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Abstract: Dynamic response analysis of a train–track–bridge (TTB) system is a challenging task for
researchers and engineers, partially due to the complicated nature of the wheel–rail interaction (WRI).
When Newton’s method is used to solve implicit nonlinear finite element equations of a TTB system,
consistent tangent stiffness (CTS) is essential to guarantee the quadratic convergence rate. However,
the derivation and software implementation of CTS for the WRI element require significant efforts.
Artificial neural network (ANN) can directly obtain a potentially good tangent stiffness by a trained
relationship between input nodal displacement/velocity and output tangent stiffness. In this paper,
the backpropagation neural-network-based tangent stiffness (BPTS) of the WRI element is derived
and implemented into a general finite element software, OpenSees, and verified by dynamic response
analysis of a high-speed train running on a seven span simply supported beam bridge. The accuracy
and efficiency are compared between the use of BPTS and CTS. The results demonstrate that BPTS
can not only save the significant efforts of deriving and software implementing CTS but also improve
computational efficiency while ensuring good accuracy.

Keywords: wheel–rail interaction; BP neural network; tangent stiffness; train–track–bridge system

1. Introduction

Dynamic response analysis of a train–track–bridge (TTB) system is a challenging task
for researchers and engineers, partially due to the strong nonlinearity and complex contact
conditions of the wheel–rail interaction (WRI). In recent years, many researchers have
proposed different WRI models based on various methods. Zhai et al. [1–4] developed
a novel explicit two-step method and a new family of predictor–corrector integration
algorithms used in the solving of dynamic problems, based on which they developed a
computer program named TTISIM to predict the vertical and lateral dynamic responses
of the vehicle–track coupled system. Montenegro et al. [5] proposed a wheel–rail contact
formulation for analyzing the nonlinear train–structure interaction that takes into account
wheel and rail geometry and used a WRI element to model the behavior of the contact
interface based on Hertz’s theory and Kalker’s laws. Pombo [6] presented a general
wheel–rail contact detection formulation and calculated the contact forces using Kalker
linear theory, a heuristic nonlinear model, and the Polach formulation. Liu et al. [7]
developed a 3D WRI element by wrapping the WRI into an element where the contact
force is obtained by using Kalker linear theory, nonlinear Hertz theory, and the Polach
formulation. The WRI element has been demonstrated to be efficient and accurate, able to
simulate complicated TTB systems, and is therefore used in the dynamic responses analysis
of the TTB systems in this paper.

When Newton’s method is used to solve implicit nonlinear finite element equations,
e.g., the TTB system, the consistent tangent stiffness (CTS) is essential to guarantee the
quadratic convergence rate [8–12]. For the WRI element mentioned above, the computation
of the CTS requires the differentiation of the internal forces with respect to the nodal
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displacement, following the complicated calculation process of the internal forces. Although
the CTS is accurate and efficient and is able to guarantee the quadratic rate of convergence
of Newton’s method [13], its derivation and software implementation require significant
efforts. Therefore, it is necessary to find an alternative method for computing the tangent
stiffness that can reduce the efforts of derivation and software implementation while
maintaining high computational efficiency.

Recently, artificial neural network (ANN) has become increasingly popular in solving
a wide range of engineering problems. The ANN can directly obtain a potentially good
tangent stiffness by a trained relationship between input nodal displacement/velocity and
output tangent stiffness. There are relatively less formula derivation and programming
work. The ANN model has been used to solve complex nonlinear problems. Jung et al. [14]
presented a rate-dependent ANN constitutive formulation to analyze the time-dependent
behaviors of concrete. Luo et al. [15] proposed a novel ANN-based model for fast predicting
the backbone curves of nonlinear flexure- and shear-critical columns. Huang [16] proposed
an ANN-based method for the identification of a discrete-time nonlinear hysteretic system
under strong earthquakes. Jung et al. and Kang et al. [17] proposed an ANN-based health
monitoring model for predicting the displacement responses of gravity dams. The ANN
has been applied to various fields as an accuracy and efficiency method; however, it has
not yet been applied to solving the tangent stiffness of complex nonlinear TTB systems.

In this paper, a BP neural-network-based tangent stiffness (BPTS) method is presented
for the WRI element proposed by Liu and co-workers [8]. The input of the BP neural
network is the displacements/velocities of the wheel node and rail virtual node, while
the output is the tangent stiffness matrix of these nodes. The element tangent stiffness
is obtained straightforwardly based on the output tangent stiffness. The trained BPTS
model is implemented in a general finite element software, OpenSees [18], to substitute the
calculation of the consistent tangent stiffness (CTS) [13] and verified by dynamic response
analysis of a high-speed train running on a seven-span simply supported beam bridge. The
accuracy and efficiency are compared between the use of the BPTS and the CTS. The BPTS
is demonstrated to not only be able to save significant efforts of deriving and software
implementing the CTS but also to greatly improve computational efficiency while ensuring
acceptable accuracy.

2. The WRI Element and the BP Neural Network
2.1. The Internal Resisting Force and Consistent Tangent Stiffness of the WRI Element

The WRI element consists of a wheel node and all the rail nodes (b1, b2 . . . bi . . . )
that the wheel node may pass through, and the crucial part of the WRI element [8] is the
so-called active portion, as can be seen in Figure 1.
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‘virtual’ rail node Or can be obtained. The coordinates of Or can be obtained by linear
interpolation from the coordinates of bi and bi+1, which can be expressed as

XOr
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(1)

where Xi
j denotes the jth coordinate component of the point i, NL

I (I = 1, 2) denotes the

shape function of the linear interpolation, NH
I (I = 1, 2, 3, 4) denotes the shape function of

the Hermite interpolation, and NH
I,1 (I = 1, 2, 3, 4) denotes the derivative of the Hermite

interpolation shape functions with respect to x. In each time step, the wheel node moves
forward, and the shape functions change. After the wheel node Ow crosses bi+1, the active
position is updated immediately and consists of Ow, bi+1, and bi+2.

The element internal resisting force R consists of the forces on the nodes Ow, bi, and
bi+1, i.e., R= [Rw, Rbi

, Rbi+1
] and can be obtained based on the nodal displacement u and

velocity v, i.e., R = R(u, v), where the nodal displacement u consists of the displacements
of the wheel node and two rail nodes, i.e., u= [uw, ubi

, ubi+1
], while the velocity v is a

function of u, i.e., v = v(u). It is worth mentioning that the function can be explicitly
obtained based on the approximation of velocity using displacement when a time-stepping
discretization (e.g., Newmark method) is employed. The element internal resisting force R
can be calculated based on the contact force F between wheel node Ow and virtual rail node
Or, which consists of the normal contact force Fn and the tangential contact force Ft, i.e.,

R = f (F) = f (Fn(X(u)), Ft(u, v)) (2)

where X denotes the coordinates obtained by element nodal displacement u.
Suppose there is a virtual interpenetration between the rail and wheel profile, as

can be found in Figure 2. The normal contact force Fc
n and tangential contact forces Fc

t1
and Fc

t2 are calculated using nonlinear Hertz theory, Kalker linear theory, and the Polach
formulation [19].
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After the contact force F is obtained, the resisting force on the wheel node, Rw and the
resisting force on the virtual rail node Rr (in Figure 3) can be calculated respectively by

Rw = TT
wATFATw

Rr = TT
r ATFATr

(3)
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where A denotes the transformation matrix of the coordinate system, Tw and Tr denote the
transformation matrix that converts F to the wheel node and the virtual rail node, which is
related to the vector from the wheel–rail contact point to the wheel node and that to the
virtual rail node [7]. The superscript T denotes the transpose of the matrix. The resisting
force on the two rail nodes, Rbi

and Rbi+1
, are calculated using the force on the virtual

node Rr based on their displacement relation in Equation (1), i.e., using the virtual work
principle, as shown in Figure 3.
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The consistent tangent stiffness (CTS) is important in solving implicit nonlinear finite
element equations, which can guarantee the quadratic rate of convergence when the
Newton–Raphson algorithm is used. The CTS is calculated by differentiating the element
resisting force with nodal displacement using the chain rule of derivation, i.e.,

∂R
∂u

=


∂Rw
∂u

∂Rbi
∂Rr

· ∂Rr
∂u

∂Rbi+1
∂Rr

· ∂Rr
∂u

 (4)

where ∂Rw
∂u and ∂Rr

∂u are calculated as

∂Ri
∂u

=
∂Ri
∂Fn

∂Fn

∂X
∂X
∂u

+
∂Ri
∂Ft

(
∂v
∂u

∂Ft

∂v
+

∂Ft

∂u

)
(5)

where the subscript “i” can be w or r, denoting the force of wheel and rail, respectively. The
derivation and implementation of Equation (5) require significant efforts, and the detailed
derivation formula can be found in [13].

2.2. The BP-Based Tangent Stiffness (BPTS)

A backpropagation (BP) neural network is used for obtaining an alternative tangent
stiffness. The BP neural network consists of an input layer, a hidden layer, and an output
layer, as can be seen in Figure 4. Each layer is made up of a few neurons. The number
of neurons in the input and output layers is usually determined by the number of input
parameters and output parameters, while the number of neurons in the hidden layer is
uncertain. Too few neurons may affect the accuracy of the predicted results, but too many
may lead to overfitting. Therefore, multiple tests are often needed to select the best number
of hidden layer neurons.
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In the hidden layer, each neuron receives parameters from the input layer and then
calculates as follows:

hi = f

(
m

∑
j=1

wijXj + bi

)
, i = 1, . . . , n (6)

where n indexes the neurons in the hidden layer, and m denotes the number of inputs.
hi denotes the ith neuron of the hidden layer, where i ranges from 1 to n. Xj is the jth
input, where j ranges from 1 to m. wij is a weighting coefficient for Xj’s contribution to hi,
while bi is a bias for the ith neuron in the hidden layer. wij can be assembled into an n
m matrix. The f represents a nonlinear activation function, which is the crucial part of a
neural network that builds the nonlinear mappings. There are many forms for f, but in this
study, the tanh function was used. It can be expressed as

f (x) =
ex − e−x

ex + e−x (7)

where e denotes the basis of the natural logarithms. After each neuron in the hidden layer
has been calculated, the neurons in the output layer can be expressed as

Yj =
N

∑
k=1

vjkhk + dj, j = 1, . . . , M (8)

where M denotes the number of outputs, and N is the number of neurons in the hidden
layer. Yj represents the jth output, where j ranges from 1 to M. hk is the kth neuron of the
hidden layer, where k ranges from 1 to N. vjk is a weighting coefficient for the contribution
of hk to Yj, while dj denotes the bias for the jth output. Vjk can be assembled into an M × N
matrix. The weighting coefficients and biases (wij, bi, vjk, and dj) in Equations (6) and (8)
must be obtained by training with a large number of samples.

The BP neural network’s performance is evaluated by comparing its predicted results,
and the training samples are performed by using the mean squared error (MSE) of the
discrepancies for quantification. The MSE is

MSE =
R

∑
j=1

(
Yj − Y j

)2

/R (9)

where Yj denotes the output calculated by Equation (8), Y j denotes the sample value, and
R is the number of the output sample. The MSE is usually guaranteed within a narrow
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range (0.001 in this study) to get weighting coefficients and biases that ensure the network’s
performance.

In the ANN model for the tangent stiffness of WRI, the inputs X are nodal displacement
u and velocity v, while the outputs Y are ∂Rw

∂u and ∂Rr
∂u in Equation (4). The BPTS of the

WRI element can be obtained by the following steps: (1) Selecting an appropriate example,
running enough time steps, recording input X and output Y at each iteration of each time
step. (2) Selecting an appropriate activation function in Equation (7) and the learning
algorithm, determining the number of hidden layers and number of neurons in each layer.
(3) Training the BP neural network model to obtain the weight coefficients and deviations
in Equations (6) and (8) (i.e., wij, bi, vjk, and dj). (4) Substituting the CTS with the BPTS, i.e.,
the mapping relationship in Equations (6) and (8), by software implementing the BPTS
algorithm in the WRI element. In practice, the calculation to obtain input X and output
Y in step 1 and the training process in step 3 can be performed simultaneously, i.e., at
the beginning of the calculation, the CTS (or the tangent by the perturbation method that
obtains the tangent by the perturbation of displacement [7]) is used, and the input and
output obtained are used to train the ANN model. After the ANN model has been well
trained, the BPTS is used instead of the CTS to continue the calculation process so as to
realize the intelligent choice of the tangent stiffness.

3. Application Examples
3.1. The Model of Train–Rail–Bridge System

A seven-span simply supported beam bridge [20] is analyzed in this study, the model
of which is shown in Figure 5a. The single-span length of the bridge is 32.6 m, and the
total length is 228.2 m. Both ends are supported on the foundation, and the middle spans
are supported by 8-m-high piers. The model in OpenSees is shown in Figure 5b. The
track, girder, and piers are simulated by the elasticBeamColumn elements in OpenSees,
the parameters of which can be found in Table 1. The simulation of the cross-section of
the bridge in OpenSees can be referred to in Figure 6. The tolerance of the convergence is
selected as 0.1 N. The analysis type in this paper is algorithm Newton.
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Table 1. The parameters of the elasticBeamColumn beams in OpenSees.

A (m2) Ix (m4) Iy (m4) Iz (m4) E (N/m2) ρ (kg/m) µr

rail beam 7.67 × 10−3 2.104 × 10−6 3.038 × 10−5 5.123 × 10−6 2.059 × 1011 60.21 0.3
girder beam 8.343 16.815 9.0 69.282 4.4 × 1010 20,857.5 0.2
pier beam 15.86 97.85 29.24 68.61 3.45 × 1010 39,650 0.2
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The connection between the track and the track plate is simplified by the spring-
dampers, and the rail nodes are connected with the track plate nodes through the twoN-
odeLink element in OpenSees. The length of the twoNodeLink element is 0.787 m, and
the spring and damping are three-dimensional. The bridge bearing is also simulated with
the twoNodeLink element, and the element length is 0.2 m. However, since the bridge
is simply supported, the bearings of each span are different, as can be seen in Figure 7,
where kf, cf represents the stiffness and damping of the fixed bearing, km; cm represents
the stiffness and damping of the movable bearing. The parameters of the twoNodeLink
element in OpenSees can be seen in Table 2. All the mass of the girder is concentrated
on the girder nodes, and the girder node is connected with the track slab node and the
upper node of the bearing through the rigidLink beam in OpenSees. The lower node of the
bearing is also connected with the upper node of the pier through the rigidLink beam. The
length of the rigidLink beam mentioned above is determined by the actual bridge size. The
nodes at the bottom of each pier are fixed.
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Table 2. The parameters of the twoNodeLink beams in OpenSees.

k (N/m) c (Ns/m)

x-direction 2.0 × 107 5.0 × 104

y-direction 2.0 × 107 5.0 × 104

z-direction 5.0 × 108 2.0 × 105

fixed bearing 1.0 × 1012 2.0 × 107

movable bearing 7.65 × 105 5.0 × 104

vertical bearing 2.78 × 109 2.0 × 107

3.2. The Data for the BP Neural Network

As mentioned above, the WRI is the most critical part of the TTB system, while the
rest, such as the train, is relatively simple and has a limited effect on the element reaction
of the WRI element in terms of efficiency and convergence rate. Therefore, only the CTS of
the WRI element is replaced by the BPTS. This will greatly reduce the time spent training
the neural network. In this paper, the single wheelset is running on the bridge mentioned
in Section 3.1 at a constant speed of 20 m/s, as can be seen in Figure 8. Before the dynamic
analysis of the wheelset, a horizontal force is applied in the lateral direction such that an
original misalignment of the wheelset is 1 mm. The wheelset herein used is the ML95 [6];
the parameters of the wheelset can be found in Table 3, where Mw represents the mass
of the wheelset. Jxx, Jyy, Jzz represents inertia about the x, y, and z-axes, respectively. R0
represents the rolling radius of the wheel. Wr and Ww represent the distance of the right
and left rail and wheel nodes, respectively. E is Young’s modulus of the rail and wheel and
µ is Poisson’s ratio. The analysis type in this paper of the OpenSees model is algorithm
Newton. The Newmark-Beta method [21] is used for the time integration, with γ = 0.5 and
β = 0.25 with a time step of 0.001 s. The sign for judging convergence in OpenSees is that
the maximum unbalanced force at each time step is less than 0.1 N.

As mentioned in Section 2.2, for the ANN model for the tangent stiffness of WRI, the in-
puts X are the nodal displacement u and velocity v, while the outputs Y are the approximate
of ∂Rw

∂u and ∂Rr
∂u obtained by perturbation [7] because its derivation and programming are

quite simple. There are 36 inputs and 216 outputs (decomposed as 12 groups with 18 out-
puts in each group for fast training purposes). A hidden layer neural network is composed
of 20 neurons. For training purposes, the above wheelset example runs 3000 time steps,
with an average convergence of 6–7 iterations per time step, so as to obtain a total of 19,927
sample data sets.
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Table 3. The parameters of the wheelset.

Symbol Value Symbol Value

Mw 933 kg Wr 1.505 m
Jxx 461.4 m2 Ww 1.5046 m
Jyy 61.6 m2 Ew 2.06 × 1011 N/m2

Jzz 461.4 m2 µw 0.296
R0 0.43 m

3.3. Verification of BPTS in the Wheelset Example

The input of the above wheelset example is used to test the performance of the
obtained BP neural network, and the predicted results are compared with the actual results,
i.e., by CTS. In order to make the results more visible, the data are sampled and plotted
every 50 points. Additionally, only some data comparisons are listed to save space, as
can be seen in Figures 9–11, respectively. The data in Figure 9 represent the derivative of
the resisting force in the x-direction of the wheel node with respect to the translational
displacement in the x-direction of the wheel node, marked as ∂Rw1/∂u1. The data in
Figure 10 represent the derivative of the resisting force in the y-direction of the rail virtual
node to the translational displacement in the y-direction of the wheel node, marked as
∂Rr2/∂u2. The data in Figure 11 represent the derivative of the moment of the rail virtual
node around the x-direction to the rotational displacement of the rail node bi+1 around
the x-direction, marked as ∂Rr4/∂u16. It can be observed that the predicted components of
tangent stiffness agree well with the actual ones by CTS, although there are irregular jumps
of the CTS with iterations. A mean absolute percentage error (MAPE) is used to measure
the error between the predicted result and the actual result herein, i.e.,

MAPE =

(
100
n

) n

∑
i=1

∣∣∣∣Yi − Yi
Yi

∣∣∣∣ (10)

where Y represents the actual result and Y represents the result obtained by the BP neural
network. The MAPEs of the two curves are 1.14%, 0.34%, and 0.0042%, respectively, which
shows that the neural network has a good training effect.
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After the training is performed, the CTS is replaced by the tangent stiffness predicted
by the BP neural network (i.e., BPTS) and implanted into the above wheelset to verify its
responses. Figure 12 shows the comparison of the lateral displacement of the left wheel
obtained by two tangent stiffness. Figure 13 shows the comparison of the acceleration of
the left wheel obtained by two tangent stiffness. The wheelset response calculated by BPTS
agrees well with that calculated by CTS.
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To compare the convergence rate by using the two tangent stiffness, the convergence
data, i.e., the norm of the unbalance force at each iteration in a few representative time
steps, are shown in Table 4. It can be observed that the convergence of the Newton method
by use of BPTS is slightly slower than the use of CTS because CTS can guarantee quadratic
convergence of the Newton method, while BPTS is obtained by the ANN model that
approximates CTS but cannot achieve strict quadratic convergence. However, because
the calculation of BPTS is much simpler in each iteration step, it has great advantages in
overall computational efficiency. In this example, the calculation time using CTS is 7618 s,
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while the calculation time using BPTS is 4959 s, which saves 35.0% of the calculation time
compared with the former.

Table 4. The norm of the unbalance force in a few representative time steps (wheelset).

Time [s] Model 1 2 3 4 5 6

0.500
CTS 4.99 × 103 3.04 × 103 6.83 × 101 8.63 × 10−1 2.38 × 10−4

BPTS 8.37 × 103 6.58 × 103 4.65 × 102 0.36 × 101 9.07 × 10−2

1.500
CTS 2.28 × 104 1.13 × 104 5.37 × 101 2.65 × 10−1 7.54 × 10−5

BPTS 1.25 × 104 8.45 × 103 8.51 × 102 1.88 × 101 0.83 × 10−1

2.500
CTS 1.58 × 105 8.79 × 104 2.06 × 102 0.39 × 101 1.67 × 10−3

BPTS 5.45 × 105 8.64 × 103 9.64 × 102 2.60 × 101 1.26 × 10−1 4.31 × 10−2

3.4. A Light Rail Vehicle Running on the Seven-Span Bridge

Using the same trained BPTS above (i.e., that obtained by a wheelset running with
a constant speed), an ML95 trailer vehicle running on the bridge is studied to verify the
BPTS derived herein, as shown in Figure 14. The detail of the model of the car body and
bogie can be found in [22–24]. The vehicle consists of the car body, bogies, and wheelsets,
respectively. The vehicle body and bogies are modeled using lumped mass points and rigid
beams, while the wheelsets are simulated by the wheel nodes mentioned in Section 2.1
and the elastic beam (axis of the wheelsets). The primary suspension of the vehicle is
simulated by spring-dampers I between the wheelsets and the bogies, which appear in
black. The secondary suspension of the vehicle is simulated by spring-dampers II between
the bogies and the car body, which appear in pink. The parameters of spring-dampers I and
II can be found in Table 5, where kI denotes the stiffness of spring-dampers I, cI represents
the damping of spring-dampers I, kII denotes the stiffness of spring-dampers II, and cII
represents the damping of spring-dampers II. Both k and c are three-dimensional herein
and correspond to x, y, z in Table 5. The rail profile used herein is the UIC50. The element
of rail is simulated by an elastic beam, the parameters of which can be found in Table 6,
where Ar is the cross-sectional area of the rail, Irx, Iry, Irz represent the area moment of
inertia about the x, y, and z-axes, respectively. During the static analysis, the lateral forces
applied to each wheelset to make the lateral displacement of the vehicle is 1 mm, and then
the forces are removed at the beginning of the dynamic analysis.
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Table 5. The parameters of spring-dampers I and II.

x y z

kI (N/m) 1.24 × 107 2.06 × 106 1.28 × 106

kII (N/m) 7.50 × 104 7.50 × 104 2.50 × 105

cI (Ns/m) 1.73 × 105 7.03 × 104 5.54 × 104

cII (Ns/m) 2.60 × 104 2.60 × 104 4.75 × 104

Table 6. The parameters of the rail element.

Symbol Value Symbol Value

Ar 7.67 × 10−3 m2 Irz 5.123 × 10−5 m4

Irx 2.104 × 10−6 m4 Er 20.59 × 1011 N/m2

Iry 3.038 × 10−5 m4 µr 0.3

The BPTS trained previously using a wheelset is re-used in the TTB system; the lateral
displacement of the left wheel of wheelset 1 is shown in Figure 15 for cases of running
speed at 30 and 50 m/s, respectively. Additionally, the lateral displacement of the car body
is shown in Figure 16. The responses obtained by the two tangent stiffness are identical.
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The convergence data are also recorded. The convergence rates are compared between
the use of the two tangent stiffness, as shown in Tables 7 and 8. It can be seen that the
convergence rate of BPTS is slightly less than that of CTS. However, the total calculation
time is faster when using BPTS over CTS. The total calculation time using CTS is 11,508 s
when the speed of the train is 30 m/s, while the calculation time using BPTS is 8264 s,
which saves 28% of time. When the train speed is 50 m/s, the calculation times are
16,528 and 13,004 s for the use of CTS and BPTS, respectively, and the use of BPTS saves
21.3% of time. The efficiency improvement by BPTS reduces slightly with the incensement
of running speed. The above results show that the BPTS has good applicability in the
TTB system. Compared with the CTS, the BPTS can improve computational efficiency and
maintain good accuracy.
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Table 7. The norm of the unbalance force in a few representative time steps (speed is 30 m/s).

Time [s] Model 1 2 3 4 5 6 7

0.500
CTS 7.02 × 104 3.26 × 103 1.04 × 101 1.76 × 10−3

BPTS 1.05 × 105 4.76 × 103 5.30 × 102 5.55 × 10−1 3.21 × 10−2

1.500
CTS 6.52 × 104 4.31 × 104 2.34 × 101 3.82 × 10−1 2.97 × 10−3

BPTS 5.47 × 104 4.70 × 104 6.41 × 102 4.35 × 101 0.17 × 10−1 1.01 × 10−2

2.500
CTS 4.58 × 105 7.73 × 104 1.44 × 103 0.27 × 101 2.43 × 10−2

BPTS 3.31 × 105 1.21 × 105 3.05 × 104 8.61 × 103 0.45 × 101 2.41 × 10−1 1.95 × 10−2

Table 8. The norm of the unbalance force in a few representative time steps (speed is 50 m/s).

Time [s] Model 1 2 3 4 5 6 7

0.500
CTS 4.19 × 104 2.66 × 104 1.84 × 102 2.81 × 10−1 3.29 × 10−2

BPTS 2.17 × 104 1.37 × 104 2.97 × 103 1.14 × 101 1.16 × 10−1 7.31 × 10−3

1.500
CTS 3.30 × 104 1.42 × 104 2.76 × 103 0.74 × 101 9.71 × 10−2

BPTS 4.21 × 105 3.27 × 104 2.64 × 104 2.64 × 103 1.06 × 101 1.02 × 10−1 9.39 × 10−3

2.500
CTS 2.89 × 105 1.58 × 105 2.52 × 104 0.87 × 103 8.50 × 10−1 2.14 × 10−3

BPTS 6.67 × 105 2.43 × 104 1.87 × 104 4.76 × 103 4.42 × 102 2.41 × 101 3.92 × 10−2

4. Conclusions

This paper presents a tangent stiffness calculation method based on a backpropagation
neural network (i.e., BPTS) for a wheel–rail interaction (WRI) element and implements
it into a general finite element software, OpenSees. The BPTS obtained using a wheelset
running on a bridge at a constant speed is used for the dynamic response analysis of
a realistic train–track–bridge (TTB) system with different vehicle speeds. The accuracy
and efficiency of BPTS are studied by comparing the results with those using consistent
tangent stiffness (CTS). In the example of a single wheelset, the lateral displacement and
acceleration obtained by the two methods are compared and proven to be close. The
convergence rate of BPTS is also verified by comparing the norm of the unbalance force and
the total computation time. The results show that BPTS needs more convergence numbers
but can significantly save the computation time, e.g., when BPTS is used, 35% of time is
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saved in the example of a single wheelset. In the example of a light rail vehicle, when
BPTS is used, 28% of time is saved. In summary, compared with the CTS, the BPTS can
save the significant efforts of derivation and software implementation as well as improve
computational efficiency and maintain good accuracy.

This paper discusses a simple working condition with a TTB system, and the load on
the train is relatively simple, that is, a small lateral disturbance. The application of BPTS
under complex working conditions will be studied in the future, such as the effect of track
irregularity and wind load, in order to improve the generality of this method.
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