, �
1
≠ �

2
 , would not produce the same level of sparsity and to avoid the zero 

solution. More specifically, we defined our set of hyperparameters by computing 

the LASSO path, exploiting to the scikit-learn function l1_min_c. All the 

obtained solutions were refined by further optimizing w.r.t. the nonzero components 

only by means of L-BFGS. At the end of this grid search we selected the solution, 

among these one, providing the best information criterion value.

Penalty Decomposition requires to set a large number of hyperparameters: in our 

experiments we set � = 10
−1 , � = 10

−3 and �
�
= 1 for all the datasets. We ran the 

algorithm multiple times for values of � and �
�
 taken from a small grid. L-BFGS 

was again used as internal solver. The best solution obtained, in terms of informa-

tion criterion, was retained at the end of the process.

Concave approximation, theoretically, requires the solution of a sequence of 

problem. However, as outlined in Appendix, a single problem with fixed approxima-

tion hyperparameter � can be solved in practice [37]. In our experiments, Problem 

(17) was solved by using L-BFGS. Again, we retain as optimal solution the one that, 

after an L-BFGS refining step w.r.t. the nonzero variables, minimizes the informa-

tion criterion among a set of resulting points obtained for different values of �.

It is important to highlight that the refining optimization step is crucial for meth-

ods like the Concave Approximation or LASSO; as a matter of fact, without this 

precaution, the computed solutions don’t even necessarily satisfy the Lu–Zhang 

conditions.

All variants of the Outer Approximation method expoit Gurobi to handle the 

MILP subproblems and L-BFGS for the continuous ones. As suggested by [8], a sin-

gle branch and bound tree is constructed to solve all the MILP subproblems, adding 

cutting-type constraints dynamically as lazy constraints. Moreover, the starting cut 

is decided by means of the first-order heuristic described in the referenced work. For 

the cardinality-constrained version of the algorithm, we set a time limit of 1000 s 

for the solution of any individual problem of the form (18) with a fixed value of s. 

As for the dual formulation, we set � = 10
4 to make the considered problem as close 

as possible to the formulation tackled by all other algorithms. The approximated 
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version of the dual problem, which is quadratic, is efficiently solved with Gurobi 

instead of L-BFGS.

As concerns MILO and MILO-BCD, we employed the V
2
 set of interpolation 

points for both methods, in order to have a good trade-off between accuracy and 

computational burden. Moreover, for MILO-BCD we set the cardinality of the 

working set b to 20 for all the problems. We report in Sect. 4.1 the results of prelimi-

nar computational experiments that appear to support our choice. All the subprob-

lems were solved with Gurobi. For MILO-BCD we employ the heuristic discussed 

in Sect. 3.4. For each problem, the maximum number of consecutive attempts with 

no improvement, before stopping the algorithm, is set to n. Note that, in order to 

improve the algorithm efficiency, we instantiate a single MILP problem with n vari-

ables and dynamically change the box constraints based on the current working set. 

The continuous optimization steps needed to perform steps 7 and 8 of Algorithm 1 

are performed by using L-BFGS.

In Tables  2, 3, 4 and 5 the computational results of minimizing AIC and BIC 

respectively on the 11 datasets are shown. For each algorithm and problem, we can 

see the information criterion value at the returned solution, its zero norm and the 

total runtime. We can observe the effectiveness of the MILO-BCD approach w.r.t. 

the other methods. In particular in 8 out of 11 test problems MILO-BCD found the 

best AIC value, while in the remaining three cases it attains a very close second-

best result. The results of minimizing BIC are very similar: for 9 out of 11 datasets 

MILO-BCD returns the best solution and in the remaining two it ranks at the second 

place. We can also note that, in cases where p is large such as spam, digits, a2a, 

w2a and madelon datasets, our method, within the established time limit, is able 

to find a much better quality solution with respect to the other algorithms (with the 

only exception of spam for the AIC), and in particular compared to MILO.

As for the efficiency, Tables 2, 3, 4 and 5 also allow to evaluate the computational 

burden of MILO-BCD. As expected, our method is slower than the approaches that 

are not based on Mixed Integer Optimization, which on the other hand provide lower 

quality solutions. However, compared to standard MILO, we can see a considera-

ble improvement in terms of computational time with both the small and the large 

datasets.

In Fig. 1 we plot the cumulative distribution of absolute distance from the opti-

mum attained by each solver, computed upon the 22 subset selection problems. The 

x-axis values represent the difference in absolute value between the information cri-

terion obtained and the best one found, while y-axis reports the fraction of solved 

problems within a certain distance from the best. As it is possible to see, MILO-

BCD clearly outperforms the other methods. As a matter of fact, MILO-BCD always 

found a solution that is distant less than 15 from the optimal one and in around the 

80% of the problems it attained the optimal solution. We can also see that for all 

the other methods there is a number of bad cases where the obtained value is very 

far from the optimal one. Note that we consider the absolute distance from the best, 

instead of a relative distance, since it is usually the difference in IC values which is 

considered in practice to assess the quality of a model w.r.t. another one [12].

Finally, we highlight that MILO-BCD manages to greatly increase the perfor-

mance of MILO, without making its interface more complex. As a matter of fact, 
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Table 2  Results of AIC minimization in logistic regression with different optimization methods on small 

datasets (best result for each dataset in bold)

Dataset Method AIC �
0

Time (s)

parkinsons Forward stepwise 129.2567 5 0.280

Backward stepwise 126.6948 17 0.172

LASSO 129.7412 16 6.290

Penalty decomposition 134.1499 2 22.486

Concave approximation 129.6589 17 2.899

Outer approximation CC 115.8998 9 ≥ 10,000

Outer approximation CP 120.6478 11 ≥ 10,000

Outer approximation dual 128.1812 17 3.278

MILO 113.5371 8 12.531

MILO-BCD 113.5005 8 93.708

heart Forward stepwise 197.6972 11 0.577

Backward stepwise 216.6682 23 0.038

LASSO 202.4335 15 2.282

Penalty decomposition 226.1013 4 49.500

Concave approximation 206.4321 17 1.384

Outer approximation CC 206.8911 12 ≥ 10,000

Outer approximation CP 263.2117 5 ≥ 10,000

Outer approximation dual 207.2493 19 4.087

MILO 195.7757 11 41.593

MILO-BCD 195.6242 11 95.399

breast Forward stepwise 180.4932 6 0.470

Backward stepwise 163.2610 33 0.413

LASSO 156.6797 24 21.321

Penalty decomposition 189.2942 2 8.044

Concave approximation 158.11729 24 3.398

Outer approximation CC 166.1055 34 ≥ 10,000

Outer approximation CP 202.8904 9 ≥ 10,000

Outer approximation dual 161.6405 31 6.675

MILO 147.5119 19 86.250

MILO-BCD 147.6781 17 236.126

biodeg Forward stepwise 703.9588 20 3.582

Backward stepwise 661.6047 32 0.417

LASSO 665.1640 32 65.344

Penalty decomposition 671.8854 18 232.120

Concave approximation 663.5171 24 5.789

Outer approximation CC 678.4316 42 ≥ 10,000

Outer approximation CP 1263.0706 6 ≥ 10,000

Outer approximation dual 681.6687 31 29.329

MILO 653.4768 23 6885.277

MILO-BCD 654.4053 25 707.356
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we have only added a hyperparameter that controls the cardinality of the working 

set and experimentally appears to be extremely easy to tune. Indeed, note that all the 

experiments were carried out using the same working set size for each dataset and, 

despite this choice, MILO-BCD shown impressive performances in all the consid-

ered datasets.

4.1  Varying the working set size

The value of the working set size b may greatly affect the performance of the MILO-

BCD procedure, in terms of both quality of solutions and running time. For this rea-

son, we performed a study to evaluate the behavior of the algorithm as the value of 

b changes. We ran MILO-BCD on the problems obtained from datasets at different 

scales: heart, breast, spectf, and a2a. AIC is used as GOF measure.

The results are reported in Table  6 and Fig.  2. We can see that a working set 

size of 20, as employed in the experiments of the previous section, provides a 

good trade-off. Indeed, the running time seems to grow in general with the work-

ing set size, whereas the optimal solution is approached only when large working 

Table 2  (continued)

Dataset Method AIC �
0

Time (s)

spectf Forward stepwise 178.9840 6 0.797

Backward stepwise 180.0595 28 0.214

LASSO 181.4678 13 8.966

Penalty decomposition 222.8672 2 55.287

Concave approximation 181.8271 17 3.788

Outer approximation CC 178.8349 12 ≥ 10,000

Outer approximation CP 222.3555 5 ≥ 10,000

Outer approximation dual 206.1484 38 10.766

MILO 168.5162 15 1293.650

MILO-BCD 168.3443 15 205.6255

libras Forward stepwise 53.3215 11 2.558

Backward stepwise 152.0723 76 0.470

LASSO 28.0720 14 5.413

Penalty decomposition 142.4580 2 530.951

Concave approximation 70.0072 35 12.532

Outer approximation CC 33.4904 11 ≥ 10,000

Outer approximation CP 72.4350 6 ≥ 10,000

Outer approximation dual 64.0018 32 58.061

MILO 14.2040 7 ≥ 10,000

MILO-BCD 14.1557 7 654.227
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Table 3  Results of AIC 

minimization in logistic 

regression with different 

optimization methods on large 

datasets (best result for each 

dataset in bold)

Dataset Method AIC �
0

Time (s)

spam Forward stepwise 1906.5143 45 36.136

Backward stepwise 1901.9650 46 1.468

LASSO 1892.6580 53 1209.108

Penalty decomposition 5244.4292 3 ≥ 10,000

Concave approximation 1916.1159 51 13.654

Outer approximation CC 1963.0467 52 ≥ 10,000

Outer approximation CP 2138.2306 36 ≥ 10,000

Outer approximation dual 1931.7670 58 161.062

MILO 1909.0709 44 ≥ 10,000

MILO-BCD 1904.2989 44 8442.004

digits Forward stepwise 378.6893 25 13.139

Backward stepwise 341.8344 42 1.894

LASSO 346.9967 43 2154.283

Penalty decomposition 7168.3316 1 ≥ 10,000

Concave approximation 338.1436 31 24.398

Outer approximation CC 386.4583 64 ≥ 10,000

Outer approximation CP 686.1014 12 ≥ 10,000

Outer approximation dual 372.3541 44 125.282

MILO 323.6231 26 ≥ 10000

MILO-BCD 322.7531 25 6557.441

a2a Forward stepwise 1605.9851 34 20.864

Backward stepwise 1659.0279 87 4.038

LASSO 1615.6245 60 394.008

Penalty decomposition 1676.8714 16 605.042

Concave approximation 1647.3086 84 17.422

Outer approximation CC 1710.0609 120 ≥ 10,000

Outer approximation CP 2581.0224 2 ≥ 10,000

Outer approximation dual 1663.0632 53 ≥ 10,000

MILO 1607.3254 52 ≥ 10,000

MILO-BCD 1589.5884 37 8553.430

w2a Forward stepwise 395.0422 51 283.327

Backward stepwise 479.2162 169 137.361

LASSO 721.0487 294 ≥ 10,000

Penalty decomposition 1973.6854 1 ≥ 10,000

Concave approximation 534.2647 166 144.470

Outer approximation CC 760.3417 301 ≥ 10,000

Outer approximation CP 833.2059 7 ≥ 10,000

Outer approximation dual 722.9003 294 207.279

MILO 358.5662 82 ≥ 10,000

MILO-BCD 339.7765 55 ≥ 10,000
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sets are employed. We can see that in some cases a slightly larger value of b allows 

to retrieve even better solutions than those obtained in the experiments of Sect. 4, 

but the computational cost significantly increases. In the end, as can be observed in 

Sect. 4, the choice b = 20 experimentally led to excellent results on the entirety of 

our benchmark.

5  Conclusions

In this paper, we considered the problem of best subset selection in logistic regres-

sion, with particular emphasis on the IC-based formulation. We introduced an algo-

rithm combining mixed-integer programming models and decomposition techniques 

like the block coordinate descent. The aim of the algorithm is to find high quality 

solutions even on larger scale problems, where other existing MIP-based methods 

are unreasonably expensive, while heuristic and local-optimization-based methods 

produce very poor solutions.

We theoretically characterized the features and the behavior of the proposed 

method. Then, we showed the results of wide computational experiments, prov-

ing that the proposed approach indeed is able to find, in a reasonable running time, 

much better solutions than a set of other state-of-the-art solvers; this fact appears 

particularly evident on the problems with higher dimensions.

Future research will be focused on the definition of possibly more effective and 

efficient working set selection rules for our algorithm. Upcoming work may also 

be aimed at adapting the proposed algorithm to deal with different or more general 

problems.

In particular, the case of multi-class classification is of great interest. How-

ever, the problem is challenging. Specifically, the complexity in directly extending 

our approach to the multinomial case lies in the definition of the piece-wise lin-

ear approximation of the objective function. Indeed, in the multi-class scenario, 

Table 3  (continued)
Dataset Method AIC �

0
Time (s)

madelon Forward stepwise 2506.9165 91 461.957

Backward stepwise 2528.5802 156 431.609

LASSO 2523.0742 103 1795.424

Penalty decomposition 2638.5021 4 833.624

Concave approximation 2769.9642 340 47.042

Outer approximation CC 2652.4555 9 ≥ 10,000

Outer approximation CP 2765.2852 2 ≥ 10,000

Outer approximation dual 2657.4810 15 ≥ 10,000

MILO 2616.5531 16 ≥ 10,000

MILO-BCD 2504.0655 102 ≥ 10,000
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Table 4  Results of BIC minimization in logistic regression with different optimization methods on small 

datasets (best result for each dataset in bold)

Dataset Method BIC �
0

Time (s)

parkinsons Forward stepwise 142.4486 3 0.198

Backward stepwise 166.7417 12 0.165

LASSO 140.6959 2 6.391

Penalty decomposition 277.1788 1 25.056

Concave approximation 147.2337 4 2.922

Outer approximation CC 139.1962 6 ≥ 10,000

Outer approximation CP 139.1962 6 5533.104

Outer approximation dual 145.6313 3 3.412

MILO 137.6446 6 16.276

MILO-BCD 137.6011 6 93.572

heart Forward stepwise 225.7059 5 0.337

Backward stepwise 279.0788 19 0.065

LASSO 227.2449 5 2.350

Penalty decomposition 317.3171 1 61.155

Concave approximation 251.8435 12 2.156

Outer approximation CC 236.8324 3 ≥ 10,000

Outer approximation CP 288.0285 5 ≥ 10,000

Outer approximation dual 234.3866 7 4.045

MILO 223.7984 6 22.865

MILO-BCD 223.6797 6 116.618

breast Forward stepwise 195.8299 2 0.216

Backward stepwise 265.9623 32 0.354

LASSO 195.8299 2 21.225

Penalty decomposition 195.8299 2 7.972

Concave approximation 203.5140 6 3.201

Outer approximation CC 194.2193 4 ≥ 10,000

Outer approximation CP 231.7141 8 ≥ 10,000

Outer approximation dual 195.8300 2 6.664

MILO 192.4211 10 653.077

MILO-BCD 193.5695 5 124.760

biodeg Forward stepwise 782.2522 13 2.560

Backward stepwise 792.7384 26 0.400

LASSO 785.1660 22 65.498

Penalty decomposition 950.2008 4 420.761

Concave approximation 772.6349 22 6.917

Outer approximation CC 880.5540 12 ≥ 10,000

Outer approximation CP 1154.3736 5 ≥ 10,000

Outer approximation dual 835.4689 31 29.016

MILO 746.8531 14 ≥ 10,000

MILO-BCD 745.1778 13 2305.093
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the number of weights is n × m , being m the number of classes, and N × m pieces 

of the objective function need to be approximated. This results in an increasingly 

high number of variables and constraints to be handled, which might become rap-

idly unmanageable even exploiting our decomposition approach. Hence, future work 

might be focused on devising alternative decomposition approaches specifically 

designed to tackle the multinomial case.

Appendix: Review of related algorithms

A number of techniques has been proposed and considered in the literature to tackle 

problem (3). If the number of variables n in not exceedingly large, especially in 

the case of convex L , heuristic and even exhaustive approaches are a viable way of 

proceeding.

The exhaustive approach consists of finding the global minimum for L for all 

possible combinations of non-zero variables. All the retrieved solutions are then 

compared, adding to L the penalty term on the �
0
-norm, to identify the optimal 

Table 4  (continued)

Dataset Method BIC �
0

Time (s)

spectf Forward stepwise 203.9442 4 0.573

Backward stepwise 237.7547 17 0.252

LASSO 208.8296 7 8.949

Penalty decomposition 277.1788 1 25.056

Concave approximation 228.256224 12 3.867

Outer approximation CC 214.4389 3 ≥ 10,000

Outer approximation CP 224.2627 5 ≥ 10,000

Outer approximation dual 251.6325 7 10.649

MILO 196.8356 5 231.938

MILO-BCD 196.8238 5 115.597

libras Forward stepwise 101.5028 4 1.145

Backward stepwise 270.8327 46 0.970

LASSO 71.4674 9 5.453

Penalty decomposition 182.2357 1 42.429

Concave approximation 131.7340 17 14.591

Outer approximation CC 75.3065 9 ≥ 10,000

Outer approximation CP 153.6910 5 ≥ 10,000

Outer approximation dual 132.1737 10 58.047

MILO 41.3979 7 ≥ 10,000

MILO-BCD 53.0895 9 642.618
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Table 5  Results of BIC minimization in logistic regression with different optimization methods on large 

datasets (best result for each dataset in bold)

Dataset Method BIC �
0

Time (s)

spam Forward stepwise 2361.1337 27 28.446

Backward stepwise 2140.7302 32 2.0124

LASSO 2177.5219 40 1214.969

Penalty decomposition 6184.8715 1 ≥ 10,000

Concave approximation 2196.5090 38 16.464

Outer approximation CC 2336.2203 58 ≥ 10,000

Outer approximation CP 3894.7351 10 ≥ 10,000

Outer approximation dual 2275.2687 51 157.805

MILO 2150.2450 30 ≥ 10,000

MILO-BCD 2137.9834 31 ≥ 10,000

digits Forward stepwise 552.1658 13 8.110

Backward stepwise 468.9395 20 2.615

LASSO 529.0165 24 2160.987

Penalty decomposition 5299.8033 0 ≥ 10,000

Concave approximation 516.442699 28 32.288

Outer approximation CC 640.2697 10 ≥ 10,000

Outer approximation CP 1696.2871 5 ≥ 10,000

Outer approximation dual 596.1621 28 128.011

MILO 448.3050 14 ≥ 10,000

MILO-BCD 441.0145 15 9949.433

a2a Forward stepwise 1741.3958 15 10.727

Backward stepwise 2016.2528 64 5.798

LASSO 1764.5871 15 397.503

Penalty decomposition 1860.2444 5 607.869

Concave approximation 1873.3706 44 21.709

Outer approximation CC 2028.2982 11 ≥ 10,000

Outer approximation CP 2268.7472 4 ≥ 10,,000

Outer approximation dual 1829.5696 14 ≥ 10,000

MILO 1754.9999 16 ≥ 10,000

MILO-BCD 1733.8513 17 2933.3452

w2a Forward stepwise 614.3182 18 107.705

Backward stepwise 1320.8765 143 147.459

LASSO 2524.0133 293 ≥ 10,000

Penalty decomposition 1979.8373 1 ≥ 10,000

Concave approximation 919.0693 70 166.238

Outer approximation CC 879.0359 2 ≥ 10,000

Outer approximation CP 931.5931 3 ≥ 10,000

Outer approximation dual 2531.5618 294 205.223

MILO 671.9868 20 ≥ 10,000

MILO-BCD 579.0229 26 8842.6791
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solution to the original problem. This approach is however clearly computationally 

intractable.

In applications, an heuristic relaxation of the exhaustive search is employed: the 

greedy step-wise approach, with both its variants, the forward selection strategy and 

the backward elimination strategy [17]. This method consists of adding (or remov-

ing, respectively) a variable to the support, in such a way that the variation of the 

objective function obtained by only changing that variable is optimal; the proce-

dure typically stops as soon as the addition (removal) of a variable is not enough to 

improve the quality of the solution. This technique is clearly much cheaper, at the 

cost of a lower quality of the final solution retrieved.

Table 5  (continued)

Dataset Method BIC �
0

Time (s)

madelon Forward stepwise 2660.6283 3 24.179

Backward stepwise 2732.3224 15 488.801

LASSO 2661.9344 6 1852.270

Penalty decomposition 2772.5887 0 75.713

Concave approximation 3030.0118 86 152.799

Outer approximation CC 2677.8156 4 ≥ 10,000

Outer approximation CP 2781.6611 2 ≥ 10,000

Outer approximation dual 2689.3907 2 ≥ 10,000

MILO 2681.9310 1 ≥ 10000

MILO-BCD 2660.6283 3 ≥ 10,000
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One of the most prominent approaches (arguably the most popular one) to 

induce sparsity in model estimation problems is Lasso [41]. Lasso consists of 

approximating the �
0
 penalty term by a continuous, convex surrogate, the �

1
-

norm. When applied to (3), the resulting optimization problem is the widely used 

�
1
-regularized formulation of logistic regression [27, 29, 45]:

The �
1
-norm is well known to be sparsity-inducing [3]. Lasso often produces good 

solutions with a reasonable computational effort and is particularly suited for large 

scale problems, where methods directly tackling the �
0
 formulation are too expen-

sive to be employed. However, equivalence relationships between problems (3) and 

(14) do not exist. Thus, problem (14) usually has to be solved for many different 

values of � in order to find a satisfying solution of (14). Still, the solution is typically 

suboptimal for problem (3) and poor from the statistical point of view [33, 40, 46].

Lu and Zhang  [32] proposed a Penalty Decomposition (PD) approach to 

solve problem (3). The classical variable splitting technique [25] can be applied 

to problem (3), duplicating the variables, adding a linear equality constraint 

(14)min
w∈ℝn

L(w) + �‖w‖
1
.

Table 6  Results obtained by the 

MILO-BCD procedure on the 

best subset selection problem 

based on AIC with four datasets 

for different values of working 

set size b 

Dataset b AIC �
0

Time (s)

heart 2 198.7826 11 8.326

8 195.7715 10 35.240

14 195.7715 10 42.222

20 195.6242 11 95.399

26 – – –

32 – – –

breast 2 176.3391 7 10.079

8 158.0725 13 36.012

14 154.6846 17 72.4643

20 147.6781 17 236.126

26 147.0381 19 435.3751

32 147.0381 19 2077.4473

spectf 2 171.9253 12 19.333

8 175.4713 7 43.999

14 169.4771 18 118.313

20 168.3443 15 205.6255

26 168.3443 15 485.486

32 168.3443 15 1245.422

a2a 2 1591.7767 35 430.714

8 1595.2172 37 1333.7368

14 1590.7749 35 1984.113

20 1589.5884 37 8553.430

26 1586.7499 39 ≥ 10,000

32 1592.8824 37 ≥ 10,000
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and separating the two parts of the objective function, obtaining the following 

problem:

Problem (15) can then be solved by an alternate exact minimization of the quadratic 

penalty function

where the penalty parameter � is increased every time a (approximate) stationary 

point, w.r.t. the w block of variables, of the current q
�
 is attained. The algorithm is 

summarized in Algorithm 2.

(15)
min

w,z∈ℝn

L(w) + �‖z‖0

s.t. w − z = 0.

(16)q
�
(w, z) = L(w) + �‖z‖0 +

�

2
‖w − z‖2

2
,

(a) (b)

(c) (d)

Fig. 2  Trade-off between runtime and solution quality for different values of the working set size in 

MILO-BCD, on the best subset selection problem based on AIC for the four considered problems
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Algorithm 2: Penalty Decomposition

1 Input: τ > 0, στ > 1, w0, z0 ∈ R
n, ε > 0, η > 0, σε ∈ (0, 1).

2 k = 0

3 while ‖wk − zk‖ > η do

4 Set

wk+1 = arg min
w

L(w) +
τ

2
||w − zk||2

5 Set

zk+1 = arg min
z

τ

2
||wk+1 − z||2 + λ||z||0

6 if ‖∇wqτ (wk, zk)‖ ≤ ε then

7 Set τ = στ τ

8 Set ε = σε ε

9 k = k + 1

10 return zk

The z-update step can in fact be carried out in closed form by the following rule:

The algorithm is proved to asymptotically converge to Lu–Zhang stationary points, 

i.e., to local minima. The solution retrieved by the algorithm strongly depends on 

the choice of the initial value of the penalty parameter � and of the increase factor 

�
�
 . Therefore, in order to find good quality solutions, the algorithm may be run in 

practice several times with different hyperparameters configurations.

A different approach exploits the fact that the �
0
 semi-norm can be approximated by 

the sum of a finite sum of scalar terms, each one being a surrogate for the step function. 

In particular, the scalar step function can be approximated, for t > 0 , by the continu-

ously differentiable concave function s(t) = 1 − e
−�t , as done by [37] or [31]. Problem 

(3) can hence be reformulated as

A sequence of problems of the form (17), for increasing values of � , can then be 

solved, producing a sequence of solutions that are increasingly good approximations 

of those of the original problem. In fact, in the computational practice, problem (17) 

is solved for a suitable, fixed value of �.

In recent years, very effective algorithms have been proposed in the literature to 

tackle the sparse logistic regression in its cardinality-constrained formulation, i.e., to 

solve the problem

z
k+1

i
=

{

0 if
�

2
(wk

i
)2 < �,

w
k+1

i
otherwise.

(17)min
w∈ℝn

L(w) + �

n∑

i=1

(1 − e
−�|w

i
|).

(18)
min
w∈ℝn

L(w)

s.t. ‖w‖0 ≤ s,
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for fixed s < n . Among these methods, the most remarkable one is arguably the 

Outer Approximation method [10, 16], which was proposed to be used for problem 

(18) by [8]. The algorithm, which is briefly reported in Algorithm 3, works in an 

alternating minimization fashion. First, it exactly solves, through a mixed-integer 

solver, a cutting-plane based approximation of the problem; then, it finds the exact 

global minimum w.r.t. the support of the newly obtained solution. If the objec-

tive function of the MIP problem is within some pre-specified tolerance � of the 

true objective function at the new iterate, then the algorithm stops, otherwise the 

obtained point is used to perform a new cut.

Algorithm 3: Outer Approximation Method

1 Input: M ≫ 0, w0 ∈ R
n, ν0 = −∞, ǫ > 0.

2 k = 0

3 while νk − L(wk) < ǫ do

4 Set

β̂, νk+1 ∈ arg min
β,w

β

s.t. − Mzi ≤ wi ≤ Mzi ∀ i = 1, . . . , n,

z ∈ {0, 1}n,

n∑

i=1

zi ≤ s,

β ≥ L(wℓ) + ∇L(wℓ)T (w − wℓ) ∀ ℓ = 0, . . . , k,

5 Set

wℓ+1 ∈ arg min
w

L(w)

s.t. wi = 0 for all i ∈ S̄(νk+1)

6 k = k + 1

7 return zk

Algorithm 3 can be employed to solve problem (3), by running it for every possible 

value of s = 1,… , n and choosing, among the n retrieved solutions, the one with low-

est IC value.

In fact, the algorithm can straightforwardly be adapted to directly handle problem 

(3). To this aim it is sufficient to remove from the MIP subproblem the cardinality con-

straint and add it as a penalty term in the objective function.

Recently, Kamiya et al. [26] proposed an alternative way of using the outer approxi-

mation method, which is however based on the �
2
-regularized formulation of the logis-

tic regression problem with cardinality constraints

min
w∈ℝn

L(w) +
1

2�
‖w‖2

2

s.t. ‖w‖
0
≤ s.
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Applying duality theory, the optimal value obtainable for a fixed configuration z of 

nonzero variables, c(z), can be computed by solving the problem

whereas cuts for the cutting-planes approximation can be added as

where

They also show that the left hand side of the objective function in the dual prob-

lem can be approximated by a properly defined parabola, which makes the problem 

quadratic and thus much more efficiently solvable:

This approximation, seen back in the primal space, is a good quadratic piecewise 

approximation of the logistic loss which should be more accurate than the piece-

wise linear employed by [38].
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