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ABSTRACT Code clone detection is important for effective software maintenance. The task is
more challenging when clones are semantically similar (Type-IV) in nature, having no structural
resemblance to each other. Most existing methods use sequence similarity and/or graph isomor-
phism between either Abstract Syntax Trees (AST) or Program Dependency Graphs (PDG) to
detect Type-I, II and III clones. However, they are mostly unsuccessful in detecting semantic or
Type-IV clones. In this work, we propose a novel detection framework using machine learning for
automated detection of all four type of clones. The features extracted from a pair code blocks are
combined for possible detection of a clone with respect to reference block. We use ASTs and PDGs
features of both the code blocks to prepare labelled training samples after fusing the two feature
vectors using three different alternatives. We use six (06) state-of-the-art classification models
including Deep Convolutional Neural Network to assess the prediction performance of our scheme.
To access the effectiveness of our framework we use seven (07) datasets and compare its performance
with five state-of-the-art clone detectors. We also compare a large number of algorithms for code
clone detection. Comparing the performance of a large number of machine learning techniques,
ANN and non-ANN, using such features, and establishing that fusing of AST and PDG features
gives competitive results using deep learning as well as boosted tree algorithms, and find that
boosted tree algorithms like XGBOOT are quite competitive in clone detection. Experimental
results demonstrate that our approach outperforms existing clone detection methods in terms of
prediction accuracy.

INDEX TERMS Machine Learning, Code Clones, Semantic Clones, AST, PDG, Features, Deep
learning, Classification.

I. INTRODUCTION

In the software engineering life cycle, maintenance is
the most expensive and time-consuming phase. The task
of maintenance is arduous usually because of inherent
complexity and poor programming practices. In a large
software system, it has been observed that often pairs of
segments occurring in different locations are functionally
identical or similar. Sloppy or even good programmers
find it easy to make minor modifications to an existing

code segment to serve the current purpose in some other
part of a program or a project. Very often programmers
find sets of useful statements, called code blocks, and
copy-paste them as necessary, modifying as per require-
ment to make the software development process faster.
Duplicated code blocks are popularly known as code
clones (CC). Research has reported that 7%-23% of large
software projects are code clones [1], [2]. Many studies
show that a software system with frequent occurrence

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079156, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of code clones is difficult to maintain [3]. One of the
problems with code cloning occurs when an original
code block, which is cloned, contains a bug, causing
ripple effects to all cloned blocks distributed all over
the program or project. Detecting code clones is an
important and challenging task. Automatic detection
of clones not only improves the software maintenance
task, but also may be useful in identifying software
plagiarism [4] and code obfuscation [5], detection of
malicious software [6], discovery of context-based incon-
sistencies [7], and opportunities for code refactoring [8].

Automatic clone detection is an active area of re-
search. A number of efforts to detect clones effectively
have been published. Existing clone detection methods
commonly use similarity metrics to compare fragments
of codes. All published methods have difficulty in de-
tecting semantic clones, the most challenging types of
clones. Semantic clones are syntactically different, but
functionally they produce similar outcomes. Traditional
approaches are ineffective because their similarity met-
rics do not capture semantics well [9], [10]. As a re-
sult, performance of the methods becomes fairly low
in terms of assessment metrics. Machine learning has
been recently used successfully in several approaches for
automatic detection of code clones, although the amount
of work is limited. Moreover, although there are a few
attempts at using machine learning, the efforts have
been limited in addressing the issue of semantic clones
for detection of code clones.

The contributions of this paper are following.

• We present a simple formal model of the code clone
problem and its types to better understand the
issues involved.

• We explore a new way of using features from Ab-
stract Syntax Trees (ASTs) and Program Depen-
dency Graphs (PDGs) to detect Java code clones,
including semantic clones. We believe that this
attempt is the first of its kind to use features
from both ASTs and PDGs to detect semantic code
clones using machine learning. We use the full path
traversal algorithm for extracting AST and PDG
features and represent these features as vectors.

• We propose a generalized machine learning frame-
work for clone detection of all four types. Special
emphasis is on detecting semantic clones, which is
the most challenging type of clones to detect.

• We use state-of-the-art classification models to eval-
uate the effectiveness of our proposed idea. we
also compare the performance of a large number
of machine learning techniques, ANN and non-
ANN, using such features, and establishing that
fusing of AST and PDG features gives competitive
results using deep learning as well as boosted tree
algorithms.

We organize the paper as follows. Section II introduces

the code clone detection problem. Prior research in the
area is highlighted in Section III. In Section IV, we
propose a new machine learning framework for detec-
tion of semantic code clones. We evaluate and compare
our proposed method and report results in Section V.
Finally, we conclude our work in Section VI.

II. DETECTION OF CODE CLONES

Code clone detection may be performed within a single
program or project, or across programs or projects.
A modular program usually consists of a set of sub-
programs or methods. A method is a set of executable
program statements with precisely defined starting and
ending points, performing a cohesive task. In this paper,
we term it a method block. A method block may be
divided into sub-blocks, e.g., loops, conditional state-
ments, etc. In our work, we use the terms method block
and code block interchangeably.

Definition 1 (Block). A block B is a sequence of state-
ments, Si, i = 1, · · · , M , comprising of programming
language specific executable statements such as loops,
logical statements and arithmetic expressions:

B =< S1, · · ·SM > .

Definition 2 (Code Clones). Two code blocks Bi and
Bj constitute a code clone pair if they are similar based
on some metric:

clone(Bi, Bj) =

{

1, if sim(Bi, Bj) > θ

0, otherwise.
(1)

We measure similarity considering a set of charac-
teristics or features we use to describe a block. We
can describe a block simply in terms of the statements
contained in it, or in terms of other characteristics
extracted from the statements in the code, as we will
see later. Bi and Bj are clones, if they score higher
than a specific threshold using a pre-specified similarity
criterion (sim).

The code clone detection problem can be defined as
follows.

Definition 3 (Code Clone Detection). Given a pair of
blocks Bi and Bj , code clone detection is a boolean
mapping function f : Bi × Bj → N ∈ [1, 0], where
Bi × Bj represents the similarity function given in
Equation 1.

To detect if a pair of blocks are clones of each other,
two kinds of similarities may be considered. Blocks Bi

and Bj may be textually similar, or may functionally
perform similar tasks or the same task without being
textually similar. The first kind of clones is simple in na-
ture, usually resulting from the practice of copying and
direct pasting. However, the second type of similarity is
difficult to define precisely. Bellon et al. [11] identified
three type of clones based on textual similarity of the
programs.
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Definition 4 (Type-I: Exact Clones). Two blocks are
the exact clones of each other if they are exactly the
same except whitespaces, blanks and comments.

Let Bi and Bj be two blocks. Let Bi =<

Si1, · · · , SiNi
>, and Bj =< Sj1, · · · , SjNj

>. Let
Bt

i = trim(Bi) where trim(.) is a function that removes
whitespaces, blanks and comments from the block and
its statements. Thus, whitespaces that cover an entire
line are removed, as well as whitespaces within state-
ments. Bi and Bj are exact clones of each other if i)
|Bt

i | = |B
t
j |, i.e., they are both of the same length after

trimming, and ii) ∀k, k = 1, · · · , |Bt
i | S

t
ik ≡ St

jk where ≡
means that the two statements are exactly the same,
considered as strings. The superscript t means after
trimming.

Definition 5 (Type-II: Renamed Clones). Two blocks
are the renamed clones of each other if the blocks are
similar except for names of variables, identifiers, types,
literals, layouts, whitespaces, blanks and comments.

Let Bn
i and Bn

j be two trimmed and normal-
ized blocks: Bn

i = norm(trim(Bi)) and Bn
j =

norm(trim(Bj)) where norm(.) is a literal normaliza-
tion function. Normalization replaces all the variables
from Bi and Bj with a single generic variable name,
among other operations.

Formally, Bi and Bj are renamed clones if i) |Bt
i | =

|Bt
j |, i.e., they are both of the same length after trim-

ming and normalizing, and ii) ∀k, k = 1, · · · , |Bt
i | S

n
ik ≡

Sn
jk.
Definition 6 (Type-III: Gapped clones). Two copied

blocks are gapped clones if they are similar, but with
modifications such as added or removed statements, and
the use of different identifiers, literals, types, whitespace,
layouts and comments. The new flexibility introduced is
the addition or removal of statements. Assume we are
given two blocks Bi and Bj , and let Bn

i and Bn
j be

their trimmed versions, as described earlier. Two gapped
sequences can be aligned using various techniques that
generate an alignment score (ascore) for each alignment
[12], [13]. The value of ascore is obtained by considering
the costs of gaps, and the costs of character mismatch
and replacement between the two strings.

We say Bi and Bj are gapped clones of each other if
ascore(Bn

i , Bn
j ) > θ for a user-defined threshold θ.

The fourth type of clones is semantic clones. Semantic
clones are the most challenging type of clones. Instead of
comparing program texts which is relatively easy to do,
semantic clones are difficult to identify as they deal with
the meaning or purpose of the blocks, without regards to
textual similarity. A real life example of semantic clones
is a pair of obfuscated blocks or programs [14], where
syntax-wise the blocks are by and large different from
each other, but the overall meanings of both are the
same.

Definition 7 (Type-IV: Semantic clones). Two blocks are
semantic clones, if they are semantically similar without

being syntactically similar. In other words, two blocks
Bi and Bj are semantic clones if

semsim(Bi, Bj) = semsim(Bn
i , Bn

j ) > θ, (2)

where semsim(., .) is a semantic similarity function.
The idea of semantic similarity is not easy to grasp

because it requires some level of understanding the
meanings of programs, whether formal or otherwise.
The formal semantics of a program or a block can
be described in several ways, the predominant ones
being denotational semantics, axiomatic semantics and
operational semantics [15], [16]. Denotational seman-
tics composes the meaning of a program or a block
by composing it from the meaning (or denotation, a
mathematical expression or function) of its components
in a bottom-up fashion. Axiomatic semantics defines
the meaning of a program or block by first defining
the meanings of individual commands by describing
their effects on assertions about variables that represent
program states, and then writing logical statements
with them. Operational or concrete semantics does not
attach mathematical meanings to components within
a program or block, but describes how the individual
steps of a block or program take place in a computer-
based system on some abstract machine. No matter
which approach is used for describing formal semantics,
the meaning of a block or program is obtained from
the meanings ascribed to the individual components.
To obtain the semantics of a block or a program, it is
initially parsed into syntactic or structural components,
and for each syntactic component, its corresponding
meaning is obtained, and finally the meaning of the
block is put together from these components, following
appropriate rules. Thus, we could say two blocks Bi and
Bj are semantic clones if

semsim(Bn
i , Bn

j ) = semsim(JBn
i K, JBn

j K), (3)

where JBK represents the semantics of a block B, ob-
tained using one of the means for formal semantics. In
practice, we should note that the “semantics” of a block
may be computed without resorting to formal semantics.

Different types of clones are illustrated with the help
of a few simple programs in Figure 1. The original code
block, in the center of the figure, swaps values of two
integer variables using a temporary variable. The Type-
I clone is an exact replica of the original code block or
program. In case of Type-II, only a few of the literals
are changed. The gapped clone block is a replica of
the original except that a line has been deleted. The
Type-IV clone block (top right) shows another approach
to swap two numeric variables without using a third
variable. Structurally, the code blocks are dissimilar;
however because the purpose of both code blocks is the
same, semantically they are similar. On the other hand,
the Type-I through III clone blocks are structurally
similar although what they do are different.
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Figure 1: Simple example of different types of clones

III. PRIOR RESEARCH

Several methods have been proposed to detect clones of
Type-I, II and III. Interestingly, very few attempts have
been made to detect Type-IV or semantic clones. They
can be classified as machine learning and non-machine
learning approaches. Non-machine learning methods pri-
marily use syntactical features of a target code pair, and
compute a similarity score to declare a piece of code as
clone if the score is above a certain threshold.

A. CLASSICAL APPROACHES

CCFinder [17] applied a rule-based transformation on
the input source text and compared token-by-token to
detect code clones. It used a suffix tree-matching algo-
rithm, and it was not effective in detecting Type-III or
IV. NiCad [18] was a text-based hybrid clone detection
technique, which could detect up to Type-III clones.
NiCad used identification and normalization of potential
clones using longest common subsequence matching.
Yuan and Guo [4] used a count matrix to detect code
clones. The matrix is created by counting the occurrence
frequencies of every variable. The technique could detect
many hard-to-detect code clones. It constructed and
compared two bipartite graphs derived from two code
blocks. The method was limited to detecting only Type-
I, II, and III clones. Komondoor and Horwitz [19] used
for the first time the idea of Program Dependency
Graphs (PDG) in clone detection. They used a slicing
technique to find isomorphic PDG subgraphs to detect
semantic as well as synthetic code clones. Scorpio [20]
was another PDG-based approach that used incremental

two-way slicing for detecting code clones, limited to only
Type-I to III. Sheneamer and Kalita [21] proposed a
hybrid clone detection technique that first used a coarse-
grained technique to improve precision and then a fine-
grained technique to improve recall. It could detect only
syntactic clones (Type-I through Type-III). Sourcer-
erCC [22] was a token-based syntactic and semantic
clone detection method that used an optimized partial
index of tokens and filtering heuristics to achieve large-
scale detection.

B. MACHINE LEARNING IN CLONE DETECTION

The methods mentioned above use a pairwise similarity
measure with respect to certain tree representations of
the programs or code blocks. However, for a large pro-
gram with multiple blocks, it is difficult to match trees
pairwise. Two similar program blocks may have similar
patterns within them; in other words similar feature
signatures. Instead of developing custom algorithms for
similarity matching, a machine learning algorithm may
be used to learn patterns that differentiate clones and
non-clones and also among clones of various types. We
present a machine learning framework to automatically
detect clones in software, to detect Types-I-III and the
most complicated kind of clones, Type-IV clones.

Previously used traditional features are often weak
in detecting semantic clones. The novel aspects of our
approach are the extraction of features from abstract
syntax trees (AST) and program dependency graphs
(PDG), representation of a pair of code fragments as
a single vector, fusion of features of individual blocks to
obtain feature of a pair of blocks and the use of classifica-
tion algorithms. The key benefit of this approach is that
our tool can find both Syntactic and Semantic clones
extremely well. Our evaluation indicates that using our
new AST and PDG features is a viable methodology,
since they improve detecting clones on a very large
dataset like IJaDataset2.0. In machine learning terms,
a feature is simply a pattern at a certain level-low to
high-that a machine learning algorithm extracts in the
data. A deep learning method is able to capture features
at various levels in the various layers.

Deckard was a tree-based technique [23], which com-
puted characteristic vectors from the AST and clus-
tered these vectors using unsupervised machine learning.
Wang et al. [24] proposed a syntactic clone detection
method using a Bayesian Network framework with fea-
tures based on developmental history of the code, the
actual current text of the code and the destination
where the code is pasted. Yang et al. [25] used an
approach based on generalized suffix trees to detect an
initial set of clones. Since a clone detector produces
many irrelevant clones, they used an iterative process
where users marked up clones as relevant, and used this
information with TF-IDF representation to find clones
that are highly relevant to specific users. Sæbjornsen
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et al. [26] used a disassembler to recover assembly code;
broke up a code block into small regions and represented
small regions of normalized code as vectors using fea-
tures such as op code types, operand types, and n-grams
of various kinds; obtained locality sensitive hashes of the
small regions and produced vector representations of a
code block with a sequence of hashes for the regions;
and finally computed l1-distance between pairs of code
blocks to find clones. Cesare et al. [27] detected clones of
packages, using more than 30 features such as number
of files, number of common or similar file names, sizes of
packages and package dependencies. They used a variety
of machine learning algorithms such as Naive Bayes,
Multilayer Perceptrons, Decision Trees and Random
Forests.

Li et al. [28] extracted tokens from known method-
level code clones and non-clones to train a 6-layerd
perceptron, and then used the classifier to detect syntac-
tic clones. Shalev and Partush [29] detected similarities
between code blocks by breaking them up into smaller
regions of a few lines of assembly code; normalizing these
code regions; obtaining small sized MD5 hashes of the
regions; creating a fixed size hash for a code block; and
then training a 4-layered perceptron to detect if two
code blocks are clones. Wei and Ming [30] developed
an end-to-end approach to detect Type IV clones, using
Long Short Term Memory (LSTMs), a special type
of RNNs. They trained their network using pairs of
code blocks labeled as clones or non-clones to learn to
compute hash codes. During testing, code blocks are
compared directly using the trained network. Wei and
Li [31] used an AST-based modified LSTM architecture
that operated on trees to encode code blocks, and then
used adversarial training to learn to detect clones. In
adversarial training, vectors corresponding to real pairs
of examples are perturbed so that learning is more
robust. Saini et al. [32] used a so-called Siamese twin
neural network architecture, whose inputs are obtained
by computing features of code blocks. Examples of
features used are the numbers of variables declared and
referenced, maximum nesting depth, number of loops,
and number of exceptions thrown.

White el al. [33] used Recursive Neural Networks
(RvNNs) to obtain vector embeddings of lexical items,
and used Recurrent Neural Networks (RNNs) with mod-
ified AST-trees to encode code segments. Encodings of
pairs of segments were compared to determine if two
blocks are clones. Given a block of code, Tufano et
al. [34] obtained four different embeddings: identifier-,
AST-, bytecode- and CFG-based. To learn embeddings
for individual terms, they used an RNN; and for learning
encodings for the entire block, they used RvNN-based
autoencoders. For CFG-based encoding, they used a
graph embedding technique. They computed Euclidean
distance among respective embeddings to classify clones.
They used Random Forests to combine the individual

classifiers’ results. A brief summary of some the ap-
proaches is reported in Table 1.

We note that the classical algorithms reviewed earlier
in this section, mostly do not try to find Type IV
clones. However, many of the machine learning based
approaches, discussed later in the section, do. The most
recent approaches use neural networks of various kinds
to classify code clones, with various degrees of success.
Some of the approaches use basic feed-forward neural
networks. A few approaches use modified LSTMs (Long
Short Term Memory), which themselves are a variation
of RNNs (Recurrent Neural Networks), with or without
the use of RvNNs (Recursive Neural Networks). Others
use a variety of other machine algorithms, including
Naïve Bayes, Decision Trees and Random Forests. Some
of the approaches perform end-to-end feature extraction
and classification, i.e., they do not need the features
to be decided by the designer, and do so automati-
cally. There is a usually trade-off between approaches
that use neural networks, such as many layered feed-
forward, recurrent or recursive neural networks, com-
pared to non-neural network approaches such as decision
trees, random forests or boosted tree algorithms. Non-
ANN algorithms usually need pre-determined features,
whereas ANNs can extract features on their own. On
the other hand, ANNs are usually a lot slower, taking
sometimes days for training. Although the recent trend
is to use specialized ANN architectures such as RNNs or
RvNNs to solve many problems, in this paper, we do not
approach with any pre-conceived notions. We compare
a large number of algorithms for code clone detection
and find that boosted tree algorithms like XGBOOT are
quite competitive in clone detection. In particular, we
extract features from ASTs and PDG and combine the
same set of features from both original and copied codes.
This fusion of AST and PDG features works extremely
well in detecting code clones of Type-IV in addition to
all other types of clones discussed above. The novelty
of our work is in comparing the performance of a large
number of machine learning techniques, ANN and non-
ANN, using such features, and establishing that fusing of
AST and PDG features gives competitive results using
deep learning as well as boosted tree algorithms.

Next, we discuss in details our machine learning model
for effective clone detection.

IV. A MACHINE LEARNING MODEL FOR PAIRWISE

CLONE DETECTION

A straightforward approach to determine if two code
blocks are semantically similar without necessarily being
syntactically similar may proceed as follows: Trim and
normalize the two blocks as discussed earlier, obtain
the formal semantics of the two blocks using a method
alluded to earlier; and, compare the formal semantic
representations using Equation 3. However, tools to
obtain formal semantics are not readily available. In
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Table 1: Brief Summary of Clone Detection Methods

Tools/Alogorithms Syntactic
Clones

Semantic
Clones

Approach Features Used Machine
Learning

CCFinder [17] X × Suffix-tree and token matching × ×

Deckard [23] X × Tree-Matching × ×

NiCad [18] X × Textual-Matching × ×

Yuan and Guo [4] X × Token-matching × ×

Komondoor and
Horwitz [19]

X X PDG isomorphism × ×

Sheneamer and
Kalita [21]

X × Hybrid × ×

SourcererCC [22] X X AST isomorphism × ×

Wang et al. [24] X × Bayesian network Features based on evolution history,
the actual code and the destination of

paste

X

Yang et al [25] X X Generalized suffix-tree, TF-IDF
vector representation of code, co-
sine similarity

TF-IDF features X

White et al. [33] X × RNNs, RvNNs Automatic extraction of features from
ASTs with tokens represented as

vector embeddings

X

Sæbjörnsen et

al. [26]
X X Hashing, l1-norm among code

vectors
Features of normalized assembly

Instructions Features
X

Cesare et al. [27] X X Naïve Bayes, Tree-based learners Features based on file names, file sizes,
etc.

X

Wei and Ming [30] X X LSTMs AST and Automatically learned
AST-based features and hashcodes

X

Li et al. [28] X X Multi-layered perceptron with
up to 6 layers

Automatically learned token features X

Shalev and
Partush [29]

X X Hashing, vectors of hashes fed to
feed-forward ANN

Occurrence counts of smail-sized
hashes

X

Saini et al. [32] X × Siamese twins ANN AST Features X

Tufano et al. [34] X X RNN, RvNN, autoencoder,
Random Forest

I Automatically learned dentifier-,
AST-, CFG- and bytecode-based

features

X

Wei and Li [31] X X AST-based LSTM and
adversarial training

Automatically extracted AST-based
features

X

addition, formal semantic representations are strings
themselves, requiring additional string comparisons. It
is also unclear that formal semantic representations will
add substantially to efficient and effective code clone
detection.

Code clone detection has been treated as a pairwise
similarity analysis problem, where two blocks are clones
if a given block is similar to the given reference block.
However, machine learning usually considers individual
samples for training and predicts class labels. In any
common detection problem, samples used for training
and testing have either negative or positive labels. How-
ever, in performing clone detection, looking at features
of one code block to decide whether it is a cloned or not
cloned block of code. We need to compare a candidate
with another block, usually called a referenced block to
know if the candidate is a copy of the reference. That is
why we consider a <candidate block, reference block>
pair as an individual example and assign a label to each
such pair. It is always necessary to have a reference code
based on which one may decide a cloned code. Therefore,
it is necessary to consider features of both the codes for
deciding the same. We extract relevant characteristics
of the blocks by looking at selected portions of them
or other associated structures like ASTs and PDGs;

these are usually called features in the machine learning
literature. To apply machine learning to pairwise clone
detection, we use features of both the reference and
target blocks.

Definition 8 (Pairwise Learning). Given a set of N

pairs of training samples, each sample (a pair of blocks)
labeled with a clone type depending on their mutual
similarity, a classification model can act as a mapping
function f : X → Y , where X is an unknown pair of
code blocks and Y is the possible clone type predicted by
the model. Training samples are represented as feature
vectors, features(< Bi, Bj >) =< f1, f2, · · · , fM , Ck >

of size M, created by combining the features of two
different blocks (Bi, Bj) and a clone type, Ck associated
with (Bi, Bj), forming a training sample matrix of size
N × (M + 1).

When a block is represented as a set of features, the
semantics of a block Bn

i is described as given below:

JBn
i K ≈< fi1, · · · fik >, (4)

where ≈ means an approximation. Thus, a block’s se-
mantics can be simply represented as a list of features;
of course this is not a precise representation of semantic
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meaning. Equation 2 can now be restated as:

semsim(Bn
i , Bn

j ) =

semsim(< fi1, · · · fik >, < fj1, · · · fjk >) > θ. (5)

That is, similarity between two blocks is measured by
computing similarity between the two feature based
representations.

Thus, instead of using one of the approaches to
describe the formal semantics of a program block, we
use features of PDGs for semantic representation. We
use other features obtained from ASTs as well. In our
work, we additionally combine a few so-called traditional
features, as discussed later. Next, we discuss our scheme
for feature generations.

A. AST AND PDG-BASED: NOVEL FEATURES FOR

CLONE DETECTION

We pre-process the blocks by trimming and normalizing
as discussed earlier. We extract basic characteristics,
which we term Traditional Features, like Lines of Code
(LOC); numbers of keywords, variables, assignments,
conditional statements and iteration statements [35]
used in a given piece of source code. Traditional features
alone are inadequate in capturing the syntactic and
semantic characteristics of a block.

Syntactic similarity between two blocks of code is also
likely to impact upon the similarity in meanings of the
blocks, and hence we also parse the blocks into their
structural components in terms of Abstract Syntax Tree
(AST). Each node of the tree represents a construct
occurring in the given source code. Leaf nodes of the
tree contain variables used in the code. Unlike majority
of published clone detection methods that compare the
two syntactic trees directly, we compute certain char-
acteristics or features extracted from the ASTs, which
we call syntactic features. Figure 2 shows an example
AST created by the AST Generator software we use.
We traverse the AST in post-order manner and extract
only non-leaf nodes containing programming constructs
such as Variable Declaration Statements (VDS), While
Statements (WS), Cast Expressions, Class Instances,
and Method Invocations. Next, we represent frequencies
of these programming constructs as AST features in a
vector.

The PDG features can be called semantic or mean-
ing features. PDGs make explicit both the data and
control dependencies for each operation in a program.
Data dependencies represent the relevant data flow rela-
tionships of a program. Control dependencies represent
the essential control flow relationships. A sample PDG
derived from a code block is illustrated in Figure 3.
Edges represent the order of execution of program nodes.
The edge of a control flow graph can be used to detect
consecutive program nodes as code clones even if they
have no data or control dependency. Nodes represent

Figure 2: Example of AST derived from code
block [37]. MD: MethodDeclaration IFS: IfStatement,

WS: WhileStatement, CE: ConditionalExperssion, ST:

Statement

the lines where the corresponding elements are located
in the program. Horwitz et al. [36] show that PDGs can
be used as “adequate" representations of programs and
prove that if the PDGs of two graphs are isomorphic,
they are strongly equivalent, i.e., they are “programs
with the same behavior." We parse the AST, created by
an AST generator (GenerateAST) further to create an
implicit PDG structure and extract features. In other
words, we do not construct an explicit PDG but extract
the features we could have extracted from an explicit
PDG. We use the same post-order traversal of the
AST and find the frequencies of various dependency
relationships between different constructs. We consider
a total of 12 constructs and compute 43 relationships
among them up to level three and use them as our
PDG or semantic features. For example, the feature
Expr_Assign_Decl, captures the number of times an
Expression occurs, followed by an Assignment, and then
followed by a Declaration statements in the given code.

Algorithm 1 describes the feature extraction scheme.
LAST and LP DG are the lists of pre-specified AST at-
tributes and PDG attributes (please refer to Supplemen-
tary material for details). We traverse the non-leaf nodes
in the post-order sequence using PostOrderTokens and
store them in V. We avoid leaf tokens as leaf nodes in
AST contain only variables. Frequencies of AST and
PDG attributes are stored as features in a vector F .
In case the AST feature’s MatchToken matches each
pre-specified AST attribute, we increase the count of
that attribute or feature. The method DependencyFreq

checks for the occurrence of the PDG attribute LP DGi
in

vector V and returns the frequency of such relationship
in V. Please refer to Supplementary materials for the
details about the features extracted during the process.

The features of PDG we extract include dependence
information among parts of the code. We extract data
dependency features that count the occurrence of dec-
laration, expression, and assignment, in hierarchical
ordering, as observed in the PDG. We also extract
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Algorithm 1 AST & PDG Feature Extraction

1: INPUT : B // Target method block
2: OUTPUT : F = {fAST1

, · · · , fASTN
, fP DG1

, · · · , fP DGM
}

// Set of N AST and M PDG features
3: Steps :
4: T ← φ // AST root node
5: LAST = {A1 · · ·AN} // List of N AST attributes
6: LP DG = {P1 · · ·PM} // List of M PDG attributes
7: T ← GenerateAST(B) //Invoking AST generator on

B

8: V ← PostOrderTokens(T ) //Store post order se-
quence of non-leaf nodes in vector V

//Counting frequency of AST features
9: for i = 1 · · · |LAST | do

10: for j = 1 · · · |V| do
11: if MatchToken(Ai,Vj) then
12: fASTi

= fASTi
+ 1

13: end if
14: end for
15: F = F ∪ fASTi

16: end for
//Counting frequency of PDG features

17: for Pi = 1 · · · |LP DG| do
18: fP DGi

← DependencyFreq(Pi,V)
19: F = F ∪ fP DGi

20: end for
21: return F

Figure 3: Program dependency graph showing control
and data dependency among the statements.

control dependency features that count the occurrence
of the data dependency features. Examples of such
features are the number of Assignments that come
after Declarations, obtained by counting the occurrence
of the assignments which are dependent on declara-
tions; the number of Declarations coming after Control
(e.g. i < count, for, while, if, switch, etc.), obtained by
counting the occurrence of the declarations which are
dependent on control statements; the number of times
a nested iteration occurs; the number of times a nested
selection occurs; and so on.

We combine features of ASTs and PDGs for finding
syntactic and semantic clones effectively since alone they
may not be sufficient. Considering the three types of
features we have discussed in this section, we now rep-

Figure 4: Share of different categories of features used.

resent a block in terms of these three types of features.
Although it is not strictly semantics any more, we say
the "semantics" of a trimmed and normalized code block
Bn

i is described as given below:

JBn
i K ≈< f t

i1, · · · f t
ikt
| fs

i1, · · · fs
iks
| fm

i1 , · · · fm
ikm

> . (6)

In this equation, we denote the three sets of features
with different superscripts: t for traditional features, s

for syntactic features, and m for semantic or meaning
features, which are actually PDG based features, and
separate the three groups with vertical lines, for clear
separation. In our work, we generated a total of 100
features, combining the three different types. The dis-
tribution of feature categories is shown in Figure 4.

B. FUSION OF BLOCK FEATURES

The fusion of a pair of feature vectors is important to
combine the features of the candidate code blocks and
making them a single vector followed by annotation
with appropriate class labels. The concept of feature
fusion is not new and has been applied successfully in
different other related problem domains. The fusion of
block features has been used in various areas such as
text similarity, source code plagiarism, image processing,
face detection, and entity resolution and symmetry and
object information.

Bilenko and Mooney [38] presented learnable text
distance function and vector-space based measure that
employs a Support Vector Machine (SVM) for training
in duplicate records detection. They used linear combi-
nation of features for text similarity. Oyama et al. [39]
proposed a kernel based method that used combinations
of features for matching authors and citations to de-
termine which domain a paper belongs to. Yasaswi et
al. [40] presented an approach to detect plagiarism in
source-codes using deep learning features and character-
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level Recurrent Neural Network (char-RNN). However,
their approach only detects copy, partial copy and non-
copy. They constructed pairwise features by taking the
element-wise difference between individual program fea-
ture representations for source code plagiarism. Fu et
al. [41] proposed a multiple feature fusion in a gen-
eralized subspace learning framework. It is to find a
general linear subspace in which the cumulative pairwise
canonical correlation between every pair of feature sets
is maximized after the dimension normalization and
subspace projection They used multiple feature fusion
using subspace learning for face recognition. Atarashi et
al. [42] used conjunction of features for pairwise clas-
sifiers across instances. They then applied the method
using support vector machine and simple DNN. They
used linear, multiplicative, and distance combinations
for entity resolution and symmetry and object infor-
mation. Lu et at. [43] proposes a method that uses
feature fusion to represent images for face detection
after feature extraction by deep convolutional neural
network (DCNN) with SVM classifier. Wang et al. [44]
proposed a feature fusion algorithm of deep learning and
traditional features in image classification which fused
the shallow-layer network feature, large pre-trained con-
volutional neural network feature and traditional image
features together by genetic algorithm. Chen et al. [45]
constructed a novel CNN architectures which contain
two independent modules called 201A00C400FAconv-
fusion201A00C400F9 module and asymmetric shortcut
connection block, then fine tuned the hyper parameters
in the deep CNN in the second stage and finally applied
them to address the problem of recognition using SAR
images. The combination of a variety of convolution
layers and pooling layers plays an influential role in
learning robust feature representations. Summary of
various techniques that uses feature fusion is shown in
Table 2.

To the best of our knowledge no prior use the feature
fusion in code clone detection so far. In our work, we
combine feature vectors (Equation 6) extracted from a
pair of target and reference code blocks to create the
training dataset. We fuse the sequences of features from
the two different blocks. Although there are three types
of features in the description of a block, to simplify the
notation, we rewrite Equation 6, without distinguishing
among the feature types, as

JBn
i K ≈features(Bi) =< fi1, · · · fik >, (7)

where k = kt + ks + km. Similarly,

JBn
j K ≈ features(Bj) =< fj1, · · · fjk > . (8)

Given two blocks Bi and Bj , and their clone label Cl,
the combined feature vector, features(< Bi, Bj >) can
now be represented as a fused feature vector. We fuse the
two vectors in three different ways as discussed below.

Linear Combination: We concatenate the two fea-
ture vectors. Simple concatenation gives rise to a fused
feature vector of size 2k. Liner combination looks like
follows:

features(< Bi, Bj >) =< fi1, · · · , fik, fj1 · · · , fjk, Cl >,

(9)
where Cl is the class label (type of clone) for the pair.
A linear combination results in double the number of
features. Linear combination simply lists the features of
both candidate clones, giving the machine learning al-
gorithm full freedom to combine the features any way it
wants, to compute similarity. Depending on the machine
learning algorithm, it may from linear or non-linear
combinations of these features. Since linear combination
gives rise to a vector of size 2k, to reduce the size, we
experiment with alternative approaches of multiplicative
and distance fusion.

Multiplicative Combination: Here we combine two
different feature sequences by multiplying the corre-
sponding feature values:

features(< Bi, Bj >) =< fi1 ∗ fj1, · · · , fik ∗ fjk, Cl > .

(10)
Multiplicative combination simply multiplies the same
feature values from the two blocks. If fik in Bi is 0
(means particular feature not present) and fjk in Bj is
1 (present), multiplication makes the feature value 0 for
the combined vector. Hence, in this case, it ignores the
importance of fik and fjk when considering if the block
pair belongs to a particular type of clone relationship.
Similarly, if the feature values in both the blocks are 0.5,
we reduce the combined value of the features further
by making it 0.25. When features for two vectors are
multiplied component-wise and all these products are
added, and the final sum normalized, we get the cosine
distance between the two vectors. In this case, our
vectors are feature vectors of the two candidate clones.
Although we are not performing cosine distance compu-
tation directly, we believe a machine learning algorithm
may perform the computation of a generalized version
of cosine distance in this case or something similar.

Distance Combination: Nearness, the opposite of dis-
tance, is the most obvious way to calculate the similarity
between two block features. We use the absolute differ-
ence between two feature values to fuse the features of
a pair of blocks.

features(< Bi, Bj >) =< |fi1−fj1|, · · · , |fik−fjk|, Cl > .

(11)
When pairwise absolute difference of feature values
is provided, the machine learning algorithm combines
these differences any way as it finds fit to classify the
clone pairs. In this case, the machine learning algorithm
does not have access to the original feature values,
possibly making it less flexible.

VOLUME 4, 2016 9
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Table 2: Summary of different methods that uses feature fusion technique

Method Domain Fusion Techniques

Bilenko and Mooney [38] String similarity Linear combination.
Oyama et al. [39] Matching authors and citation Linear, multiplicative, and distance combinations.
Yasaswi et al. [40] Source code plagiarism Distance combination.
Fu et al. [41] Face recognition Multiple Feature Fusion.
Atarashi et al. [42] Entity resolution and symmetry Linear, multiplicative, and distance combinations.
Lu et at. [43] Image processing A fusion feature method using Deep Convolutional Neural Network (DCNN).
Wang et al. [44] Image processing A feature fusion using Genetic algorithm.
Chen et al. [45] Image processing Feature fusion under concatenation pattern and feature fusion under summation pattern.

C. CLONE DETECTION FRAMEWORK

Our scheme is similar to a traditional machine learning
framework. We have two phases, training and testing.
In training, we use labelled pairs of cloned blocks from
a given hand-curated code clone corpus. All method
blocks are detected from the given corpus using lexical
and syntactic analysis. We extract method blocks and
perform pre-processing, including trimming and nor-
malization. Next, we generate ASTs and PDGs of the
blocks and extract features from them [46]. Following
Equation 6, we create a complete feature vector for
each block by combining traditional, AST and PDG
features. We fuse feature vectors of two target blocks
by using one of the Equations 9, 10 or 11. All the
above steps are iterated for all possible pairs of blocks for
creating a training dataset for the classification model.
For identifying the possible clone type of unlabeled code
blocks, we perform the same sequence of steps to create
a fused feature vector of the two given blocks and pass
it through the classifier for prediction of the possible
clone type. Figure 5 demonstrates the work-flow of our
approach.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare different ma-
chine learning techniques in a unified framework to find
which technique works the best to detect all types of
clones in large datasets. In our experiments, we use only
methods extracted from Java source code as a corpus for
training and testing. However, this model is general in
nature and can be extended easily to any other high
level programming language. Our primary goal is to
improve clone detection accuracy for all types of clones
with a special emphasis on semantic clone detection. We
use a number of existing classification algorithms and
compare the effectiveness of the proposed framework
with state-of-the-art detection methods based on their
reported results.

A. DATASETS

We use IJaDataset 2.0 [47], a large inter-project Java
repository containing source code from 25,000 open-
source projects, with 3 million source files, 250 million
lines of code, from SourceForge and Google Code. This
benchmark was built by mining IJaDataset for func-
tions. The published version of the benchmark considers
44 target functionalities [48].

For this experiment, we consider all types of clones

in IJaDataset 2.0 that are 6 lines or 50 tokens or
longer, which is the standard minimum clone size for
benchmarking [11], [22]. There is no agreement on when
a clone is no longer syntactically similar, and many
authors claim that it is also hard to separate the Type-
III and Type-IV clones in the IJaDataset [47]. As re-
sult, some prior researchers have divided Type-III and
Type-IV clones into four classes based on their syn-
tactic similarity [22] as follows: Very Strongly Type-III
(VST3) clones are ones that have a syntactic similarity
in the range [90% 100%), Strongly Type-III (ST3) in
[70% - 90%), Moderately Type-III in [50% - 70%) and
Weakly Type-III/Type-IV (WT3/4) in (0%-50%], where
( means exclusive and ] means inclusive range.

A majority of existing clone datasets used in prior
papers are incomplete in nature. They avoid label-
ing semantic code clones. Some of the publicly avail-
able datasets are eclipse-ant, eclipse-jdtcore, netbeans-
javadoc and j2sdk14.0-javax-swing. Moreover, the orig-
inal datasets contain small numbers of instances of
specific types, making them difficult to use for ma-
chine learning. To overcome this situation we extract
additional method blocks from the original source
codes and label them using a semi-supervised labelling
method [49]. The details of the datasets are given in
Table 3. In the table, the second column indicates how
many paired-blocks we extracted to expand the existing
datasets. Agreement refers to the probability of relia-
bility between observers or raters. We compute Kappa
statistic [50] agreement between every two observers’
decisions using Equation 12 and take the average prob-
ability of agreement between all the raters and report
the same in the Table 3:

κ =
po − pe

1− pe

, (12)

where, po is the relative observed agreement among
raters and pe is the hypothetical probability of chance
agreement.

We also report, in the table, number of labeled sam-
ples of a particular type of clone (I, II, III or IV) present
in the dataset.

B. CLASSIFICATION MODELS

We train and test our proposed framework using fifteen
classification models, starting from the popularly used
Naïve Bayes [51] model to a recently published gradi-
ent boosting tree model, Xgboost (eXtreme Gradient
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Figure 5: Workflow of the Proposed Clone Detection Framework

Table 3: Brief description of our Java code clone corpora

Dataset Paired Blocks Type-I and II Type-III Type-IV False Positive Agreement(%)

IJaDataset2.0 106,736 ≈ 19, 533(18.73%) ≈ 46.750(43.8%) ≈ 19, 533(18.73%) ≈ 19, 533(18.73%) -
EIRC 870 32 394 146 298 76

Sample_j2sdk1.4.0-javax-swing 800 200 282 118 200 76
Sample_eclipse-jdtcore 800 200 200 169 231 69

eclispe-ant 787 118 392 66 211 60
netbeans-javadoc 452 54 146 39 213 62

Suple 152 30 59 25 38 75

Boosting) [52]. While selecting the various classification
models, we try to keep a balance among different learn-
ing models including probabilistic and non-probabilistic,
generative and discriminative linear and non-linear, re-
gression, decision trees and distance based models. We
also try both traditional and modern approaches, as well
as individual and ensemble approaches.

Naïve Bayes [51] is a simple probabilistic classi-
fier based on Bayes’ rule. Linear Discriminant Anal-
ysis (LDA) [53] is commonly used as a dimensional-
ity reduction technique in pre-processing for pattern-
classification and machine learning applications and can
be used as a classifier also. Support Vector Machine
(SVM) [54] is a maximum margin classification model.
LogitBoost [55] is a boosting classification algorithm.
LogitBoost and AdaBoost are close to each other in that
both perform additive logistic regression. Instance Based
Learner (IBK) [56] is similar to a k-Nearest Neighbor
algorithm. In addition, we use several tree ensemble
models including Extra Trees [57], Rotation Forest [58]
coupled with Principal Components Analysis (PCA),
Random Forest [59] and Random Committee [60]. Bag-
ging [61] is an ensemble meta-estimator that fits base
classifiers each on random subsets of the original dataset
and then aggregate their individual predictions. We
also use decision tree algorithms such as J48 [62] and
Random tree [63] for our experimentations. Random
Subspace [64] selects random subsets of the available
features to be used in training the individual classifiers

in an ensemble. Xgboost [52] is a fast and accurate
boosting tree model proposed recently. At this time,
any classification task is incomplete without the use of
deep learning based classification. Deep learning models
with varying configurations have been successfully ap-
plied in different application domains [65] [66]. A very
commonly used model is Convolution Neural Network
(CNN). With CNNs, it is necessary to try many different
configurations to see what works best for the problem at
hand. In Computer Vision, where CNNs shine [66], the
models are fed rows of pixels and the neural networks
perform end-to-end processing. The CNN extracts pro-
gressively higher levels of features on its own through
the use of several convolution layers. The problem of
clone detection, the focus of this paper, is more akin to
problems faced in natural language processing (NLP)
because both deal with string-based entities. In NLP,
CNNs and other deep learning methods work well when
the words are first converted to embedding using a
method such as word2vec [67]. In this paper, we do
not obtain embeddings for programming language con-
structs and keywords; we work with the 100 features we
described earlier.

We use WekaDeeplearning4j1 to implement CNN. It
allows arbitrary-depth multi-layer network with certain
degree of flexibility in selecting types of weight initial-
ization, loss function, gradient descent algorithm, etc.
We experimented with several different architecture and

1https://github.com/Waikato/wekaDeeplearning4j
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we briefly describe the one that works best is a simple
model with three (03) convolutional layers stacked on
top of each other. Each convolutional layer is followed
by a max pooling layer. The last pooling layer is followed
by fully connected layer with ReLU activation and then
a softmax layer. We arrange our input data as 100×1×1
and fed into convolution layer → max pooling layer and
so on.

Our input is a vector of 100 features. We reshape our
input from 1-D to 3-D using reshap function which is
available in wekaDeeplearning4j package itself. The con-
volution is applied on the input data using a convolution
filter to produce a feature map. We use 10 × 1 filters.
The convolution operation is performed by sliding this
filter over the input. We move the convolution filter by
1 stride at each step. After the convolution operation,
the pooling is performed to reduce the dimensionality.
Pooling is performed with 2 × 2 windows with stride
2. In the fully connected layer, the data is flattened
(one dimension) and the next layer is the output layer
which consists of 4 nodes corresponds to 4 classes. The
architecture of our CNN implementation is shown in
Figure 6.

The classification models used in our work are sum-
marized in Table 4.

We represent a pair instance as a vector as explained
in section IV-B. Clones of different types are detected
using one of the classification algorithms. We compare
the outcomes of all the classifiers discussed above, as our
main emphasis has been on effective feature generation.
Classifiers are trained and tested using cross-validation
with 10 folds. We ensure balance between match and
non-match classes in each fold and the same as in the
overall dataset.

Figure 6: Convolutional Neural Networks architecture
for code clone classification

C. EVALUATION

We generate extensive results to assess the robustness
of our proposed model in detecting semantic clones
along with all other type of clones. We experiment with
a varying number of features and with different data

instances to show that our features are able to achieve
high detection accuracy. Due to space limitations we
report only best performing classifiers for most of the
experiments and compare them with state-of-the-art
clone detection methods. However, for more results, one
can refer to the Supplementary materials. To generate
AST from a given block in order to extract features, we
use Eclipse Java Development Tools (JDT) .

1) Performance of different classifiers

We randomly select 20K pair instances from the IJa-
Dataset. To compare the three feature fusion meth-
ods and the performance of classifiers, we run all the
classifiers three times. All the candidate models are
trained and tested using 10 fold cross-validation, where
we ensure that the ratio between match and non-match
classes is the same in each fold and the same as in the
overall dataset. Figure 7 shows the comparison of all
fifteen (15) classifiers using linear, multiplicative, and
distance combinations respectively on IJaDataset. Ex-
perimental results show that the tree ensemble methods
such as Rotation Forest, Random Forest and Xgboost
achieve better outcomes among all the classifiers. This
is because tree ensemble approaches create many trees
with samples and random attributes. Xgboost has high
performance as it is having regularization component
to reduce overfitting. Due to heavy computational time
requirements by CNN, we do not apply CNN on the
IJaDataset.

However, we apply CNN on six different clone corpora
which are relatively small in size and compare the results
with the tree based ensemble methods (see Figure 8),
which appears to be best performer in large dataset,
IJaDataset. Our observation is that Random Forests and
XGBoost are highly competitive with CNNs. Remark-
ably, the performance of CNN is relatively poor in this
context, though we report best results produced by CNN
after several parameter tuning. The possible reason of
low performance may be due to relatively low dimension
of the dataset used, though we use 100 features for
our experiments. Once again, the deep learning model
extract features automatically. In our case, we have
performed feature extraction on our own. This may
be a cause for lower performance as well. However,
performances of XGBoost is extremely superior in all
six small datasets.

2) Varying data size and feature types

We assess the importance of combining Traditional,
AST and PDG features in different combinations and
report the results on IJaDataset in Figure 9. We create
four subsets of IJaDataset using 5K, 10K, 15K and 20K
instances from each class. Results produced by three
best performing classifiers reported above with varying
data sizes, show that the performance of the classifiers
improves substantially as we combine both syntactic and
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Table 4: Different Classification Techniques Used

Classifiers Model Characteristics Platform

Naïve Bayes Probabilistic, makes independence assumption among features Weka 3.8
LDA Finds a linear combination of features as separator between classes Weka 3.8
LIBLINEAR/SVM Linear maximum margin classifier Weka 3.8
Sequential
Minimal
Optimization
(SMO)

Quadratic programming solver for SVMs Weka 3.8

IBK K nearest-neighbor classifier, can choose k using cross-validation Weka 3.8
J48 An implementation of C4.5 decision tree classifier Weka 3.8
Random Tree A decision tree classifier that uses k random attributes at each node Weka 3.8
Extra Tree A decision tree classifier that, works with numeric attributes also Weka 3.8
Boostrap
aggregation
(Bagging)

Ensemble classifier that creates a classifier from separates samples of the training dataset Weka 3.8

LogitBoost A statistical implementation of Adaboost, a meta-learning algorithm Weka 3.8
Random
Supspace

Ensemble classifier that creates multiple decision trees constructed by randomly chosen features Weka 3.8

Random
Committee

An ensemble of randomize base classifiers Weka 3.8

Rotation Forest An ensemble of classifiers created by making k subsets of features, running PCA on each subset, and
keeping all principal components

Weka 3.8

Random Forest Ensemble of decision trees Weka 3.8
Xgboost Ensemble classifier that creates gradient boosted decision trees, each with an associated objective

function, and a regularizer that is optimized,
R 3.3.0

Convolutional
Neural Network
(CNN)

Deep Learning Weka 3.8

Figure 7: Performance of all the candidate classifiers with different feature fusions on IJaDataset

Figure 8: Performance of Random Forest, Rotation Forest, Xgboost, and CNN in six different datasets
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(a) Distance Combination

(b) Multiplicative Combination

(c) Linear Combination

Figure 9: Performance of three best classifiers with syntactic and semantic features on IJaDataset dataset
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semantic features to detect clones. Interestingly, the per-
formance of the classifiers using semantic features is con-
sistent irrespective of data sizes and fusion methods. We
also observe that a linear combination produces better
results than distance and multiplicative combinations
for all sizes of data. Linear combination works better
in comparison to other two methods, as because linear
combination keeps the original feature values unchanged
which the other two methods do not set. Multiplicative
and distance combination may hamper the classifiers
because they may find such combinations unsuitable to
work with effectively.

3) Experimenting with varying feature sizes

We perform two different kinds of experiments with
varying numbers of features, selecting equal numbers of
features from each feature type (Traditional, AST and
PDG) and using feature selection methods (Figure 11).
The intention behind such experiments is to show the
significance of our proposed features in achieving better
accuracy, and that it is not by chance. The growing
learning curve (Figure 10) clearly indicates that the
detection accuracy improves with the increase in the
numbers of features. We also notice that Xgboost using
multiplicative combination achieves higher performance
than others. Feature selection or extraction [68], [69] is
a predominant preprocessing step in machine learning
based pattern recognition tasks, although deep learning
models are end-to-end, performing automatic feature
selection. We use two feature selection methods namely
Gain Ratio [70] and Information Gain [71]. For each
experiment, we use different sizes of the feature sets
ranked by the feature selection algorithms. Similar to
the learning curve based on randomly selected feature
sets, judiciously selected feature sets also show a growing
trend in performance. This further establishes the fact
that our features are crucial in deriving high accuracy
detection results.

Figure 10: Learning Curve: Performance of Random and
Rotation Forest with varying features on IJaDataset
dataset.

(a) Distance Combination

(b) Multiplicative Combination

(c) Linear Combination

Figure 11: Performance of Random Forest and
Rotation Forest with varying features using Gain Ratio
and InfoGain feature selection algorithms on
IJaDataset dataset.

4) Performance comparison

We compare the performance of our method with con-
temporary clone detection methods, using their reported
results on IJaDataset. Different papers have reported a
range of Precision, Recall and F-score values for different
clone detection methods. We show the maximum value
of the reported range when we report their results.
Interestingly, a majority of the detection methods are in-
capable of detecting semantic clones or Type-IV clones.
Figure 12 show comparison of our results with the state-
of-the-art detectors based on recall and F-score. From
the results it is evident that NiCad performs better
with respect to all other methods in detecting Type-
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(a) Recall Assessments

(b) F-measure Assessments

Figure 12: Performance comparison of different
detection methods with respect to different assessment
metrics on IJaDataset dataset.

I/II, VST3, and ST3 clones based on the F-measure
metric. We report only results of XGBoost and Random
Forest with various fusion types. Results clearly show
that our method is effective in detecting Type-IV clones
along with other clone types in comparison to the other
methods.

VI. THREATS TO VALIDITY

Since we consider only granularity of method level
clones, we may miss overlapping clones or clones in Java
classes. However, most clones in Java code fragments are
represented at a method level. To generate AST and
PDG from a given block in order to extract features,
we use Eclipse Java Development Tools (JDT). The
datasets are restricted to Java-based clones. we plan to
involve other language in the future.

VII. CONCLUSION

Semantic code clone detection is a challenging task and
needs automatization, especially, because the amount
and sizes of complex software written are increasing.
We propose a machine learning framework for automatic
detection of large numbers of code clones. We use for
the first time a combination of traditional, AST and
PDG features instead of using them for computing graph
isomorphism. We captured the syntax of program codes
using AST program features AST and the semantic
of program codes using PDG. We use 15 classification
models to obtain their relative performance using our
features. We performed an extensive set of experiments
to show that our machine learning framework is able to

identify the technique that can to detect clones the best.
Experimental results clearly indicate that our proposed
features are highly valuable in achieving high detection
accuracy.

As a part of our future endeavor, we would like to
extend our work to achieve further improvements, for
example, by using features of Java byte and assembly
codes obtained by compiling Java programs. We also
intend to create token embeddings from the datasets
to use them in deep learning. We also plan to explore
various deep learning architectures such as CNNs and
RNNs.
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