
 Open access Book Chapter DOI:10.1007/978-3-319-49094-6_15

An effective verification strategy for testing distributed automotive embedded
software functions : A case study — Source link

Annapurna Chunduri, Robert Feldt, Mikael Adenmark

Institutions: Blekinge Institute of Technology, Scania AB

Published on: 22 Nov 2016 - Product Focused Software Process Improvement

Topics: Automotive software, Software reliability testing, Integration testing, Software construction and
Software verification and validation

Related papers:

 Test front loading in early stages of automotive software development based on AUTOSAR

 On the Software-Based Development and Verification of Automotive Control Systems

 Embedded automotive system development process - steer-by-wire system

 Software-in-the-Loop simulation for early-stage testing of AUTOSAR software component

 Model-based functional safety for the embedded software of automobile power window system

Share this paper:

View more about this paper here: https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-
33fcf3mtb0

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-49094-6_15
https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0
https://typeset.io/authors/annapurna-chunduri-51iwqlahnk
https://typeset.io/authors/robert-feldt-3u9ht92ilw
https://typeset.io/authors/mikael-adenmark-4aoewjc9ki
https://typeset.io/institutions/blekinge-institute-of-technology-16qgxbak
https://typeset.io/institutions/scania-ab-14mw1wp6
https://typeset.io/conferences/product-focused-software-process-improvement-2gh0hoox
https://typeset.io/topics/automotive-software-kdb36eo2
https://typeset.io/topics/software-reliability-testing-d3f60yxj
https://typeset.io/topics/integration-testing-i1dzrknp
https://typeset.io/topics/software-construction-3b0bx0uv
https://typeset.io/topics/software-verification-and-validation-2i06f0pp
https://typeset.io/papers/test-front-loading-in-early-stages-of-automotive-software-29ynqwt9y7
https://typeset.io/papers/on-the-software-based-development-and-verification-of-10v1oob9kh
https://typeset.io/papers/embedded-automotive-system-development-process-steer-by-wire-aa0rsiqc4f
https://typeset.io/papers/software-in-the-loop-simulation-for-early-stage-testing-of-3vb43mr0ew
https://typeset.io/papers/model-based-functional-safety-for-the-embedded-software-of-j5g5cvrglv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0
https://twitter.com/intent/tweet?text=An%20effective%20verification%20strategy%20for%20testing%20distributed%20automotive%20embedded%20software%20functions%20:%20A%20case%20study&url=https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0
https://typeset.io/papers/an-effective-verification-strategy-for-testing-distributed-33fcf3mtb0

Thesis no: MSSE-2016-08

An Effective Verification Strategy for

Testing Distributed Automotive

Embedded Software Functions

A Case Study

Annapurna Chunduri

Faculty of Computing

Blekinge Institute of Technology

SE–371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology

in partial fulfillment of the requirements for the degree of Master of Science in Software

Engineering. The thesis is equivalent to 20 weeks of full-time studies.

Contact Information:
Author(s):
Annapurna Chunduri
E-mail: anch15@student.bth.se

University Advisor:
Prof. Robert Feldt
Dept. Software Engineering

Industry Advisor:
Mikael Adenmark
Senior Test Engineer
Scania CV AB, Södertälje, Sweden

Faculty of Computing
Blekinge Institute of Technology
SE–371 79 Karlskrona, Sweden

Internet : www.bth.se
Phone : +46 455 38 50 00
Fax : +46 455 38 50 57

Abstract

Context. The share and importance of software within automotive
vehicles is growing steadily. Most functionalities in modern vehicles,
especially safety related functions like advanced emergency braking,
are controlled by software. A complex and common phenomenon in
today’s automotive vehicles is the distribution of such software func-
tions across several Electronic Control Units (ECUs) and consequently
across several ECU system software modules. As a result, integration
testing of these distributed software functions has been found to be a
challenge. The automotive industry neither has infinite resources, nor
has the time to carry out exhaustive testing of these functions. On
the other hand, the traditional approach of implementing an ad-hoc
selection of test scenarios based on the tester’s experience, can lead
to test gaps and test redundancies. Hence, there is a pressing need
within the automotive industry for a feasible and effective verification
strategy for testing distributed software functions.
Objectives. Firstly, to identify the current approach used to test the
distributed automotive embedded software functions in literature and
in a case company. Secondly, propose and validate a feasible and effec-
tive verification strategy for testing the distributed software functions
that would help improve test coverage while reducing test redundan-
cies and test gaps.
Methods. To accomplish the objectives, a case study was conducted
at Scania CV AB, Södertälje, Sweden. One of the data collection
methods was through conducting interviews of different employees in-
volved in the software testing activities. Based on the research ob-
jectives, an interview questionnaire with open-ended and close-ended
questions has been used. Apart from interviews, data from relevant ar-
tifacts in databases and archived documents has been used to achieve
data triangulation. Moreover, to further strengthen the validity of
the results obtained, adequate literature support has been presented
throughout. Towards the end, a verification strategy has been pro-
posed and validated using existing historical data at Scania.
Conclusions. The proposed verification strategy to test distributed
automotive embedded software functions has given promising results
by providing means to identify test gaps and test redundancies. It
helps establish an effective and feasible approach to capture function
test coverage information that helps enhance the effectiveness of inte-
gration testing of the distributed software functions.

Keywords: Verification Strategy, Distributed Automotive Em-
bedded Software Functions, Test Coverage.

ii

Acknowledgments

The journey of my master thesis has been a truly rewarding experi-
ence. I am grateful to have had the unique opportunity to pursue
it within the research department of the automotive industry. The
perks of both, the opportunity to be pursuing research and to be able
to do so within a real world industrial setting have been immensely
satisfying. I have had the honor to contribute to research within this
industry while being guided by the most prolific and profound minds
within and outside the industry.

I would like to express my deep gratitude to my university su-
pervisor, Professor. Robert Feldt, and my industry supervisor, Mr.
Mikael Adenmark, for their valuable expert advice and strong sup-
port and encouragement throughout my thesis work. Their guidance
and encouragement was one of the defining pillars of my confidence
to overcome obstacles and minor setbacks and emerge out successfully.

I am grateful to Mr. Niclas Clashammar, Head of Systems and
Integration Test, Scania CV AB (henceforth referred to as Scania) for
providing me the opportunity to conduct my thesis at Scania. Special
thanks to Mr. Tom Nyman for his valuable recommendations during
critical phases of my thesis work. In addition, I would like to thank
all my colleagues at Scania who have been highly cooperative and en-
thusiastic.

Finally, I would like to express my heartfelt gratitude to my par-
ents, Mr. C.V.R Murthy and Ms. C. Padmavathi, my sister, C.
Swetha, and my uncle, late Mr. Sunil Kandlikar, for their everlasting
love, support and well wishes. Last but not the least, I would like to
thank one and all, who might have missed my mention inadvertently,
for their help and support, without which my thesis work could not
have been successful.

Thank you all.

Annapurna Chunduri

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Aim and Objectives . 5
1.3 Research Questions and Instrument 6
1.4 Expected Research Outcomes . 8
1.5 Structure of the Thesis . 8

2 Background and Related Work 10
2.1 Software in the Automotive Industry 10
2.2 Software Testing in the Automotive Industry: State-of-the-Art . . 12
2.3 Challenges of Software Testing in the Automotive Industry 14
2.4 Area of Study . 15

3 Research Method 17
3.1 Motivation . 17
3.2 Literature Review Design . 18
3.3 Case Study Design . 20

3.3.1 Case and its Unit of Analysis 20
3.3.2 Case Study Protocol . 21

3.3.2.1 Data Collection Protocol 21
3.3.2.1.1 Data Collection Methods 21
3.3.2.1.2 Selection of Interview Subjects 21
3.3.2.1.3 Interview Design 22
3.3.2.1.4 Formulation of Interview Questionnaire . 23
3.3.2.1.5 Interview Planning and Setup 24
3.3.2.1.6 Transcription 25
3.3.2.1.7 Identification of Relevant Databases and

Archived Documents 25
3.3.2.2 Data Analysis Protocol 26

3.3.2.2.1 Data Analysis Methods 26

iv

3.3.2.2.2 Theoretical Sensitivity, Theoretical Sam-
pling and Theoretical Saturation 27

3.3.2.2.3 Coding 27
3.3.2.2.4 Triangulation 30
3.3.2.2.5 Validation using Existing Historic Data . 31

4 Case Study Results 32
4.1 Current Approach to Test Distributed Software Functions at Scania 32
4.2 Summary of Interviews . 36
4.3 Transcription . 37
4.4 Post Interviews - Theoretical Sampling 38
4.5 Open Coding - Preliminary Results of the Interviews 40
4.6 Axial Coding - Establishing Relationships between Categories . . 42
4.7 Selective Coding - Identifying the Core Category 44
4.8 Triangulation - Confirming the Derived Theory 46

5 Data Analysis 48
5.1 Issues with Current Approach to Test Distributed Software Func-

tions at Scania . 48
5.2 Alternative Approaches to Address Test Issues 50

5.2.1 Understanding People, Process and Technology 50
5.2.2 Understanding the Fundamental Process Issue Areas . . . 53
5.2.3 Deriving Alternative Process Enhancement Approaches . . 57

5.3 Comparative Analysis of the Alternative Process Enhancement Ap-
proaches . 58
5.3.1 Comparative Analysis based on Scientific Literature 59
5.3.2 Comparative Analysis based on Industry Expert Opinion . 62
5.3.3 Comprehensive Results of Comparative Analysis 65

6 An Effective Cross-Functional Verification Strategy 66
6.1 Proposed Cross-Functional Verification Strategy 66

6.1.1 Summary of Previous Work 66
6.1.2 Steps for Implementation of the Proposed Cross- Functional

Verification Strategy . 68
6.2 Validation of the Proposed Cross-Functional Verification Strategy 76

6.2.1 Implementation of the Proposed Verification Strategy on
FLD Function . 76

7 Discussion and Limitations 87
7.1 Discussion . 87
7.2 Threats to Validity . 90

7.2.1 Construct Validity . 91
7.2.2 Internal Validity . 91

v

7.2.3 External Validity/Generalisability 92
7.2.4 Repeatability . 92
7.2.5 Scope . 92

8 Conclusion and Future Work 94
8.1 Summary and Conclusion . 94
8.2 Future Work . 95

References 97

Appendices 109

A Interview Questionnaires 110

B Interview Invitation 113

C Frequency of Occurrence of Open Code Categories 114

D UCDs for UC18_1 and UC18_2 115

E UCTs for UC18_1 and UC18_2 117

F Comprehensive Test Coverage Information 119

vi

List of Tables

2.1 Summary of software testing related challenges in the automotive
industry as identified in literature [1][2][3] 15

4.1 Brief description of the interview participants’ background 37

5.1 Issues identified with the current approach to test distributed soft-
ware functions at Scania . 50

5.2 Alternative people, process and technology issue subsets 53
5.3 Alternative process enhancement approaches 58
5.4 Results of comparative analysis of the alternative process enhance-

ment approaches based on scientific literature 62
5.5 Results of comparative analysis of process enhancement approach

(1) based on industry experts . 63
5.6 Results of comparative analysis of process enhancement approach

(2) based on industry experts . 63
5.7 Results of comparative analysis of process enhancement approach

(3) based on industry experts . 64
5.8 Comprehensive results of comparative analysis of alternative pro-

cess enhancement approaches . 65

C.1 Frequency of occurrence of open code categories in the interviews
conducted at the case company 114

vii

List of Figures

1.1 The V-model implemented at Scania to develop and test their au-
tomotive embedded software [4] 2

1.2 Research instrument for answering the research questions 6
1.3 Structure of the thesis report . 9

2.1 Illustration of thesis area of study 16

3.1 Research Design . 19

4.1 How distributed software functions are tested across different test
levels of the V-model at Scania 33

4.2 Snapshot of ExpressScribe software used to transcribe the inter-
view audio files . 38

4.3 Snapshot of interview transcript with a note of researcher identified
theoretical concept . 39

4.4 Snapshot of interview transcript with a note to modify interview
questionnaire based on interview data analysis 39

4.5 Open codes and open code categories 40
4.6 Frequency of occurrence of open code categories 41
4.7 Relationships among open code categories 42
4.8 Axial code categories . 44
4.9 Identified core category based on relationships among axial code

categories . 45
4.10 An instance of people, process and technology issue relationship . 45

6.1 Steps for implementation of the proposed verification strategy . . 69
6.2 UML representation of abstract UCD template 70
6.3 Abstract UCD template . 71
6.4 Illustration of traceability across system, function and vehicle in-

tegration test levels . 73
6.5 Illustration of the concept of function scenario and it’s correspond-

ing system views . 74
6.6 FLD function use cases . 77
6.7 FLD function use case variants 77

viii

6.8 MSC for UC18_1 Alternative Scenario 1 79
6.9 Comprehensive set of FLD function scenarios 80
6.10 Set of system views for FLD function SCN2 (UC18_1 Alternative

Scenario 1) . 81
6.11 FLD function scenarios mapped to system level requirements . . . 82
6.12 System level requirements coverage across test rounds TW1602,

TW1606 and TW1610 . 83
6.13 System level requirements coverage for FLD function SCN2 for test

round TW1606 . 83
6.14 Vehicle integration test level scenario coverage results 84
6.15 Comprehensive FLD function scenario test coverage across the

three test levels for test round TW1606 85

A.1 Interview questionnaire for system test engineers 110
A.2 Interview questionnaire for function owners 111
A.3 Interview questionnaire for integration test engineers 112

B.1 Snapshot of an interview invitation sent via Microsoft Outlook . . 113

D.1 UCD for UC18_2 . 115
D.2 UCD for UC18_1 . 116

E.1 UCT for UC18_1 . 117
E.2 UCT for UC18_2 . 118

F.1 Comprehensive FLD function scenario test coverage across the
three test levels for test round TW1602 119

F.2 Comprehensive FLD function scenario test coverage across the
three test levels for test round TW1610 120

ix

Chapter 1

Introduction

"The rapid increase in the software complexity of today’s Elec-
tronic Control Units(ECUs) makes testing a central and significant
task within automotive control software development" [5].

1.1 Problem Statement

Across several industries, there is an increasing use of embedded system soft-
ware to provide functionality with high reliability demands within safety-relevant
applications. One such industry is the automotive industry which has been signif-
icantly affected by the industrial software revolution over the past decade [6][7].
The share and importance of software within a vehicle is growing steadily [7].
Most functionalities in modern vehicles, especially safety related functions like
automatic braking system, advanced driver assistant systems and anti-slip con-
trol are controlled by software [8]. It is anticipated that 90% of all future au-
tomotive innovations will be driven by software [7]. Hence, it can be inferred
that the automotive industry is slowly but steadily transitioning towards being a
software-centric industry.

An automotive vehicle consists of ECUs, also referred to as ECU systems,
which are essentially embedded microcontrollers with corresponding software com-
ponents. The ECU systems interact in order to execute the desired functionality
in the vehicle like controlling the engine, displaying fuel level and operating air
bags [9]. In the past, each single ECU system in the vehicle had a single dedicated
function. Hence, execution of a function required the software within only one
of the ECU systems to execute independently. In the early 90s, ECU systems
were coupled using a single area network called the Control Area Network (CAN)
through which they could communicate by sharing information. This lead to
functions that were designed to be realized through the cooperation of different
sub-functions and ECU systems. Moving towards the late 90s, functions highly
depended on communication between multiple CAN networks. Nowadays, there
is a multi-fold increase in automotive software function complexity with the in-
clusion of interaction between multiple CANs and outer-vehicle environment via

1

Chapter 1. Introduction 2

radio links [7]. Hence, cross-functionality i.e., a function distributed across mul-
tiple ECU systems and consequently across several system software modules is a
common and complex phenomenon in today’s automobile vehicles.

Such an increased significance of software based distributed functionality has
resulted in various challenges for the automotive industry [8]. The growing num-
ber of functionalities in the next generation vehicles not only results in complex
embedded software but also a bottleneck to design and execute effective and effi-
cient processes of development, testing and production of the software [10]. One
such critical and crucial challenge is the growing complexity of automotive soft-
ware testing due to the rapid rise in, and highly distributed nature of, software
within the vehicles [11]. Undetected software defects can cause damage to humans
and, in a few unfortunate cases, loss of lives. Hence, a complete and thorough
testing of automotive embedded software is essential. A single fault could poten-
tially cause devastating consequences [12]. As a result, about 50% of the total
time spent on management and technical activities of automotive development is
dedicated to software testing [13].

Figure 1.1: The V-model implemented at Scania to develop and test their
automotive embedded software [4]

In the automotive industry, the standard V-model is most widely used for the
engineering processes of embedded software development [13]. A typical V-model
implemented by Scania [4], a major manufacturer of commercial heavy vehicles
in the European automotive industry, can be seen in Figure 1.1. Similarly, across
the automotive industry, testing of the embedded software occurs at different test
levels from the lowest code test level to the highest vehicle integration test level.

Chapter 1. Introduction 3

Here, the term ‘test level’ is used to indicate the test focus. "Each test level
describes an area of test responsibility" [4]. For instance, at the software code
test level, the individual software module testing and software module integra-
tion testing is performed independent of the underlying ECU system hardware.
Moving to the system test level, for each individual ECU system of the vehicle,
the software modules are mounted or embedded on the corresponding ECU sys-
tem hardware like the engine or the gearbox and tested independently. There
after, at the vehicle integration test level, the software modules corresponding to
all the ECU systems which make up the vehicle are tested together in their actual
operational environment (real vehicle or simulated vehicle). The exact number
of test levels and terminology used to describe each test level differs from one
automotive company to another. But what remains the fundamental similarity
in the concept of testing is that, at each test level, the test strategy adopted
aims to address and test software behavior at a different level of abstraction and
provides a different degree of coverage of the object under test [6].

In general, testing of embedded software modules is more complex than non-
embedded software modules due to lower controllability and observability [14].
This, coupled with the distributed nature of the functions across several embed-
ded system software modules further increases the complexity of the situation
[15]. Exhaustive integration testing of the distributed functions at the vehicle
integration test level using the numerous variants across the modules would be
an excellent means of ensuring defect-free software. However, it is not feasible
since projects within the automotive industry neither have infinite resources nor
have the time to carry out such exhaustive testing [12]. On the other hand, going
by the traditional approach of implementing an ad-hoc selection of test scenar-
ios based on the tester’s experience and expertise can lead to test gaps and test
redundancies across the different test levels [16]. Hence, there is a pressing need
within the automotive industry for a feasible and effective verification strategy
for testing distributed software functions at the vehicle integration test level that
would help achieve adequate test coverage while reducing test redundancies and
test gaps across the test levels. There is limited scientific literature in the context
of automotive industry, like [12], found to be focusing on solving this challenge.

Verification as defined by the IEEE standard for System and Software Verifica-
tion and Validation [17] and Software Engineering Institute [18] is a process that
provides evidence for whether the products under consideration fulfill the speci-
fied requirements for correctness, completeness, consistency and accuracy. There
are several established techniques for performing system and software verification
like testing, technical reviews and prototyping [19]. Here, testing is a verification
technique which involves activities that exercise a product at various levels to ver-
ify if it satisfies the specified requirements [18]. In the context of the automotive
industry, similar definitions of verification and testing have been provided by the

Chapter 1. Introduction 4

ISO 26262 safety standard which defines verification as "determination of com-
pleteness and correct specification or implementation of requirements" [20] and
testing as "process of planning, preparing, and operating or exercising an item to
verify it satisfies specified requirements, to detect anomalies, and to create confi-
dence in its behaviour" [20]. In addition, while the term ‘strategy’ has yet to be
defined concretely and accepted universally, it has been found to be a ubiquitous
term that can be attached to any means of achieving the desired result. It is
a term that is used to define an attempt to establish actions and activities in
the light of the goals and capabilities. It hence goes beyond being just a plan.
It is about identifying a high end challenge, establishing suitable objectives to
solve these challenge and providing ways and means of fulfilling these objectives
[21]. Therefore, within the current context, the term ‘verification strategy for
testing’ can be defined as a set of actions and activities that have been laid out
based on careful consideration of the current goals and capabilities, to solve the
identified high end challenge(s) in the verification process of testing.

While the need from within the automotive industry to identify an effective
verification strategy that can handle the steadily increasing software complex-
ity is one of the major driving forces, there is another driving force that plays
a significant role. That is the ISO 26262 Road Vehicle Functional Safety Stan-
dard [11]. According to this standard [20], functional safety of an automobile
vehicle is achieved by undertaking safety measures that pertain to not only the
technologies implemented within the vehicle, but also to several other influencing
factors like the processes implemented for development, production, services and
management among others. Hence, it can be inferred that a recommendation by
the standard to build safe vehicles is to have effective supporting processes. In
addition, the standard also specifies the need to provide evidence that the vehicle
functions are reasonably safe. This in the current context, would imply a need
to provide evidence for the effectiveness of the processes being implemented to
build safe vehicle functions.

In essence, within the context of verification, which is one of the supporting
development processes identified by the standard, it can be inferred that, the stan-
dard recommends automotive industries to have an effective verification process
to help produce high quality and safe vehicle functions. It also recommends to
have evidence of effectiveness of this process. Introduction of the safety standard
proved to be a major advancement in the automobile industry and compliance
to the standard is being increasingly discussed within the industry and research
[11][22]. But the study of how the effectiveness of testing process can be identified
and enhanced and evidence for the same can be provided for integration testing
of the distributed software functions has been found to be limited. Therefore,
there is a need to study how to align or improve the current approach to test dis-
tributed software functions in the automotive industry to facilitate future need

Chapter 1. Introduction 5

for compliance to the recommendations of this defacto standard.

Hence, there exist challenges within integration testing of complex and dis-
tributed software functions in the automotive industry. These challenges have
a potential to lead to undesirable consequences. Yet, research focusing on ad-
dressing this problem domain, like [12], has been found to be limited. Therefore,
there is a need from within and outside the automotive industry for a verification
strategy that can help focus on improving the effectiveness of integration testing
of the distributed software functions. Here, it is essential for the strategy to help
identify and improve test coverage of the distributed software functions at the ve-
hicle integration test level, while reducing test redundancies and test gaps across
different test levels.

1.2 Research Aim and Objectives

The aim of the research was to develop an effective verification strategy,
termed cross-functional verification strategy, for integration testing of the dis-
tributed functions of automotive embedded software. The proposed strategy aims
to help improve test coverage of the distributed software functions at the vehicle
integration test level while reducing test redundancies and test gaps across differ-
ent test levels. Hence, here, the primary focus of the strategy is on the high-level
function requirements. The idea was to combine test results from different test
levels to establish that the different verification results together can provide evi-
dence of functional safety for such distributed functions. Since the focus was on
test coverage based on requirements, only those test levels where the focus is on
requirements-based test coverage and not code-based test coverage were consid-
ered to be within the scope of this research.

Given the overall aim, the primary objectives of the research were to:

• Perform a case study at Scania to identify the current test approach at
different test levels used for testing the distributed automotive embedded
software functions along with the major challenges in this approach.

• Capture the relevant information pertaining to the distributed software
functions under consideration, like the test results and test reports, from
each test level at the case company.

• Develop and propose an effective and feasible concept for combining the
identified test results with a cross-functional verification strategy to verify
distributed functionality.

• Demonstrate the validity of the proposed cross-functional verification strat-
egy by studying its feasibility and evaluating the improvements in test ef-

Chapter 1. Introduction 6

Figure 1.2: Research instrument for answering the research questions

fectiveness for distributed functionality using existing historical data at the
case company.

1.3 Research Questions and Instrument

Based on the research aims and objectives, the research questions formulated
for this study are reported within this section. Research question RQ1 part a)
was answered by conducting a literature review. On the other hand, RQ1 part
b) along with RQ2, RQ3 and RQ4 were answered by conducting a case study at
Scania as illustrated in Figure 1.2.

RQ1. What is the approach at the different test levels to test the distributed
automotive embedded software functions a) as described in recent literature
and b) at the case company?

Motivation: The motivation behind inclusion of this research question is in
two-folds. Firstly, it helps capture scientific data related to the problem
domain from literature like [1]. This in turn helps identify the state-of-the-
art software testing approach at different test levels used in the automotive
industry. Secondly, it helps the researcher study and report the test ap-
proach at different test levels currently implemented at the case company
to gain an understanding of if and how it differs from the state-of-the-art.
While evidence in literature exists pertaining to how software testing is im-
plemented in the automotive industry, it has been found to be limited [1],
especially pertaining to higher level integration testing [2] which is the focus

Chapter 1. Introduction 7

of the current research. Therefore, on one hand, the answer to this question
helps establish a firm foundation for the research, while on the other, it con-
tributes to the sparse body of knowledge in the area of integration testing
of the distributed automotive embedded software functions. In addition,
it stands as the first step towards identifying and reporting where the cur-
rent test approach is most likely problematic and needs to be addressed for
improving its effectiveness.

RQ2. What is the current test coverage of the distributed software functions
across the test levels at the case company?

Motivation: One accepted and widespread approach to report the efforts of
verifying a software function for various input combinations is using test
coverage information based on a suitable coverage metric like requirements-
based test coverage or code-based test coverage [12]. Identifying the current
test coverage information for the distributed software functions across dif-
ferent test levels helps establish how much has been tested. It can then
be used as one of the indicators to assess the effectiveness of the current
test approach. Hence, answering this question helps take a step towards
achieving the aims and objectives of the research.

RQ3. What are the major issues with the current approach to test distributed
software functions that are a hindrance to its effectiveness at the case com-
pany?

Motivation: While literature pertaining to challenges in the automotive indus-
try in the context of overall software technology [7] and other key areas
like requirements engineering [23], agile development [8] and testing [1][2]
have been found, it has been identified to be limited especially pertaining to
challenges of high-level integration testing. Moreover, owing to the increas-
ing complexity, dependency and share of software in automotive vehicles,
challenges related to all aspects of software, including testing, are expected
to grow over the years in the automotive industry [7][8][10]. This makes
it a dynamic, ever-changing and growing area of study. Added to this is
the new dimension of challenges and complexity introduced by the need for
compliance to the ISO 26262 safety standard in the near future [11]. Hence,
considering all these factors, this research question has been deemed nec-
essary for the following two reasons. Firstly, to add to the research body
of knowledge pertaining to the current challenges in automotive software
testing of distributed software functions. Secondly, answering this research
question helps identify test issues that need to be addressed by the veri-
fication strategy to enhance the current approach to test the distributed
software functions.

Chapter 1. Introduction 8

RQ4. What is a feasible and effective cross-functional verification strategy to
improve test coverage while reducing test redundancies and test gaps across
test levels for such distributed software functions?

Motivation: As presented in Section 1.1, the automotive industry today is fac-
ing a challenge of inability, in terms of inadequate resources and time, to
perform exhaustive software testing [12] on one hand and test gaps and test
redundancies due to the current ad-hoc test approach on the other [16].
Hence, the need in the industry is for a verification strategy that not just
helps in solving the challenges at hand, but also one that would help to
do so in an effective and feasible manner. Therefore, partly, the answer to
the research question is a verification strategy that aims to resolve key test
issues to enhance the overall test effectiveness. Another part of the answer
to this question, helps address the feasibility and effectiveness aspects of
the verification strategy. This provides a means of studying and reporting
the significant consequences of implementing the strategy in a real world
setting.

1.4 Expected Research Outcomes

The thesis report is expected to reflect the knowledge gained by fulfilling the
research aims and objectives through answering the research questions. This
includes:

• A cross-functional verification strategy for testing distributed functionality
of automotive embedded software which helps improve integration test ef-
fectiveness by providing means to improve test coverage by reducing test
redundancies and test gaps across different test levels.

• Validation of the feasibility and effectiveness of the proposed cross-functional
verification strategy using existing historic data collected at Scania.

1.5 Structure of the Thesis

The thesis report fundamentally consists of four major parts, namely, Intro-
duction, Research Methodology Results, Analysis and Conclusion, as illustrated
in Figure 1.3. The Introduction has two chapters - Introduction (Chapter 1) and
Background and Related Work (Chapter 2). The problem statement, research
aim and objectives, and research questions are presented in the Introduction
Chapter. On the other hand, to set the foundation for the research, the rele-
vant background and related work is presented in the Background and Related
Work Chapter. Following this is the Research Methodology Results part which
consists of two chapters, namely, Research Method (Chapter 3) and Case Study

Chapter 1. Introduction 9

Figure 1.3: Structure of the thesis report

Results (Chapter 4). The Research Method Chapter presents the motivation
for the choice of the research method and information pertaining to how the
case study design protocol was planned and implemented. The Case Study Re-
sults Chapter deals with the results that were obtained on implementing the case
study design steps. The next part is the Analysis which contains Data Analysis
(Chapter 5) and An Effective Cross-Functional Verification Strategy (Chapter 6)
chapters. The Data Analysis Chapter presents the findings on analyzing the ob-
tained data results to answer a subset of the research questions dealing with the
issues with testing the automotive embedded software functions and analyzing
the alternative approaches that can be employed as verification strategies. There
after, as the name suggests, An Effective Cross-Functional Verification Strategy
Chapter presents the proposed verification strategy for testing distributed auto-
motive embedded software functions and its validation based on implementation
on a legacy software function- Fuel Level Display. Towards the end of the report
is the Conclusion which contains two chapters. The Discussion and Limitation
(Chapter 7), discusses the overall results obtained on conducting the research and
the threats to its validity. The Conclusion and Future Work (Chapter 8) presents
the summary of the contributions of the research and the areas that have great
potential to be studied in the future to further enhance and expand the current
research.

Chapter 2

Background and Related Work

To better comprehend the context of the current research, the first essential
step is to understand and analyze the role of software in the automotive industry
and the state-of-the-art automotive software testing approach. In addition, an-
other key objective of the literature review conducted was to identify and compile
a set of major challenges with the automotive software testing approach as pre-
sented in scientific literature. This provides the researcher with adequate research
context knowledge that assists in identifying the current state of the software
testing approach at the case company, along with the major challenges in this
testing approach that can be addressed as part of the proposed cross-functional
verification strategy.

2.1 Software in the Automotive Industry

The automotive industry has traditionally been, and to a certain extent con-
tinues to be, dominated by electrical and mechanical engineering concepts [24][25].
But this predominant nature of the industry is seeing a slow yet steady shift for
nearly a decade now. Like several other industries that have traditional non-
software centric applications like aeronautics, and space and defense systems, the
automotive industry too has been affected by the software revolution [7]. This
is what many would like to term as "Digital Automotive Revolution" [25]. In-
creasingly many automotive innovations, pertaining to both safety critical and
non-safety critical aspects of the vehicle, are being controlled by software. Hence,
studying how automotive industries handle their software is essential and is being
given more prominence in today’s automotive context than it was a few decades
ago. Broy in [25] characterized software in this industry as follows:

Size: There is an overwhelming amount of software in today’s automotive
vehicles. Broy identified in his other work [26] that in 30 years, the software in a
vehicle moved from zero, before it was first introduced in 1976 [27], to over ten
million lines of code.

10

Chapter 2. Background and Related Work 11

Role: Functions within a vehicle, whether safety critical functions like ad-
vanced emergency braking system or non-safety critical functions like comfort
and entertainment system functions, are being controlled by software. This in-
creasing role of software in controlling automotive functions has been identified
in several other researches like in [7] and [24].

Interaction and Distribution of Software: Traditionally, automotive functions
were handled by software modules in one ECU system and hence required min-
imum interaction with other ECU system software modules. But in today’s ve-
hicles, software functions are spread across multiple ECU systems and it is not
uncommon to have ECU system software with mutual dependencies and high
communication to execute complex functions within the vehicle .

The above characteristics of software in the automotive industry summarizes
what are commonly considered to be evidence in industrial research for software’s
every growing share and complexity within automotive vehicles. It thereby helps
identify the need to focus empirical research and industrial study on software in
the automotive industry.

Further Broy et al. in [27] characterized the automotive software engineering
domain to have the following salient characteristics. This further enhances the
understanding of automotive software complexity.

Heterogeneous Subsystems and Unique Organizational Structure: The automo-
tive organizational structure for system software development mimics its modular
vehicle development concepts. Here, different units of the organization are respon-
sible for development and testing of software pertaining to different systems of
the vehicle like the chassis, the engine and the gearbox. The modular systems so
developed and tested are then assembled together into a vehicle. Hence, there ex-
ist possible differences among the approaches employed by different organization
units to develop and test the software which is then to be coordinated efficiently
to assemble a complete vehicle.

Original Equipment Manufacturer (OEM) Supplier Software: While the inte-
gration of heterogeneous systems is in itself a challenging task, within the auto-
motive industry this task is far more complex. This is due to the fact that a large
number of vehicle systems and system software are developed and manufactured
by several OEM suppliers. These supplier systems and system software are then
assembled and integrated with other vehicle systems by the automotive company.

Highly Configurable Software: Automotive software is highly configurable due
to high variants of electronic parts and functions that make up the vehicle. There-
fore, a large set of vehicle variants can be produced from modular parts repre-

Chapter 2. Background and Related Work 12

senting concepts similar to product line engineering. The authors of [27] state
an example of a car having nearly 80 electronic units, where a simple choice of
whether to include a function or not in the vehicle leads to 2

80 possible vehicle
variants. The software can hence be configured in several ways, producing several
vehicle variants that are characterized by the differences in their electronic units
and the corresponding software functions.

Distributed Software and Unit Cost Models: Like discussed earlier, Broy fur-
ther stresses on the fact that with increasing complexity of vehicle functions, the
software used to realize these functions is distributed across several ECU systems
and also across several organization units. Moreover, driven by cost pressure,
the automotive industry relies greatly on unit vehicle cost models. Such a focus
on optimizing cost per unit has been found to be problematic from the software
perspective.

In essence, the increasing share of software brought about an evident ad-
vancement within the automotive industry with increased safety, reliability, en-
vironmental efficiency, and comfort features that cannot otherwise be easily pro-
vided using mechanical solutions alone [7]. However, the simultaneous increase in
complexity has brought about several software-related challenges and issues that
today’s automotive industries face. Hence, in this context, several researchers
[7][24][25][26][27] made an attempt to capture broad software engineering-related
challenges within the automotive industry under several categories. Software en-
gineering as a discipline covers several areas like requirements engineering, soft-
ware development and software verification and validation [28]. Of these, areas
of software engineering that have been most widely identified as being challeng-
ing include requirements engineering, architectural design and safety and quality
assurance through system software verification and validation [7][24][25][26][27].
Further, several researchers have focused on studying such specific ‘software en-
gineering’ areas within the automotive industry in terms of the advantages they
provide and the challenges they face. For instance, challenges in requirements
engineering within the automotive industry have been studied in [23], [29], [30]
and [31]. But such a focus on studying challenges in verification and valida-
tion, especially testing, like in [1] and [2], is limited as recognized by the authors
themselves.

2.2 Software Testing in the Automotive Industry:

State-of-the-Art

The standard V-model is most widely used in the automobile industry for
the engineering processes of system software development [13]. Therefore, it can
be inferred that the automotive system software testing generally takes place at

Chapter 2. Background and Related Work 13

several test levels across the right side of such a V-model. Here, the software is
tested from the lowest code level to the highest vehicle integration level in dif-
ferent test environments, with different test objectives and against different set
of requirements. The exact test levels of the V-model used, differs slightly from
project to project within each automotive organization and among different or-
ganizations [1].

Generally, following the modular nature of system software development and
testing, different automotive organizational units are responsible for development
and testing of different ECU systems (modular part of the vehicle) like the chassis
control system, engine management system and brake management system [27].
Hence, they are primarily responsible for developing and testing the software inde-
pendent of the underlying ECU system hardware. There after, they perform the
system integration testing by mounting the developed software modules on the
corresponding ECU system hardware. This system integration testing is usually
performed as Hardware in the Loop (HIL) testing where the system is executed
under simulated environments [26]. Moving on, the software functions distributed
across several such ECU systems of the vehicle, whether developed and system
tested in-house or by suppliers, are tested through integration testing at the cor-
responding vehicle integration test level. At the vehicle integration test level, all
the ECU systems and corresponding systems’ software are integrated together
and testing of the overall software functions which are realized by interaction be-
tween several systems is performed either in a real vehicle or in a HIL simulation
of the vehicle. As identified by [1], this integration testing is seldom performed
by each individual organizational unit responsible for the ECU systems. Rather
a dedicated integration test group focuses on testing of the distributed software
functions. The exact testing approach, including the testing tools used and the
test artifacts generated, may vary across different automotive companies. How-
ever, the primary test activities at each test level in the automotive industry
generally involve: Test Planning, Test Analysis and Design, Test Build, and Test
Execution and Reporting. [1].

Owing to the difference in the test objective at each test level as discussed
earlier, software functions are viewed with different levels of abstraction at each
test level. Consequently, the software functions are tested against a different set
of requirements pertaining to the corresponding level of abstraction. At the ve-
hicle integration test level, where the focus is primarily on testing the execution
of distributed software functions in a vehicle, the requirements usually pertain to
how the function is expected to execute within the vehicle architecture. At the
software and system test level, a function is viewed as a set of software modules
distributed across several systems. Hence, the requirements for each system usu-
ally pertain to how each individual software module within that system should be
realized to ensure the function executes accordingly when the system is integrated

Chapter 2. Background and Related Work 14

into the vehicle.

As stated in Section 2.1, one facet of challenges faced by the automotive indus-
try today is in the critical context of system software verification and validation.
Yet, these set of challenges in the verification approach of testing are not studied
adequately in literature and are not complemented by sufficient literature that
identifies and establishes the current approach adopted by the automotive in-
dustry to test their embedded system software. There is little industrial evidence
gathered by empirical research in order to identify the state-of-the-art system soft-
ware testing approach in the automobile industry as also identified by researchers
in [1]. More over, a review of research in test, verification, and validation in the
automotive domain has revealed that majority of the research in this area is fo-
cused on low-level system specific model-based testing and verification. Studies
pertaining to high-level integration testing of distributed software functions are
sparse. Such a shortage has also been identified by other researchers like in [2] and
[32]. Hence, limited existing research in the areas of automotive industry pertain-
ing to studying the current approach to system software testing, challenges in the
current approach and proposed solutions to tackle these challenges for high-level
integration testing, motivate the need for the current research that aims to con-
tribute to each of the above mentioned areas by answering the research questions
formulated.

2.3 Challenges of Software Testing in the Auto-

motive Industry

The following Table 2.1 summarizes the primary challenges of automotive
software testing presented in the identified relevant literature [1][2][3].

Source
Literature

Core Challenge
Area

Challenge Description

[2]

Test Effort Measure-
ment

Difficulty in identifying quality assur-
ance value of testing activities at dif-
ferent test levels

People Knowledge
Difference of opinion of test effort dis-
tribution

Distributed Function-
ality

Increased test complexity due to dis-
tributed nature of software functions

Test Coverage Metric Lack of test measurement support

Variant Handling
Combinatorial explosion of testing due
to mass customization

Chapter 2. Background and Related Work 15

[1]

Requirements and
Traceability

Requirements related issues like lack of
clearly testable high-level requirements
and lack of traceability as a hindrance
to testing

Test Process Lack of unified test process

Knowledge Transfer
Lack of means of test knowledge trans-
fer

Test Tools
Lack of adequate testing tools and tech-
niques

Quality Assurance
through Testing

Shortcomings in quality assurance and
measurement

Test and Defect Trace-
ability

Costly defect fixing and untraceable de-
fects

Test Documentation
Lack of proper and updated documen-
tation of testing effort

[3]
Unified Test Process
and Test Reuse

Overlapping tests across test levels
causing waste of time and resources

Table 2.1: Summary of software testing related challenges in the automotive
industry as identified in literature [1][2][3]

2.4 Area of Study

Software testing has been and continues to be a vital and mature software en-
gineering research area with research being conducted over several years in several
areas like software test tools, test approaches, test practices and test processes.
There has also been empirical research study in the area of software testing within
the context of various industries dealing with embedded systems software. Yet,
it has been identified that there is limited research that focuses on studying the
high-level integration testing of embedded systems software in the automotive in-
dustry. As motivated in the previous sections, there is an evident and significant
need to focus both academic and industrial research within this area. Hence,
the research field of embedded systems software testing within the automotive
industry is the core area of study for this research as illustrated in Figure 2.1.

Chapter 2. Background and Related Work 16

Figure 2.1: Illustration of thesis area of study

Chapter 3

Research Method

This section provides a brief description of the research design that has been
laid down to achieve the research aims and objectives presented in Section 1.2.
As defined in [33], a research design is fundamentally a logical step-by-step plan
laid out to get from the research questions to the research answers. It includes the
research method which describes the type of study used to answer the research
questions, the data collection method used to collect the required data, and the
data analysis method used to analyze the collected data.

An illustration of the research design used for this study is presented in Figure
3.1.

3.1 Motivation

There exist several empirical research methods that have significantly con-
tributed to the knowledge pool of the software engineering field. Four such major
research methods as identified by [34] are,

Survey involves a systematic approach of gathering and analyzing information
from a representative sample of a specific population. It aims to derive conclu-
sions about the characteristics of the population under study [35]. This research
method has been found to be most suitable for descriptive studies which aim to
portray the current state of a particular phenomena or situation. While, one of
the primary objectives of the current research is to identify the testing approach
implemented currently within the automotive industry, the overall aim of the re-
search can be summarized as having exploratory and improving purpose. Hence,
to conduct the current research through a survey has been deemed inappropriate.

Experiment can be characterized as a study in a controlled environment that
aims to "measure the effects of manipulating one variable on another variable"
[36]. The current research aims at studying the relationship between the variables
(current test approach and its issues) and the effectiveness of the proposed verifi-
cation strategy in an uncontrolled setting. Hence, an experiment-based controlled

17

Chapter 3. Research Method 18

research setting has been deemed inappropriate.

Action Research involves studying a phenomena or situation with an aim to
influence or change certain aspects of the subject(s) under study and analyze
the outcome [36]. This research method has close links to case studies. Its fun-
damental distinction from case studies is its inclination towards improving the
phenomena being studied. While the current research aims at proposing an en-
hancement, this enhancement is derived from an in-depth study of the phenomena
which is handled more suitably by the case study research method.

Case Study has been given several definitions over the past couple of years. All
these definitions fundamentally suggest that a case study is an empirical method
for “investigating contemporary phenomena in their context” [34]. The motivation
behind the choice of selecting case study as the most suitable research method
is in multiple-folds. Firstly, since the current research aims at investigating and
solving a problem which is emerging across the automotive industry, a case study
has been deemed apt to study the problem and aim to solve it within its real
world setting. Moreover, a case study research in software engineering discipline
is often most suitable for exploratory- find what is happening - and improving- try
and improve the studied phenomena- purposes [34]. Since the current research
objectives can be summarized as having both exploratory and improving purpose,
case study has been chosen.

3.2 Literature Review Design

As illustrated in the research design (refer to Figure 3.1), the first step of the
research was to conduct a literature review to identify relevant scientific literature
pertaining to the approach used to test distributed automotive embedded soft-
ware across the test levels in the automotive industry. This step helped capture
data related to the problem domain and improve understanding of the context
and background of the research study while partly answering RQ1. It helped
identify the state-of-the-art software testing approach used in the automotive in-
dustry. Such a literature review has been found to often precede a case study
research [34] to essentially help build knowledge which will be useful through the
course of the study. There are some fundamental steps that are to be followed
to conduct a literature review as reported by Rowley and Slack [37]. Based on
the current simplistic nature of the literature review to be conducted, these steps
have been tailored to suit the current research as follows:

Step 1: Identify the suitable information resources - As stated by
Rowley and Slack [37], there exist several sources of information from where the
relevant literature can be obtained. Bearing in mind the nature of the literature

Chapter 3. Research Method 19

Figure 3.1: Research Design

Chapter 3. Research Method 20

review to be conducted, Online Databases and Books have been chosen as the
information sources. It is important to note here that, due to the researcher’s
access to a wide range of online databases, the digital copies of the books deemed
relevant to the research were used based on their online availability. The online
databases that have been used for retrieving the desired scientific literature in the
form of journal articles, conference papers, technical reports and books include
IEEE Xplore, Engineering Village, Science Direct and SpringerLink.

Step 2: Search for relevant literature from the chosen information
resources - This step involved formulating efficient search strings to search for
relevant literature from the chosen information sources. Keywords including ‘ver-
ification’, ‘software test*’, ‘embedded system software test*’, ‘automotive OR au-
tomobile’ and ‘test strategy OR test approach OR test process’ have been used
to perform the first round of filtering of the umpteen scientific literature that the
chosen information sources contain. Based on the search results obtained, further
enhancement of the search keywords has been done if deemed necessary. From
the search results, the titles, abstracts and availability of articles were used to
perform the second round of filtering. If the title and abstract were found to be
relevant and the article was found to be available, the full text of the article was
read to perform the final assessment of it’s relevance to the current research. In
this manner, the guidelines provided by [37] were followed to formulate efficient
search strings and to filter search results to select scientific literature which were
most relevant to the study.

Step 3: Draw up the literature together - The selected scientific liter-
ature were then studied as part of the final step of the literature review. The
data relevant to the research aim and objectives was captured and documented
accordingly in the Introduction (Chapter 1) and Background and Related Work
(Chapter 2) Chapters.

3.3 Case Study Design

The case under study and the design laid out to carry out the study within
the context of the case are presented in this section.

3.3.1 Case and its Unit of Analysis

Scania [38], is one of the major manufacturers of commercial heavy vehicles
in the European automotive industry. It’s Research and Development Center,
located at its Headquarters at Södertälje, Sweden has been selected as the case for
this research. As defined by Yin in [33], a case is fundamentally anything which is
a "contemporary phenomenon in its real-life context". Since, the current research

Chapter 3. Research Method 21

focuses on verification through testing of automotive embedded software, Scania
has been chosen to be an appropriate case of a large-scale automotive company.
Within the case, the unit of analysis is the test approach implemented at Scania
to test their distributed software functions across the test levels.

3.3.2 Case Study Protocol

Case study protocol presents the design in the form of the procedure used to
conduct the case study research. It contains the data collection and data analysis
protocols, each of which are presented below.

3.3.2.1 Data Collection Protocol

3.3.2.1.1 Data Collection Methods
In order to fulfill the primary research objectives stated in Section 1.2 and thereby
answer the research questions, a first degree data collection method of interviews,
where the researcher is in direct contact with the subjects to collect data, has been
selected as one of the data collection methods. In addition, relevant archived doc-
uments and databases, which are forms of third degree data collection methods,
have been chosen as additional sources of data. Both qualitative and quantitative
data was collected using the above mentioned methods. Such a combination of
qualitative and quantitative data is said to often provide better understanding of
the phenomenon under study [34].

3.3.2.1.2 Selection of Interview Subjects
The interview subjects were selected with the assistance of the industry and uni-
versity supervisors. Initially, five distinctive and distributed software functions
like fuel level display and advanced emergency braking were chosen. Then, prac-
titioners involved in test planning, test execution and test reporting for these
functions at different test levels were identified. Hence, it can be inferred that
a non-probabilistic judgement based sampling technique [39] has been employed.
The primary objective while selecting the interview subjects was to ensure test
approaches implemented at different departments within the organization can be
captured adequately. Such an approach of basing interview subject selection on
differences and not by trying to replicate similarities is recommended in research
[34]. Moreover, selecting participants who best represent or have most suitable
knowledge of the research topic are most appropriate and recommended to ensure
reliability and validity of the data collected [40]. Hence, it was decided to select
participants who are involved in, and have adequate knowledge and experience in
testing. The identified practitioners included a total of 13 engineers belonging to
3 categories based on test levels, which are, System Test Engineers (participant
category 1), Function Owners (participant category 2), Lab and Vehicle Integra-
tion Test Engineers (participant category 3) from different departments of the

Chapter 3. Research Method 22

organization. The size of the interview participants is considered to be adequate,
based on Rowley’s [41] suggestions that as a rule of thumb for new researchers
adopting a pragmatic approach he/she should aim at least 12 interviews lasting
for around 30-60 minutes each.

3.3.2.1.3 Interview Design
The interviews conducted were face-to-face, semi-structured interviews with open-
ended and close-ended questions. The questions fundamentally focused on cap-
turing information related to the current test approach, issues with this approach
and overall function test coverage information pertaining to the chosen distributed
software functions at the case company. These interviews were conducted in three
rounds. Each round included interviews of engineers belonging to each partici-
pant category and at least one from each category i.e. Round 1 with a subset
of System Test Engineers, Function Owners and Integration Test Engineers and
similarly for Round 2 and Round 3. Each round of interviews had a similar ques-
tionnaire framework that was slightly tailored to be suitable for each interview
participant category. The interview was structured as a time-glass model where
the interview starts with open-ended questions, moves towards more specific and
structured questions and towards the end moves back to open-ended questions
[34]. Each interview was planned to last for 30-60 minutes taking into consid-
eration the amount of time the interviewees were willing to make available for
the interviews. Each interview across all three interview rounds contained three
phases. These phases, designed based on the recommendations provided by Rune-
son [34] and Turner [42], are as follows:

Phase 1: Introducing the research and the researcher - This phase
marked the beginning of the interview where the researcher briefly introduces
himself/herself (name and department). Then he/she moved forward to briefly
present the aim of the research and the interview goals and objectives. This phase
was essential as an initial setup of the interview environment so as to ensure the
participants were more comfortable based on an increased knowledge of the in-
terview objectives and the interviewer [42]. Interviewees are said to be less likely
to fully participate if they do not know the goals of the study [43].

Phase 2: Collecting general interviewee information - In this phase,
general information pertaining to the interviewee such as his/her experience, cur-
rent role in testing and role responsibilities was collected.

Phase 3: Focusing on main interview questions - This phase took up
the largest part of the interview and included collecting all data relevant to the
current research focus from the interviewee using the interview questionnaire.

Chapter 3. Research Method 23

3.3.2.1.4 Formulation of Interview Questionnaire
There were four fundamental steps followed for formulating the interview ques-
tionnaire as stated below.

Step 1: Formulate questions - The first step was to formulate interview
questions to be part of the questionnaire. Here, the open-ended and close-ended
questions were formulated based on two major sources - the research objectives
and the data collected as part of the initial literature review. Interviews are
fundamentally used as a method to collect relevant data to answer the research
questions. Yet, the interview questions are not expected to exactly match the
research questions since there is a need for the questions to be formulated in a
way that is

a) understandable, neutral and logically leads to the answers [42] and

b) encourages the interviewees to share as much information in and around
the subject as possible to answer the research questions [41].

Hence, initially, the questions were formulated in a way that was deemed
understandable and open-ended by the researcher based on the research objec-
tives and efficient interview question formulation suggestions provided in [41] and
[42]. There after, data collected from the literature review helped identify a ma-
jor factor for developing an effective cross-functional verification strategy was to
identify current test issues that act as a hindrance. Based on this understanding,
the questions were enhanced to include open-ended questions that help identify
the current test approach related issues in the case company that can be addressed
as part of the strategy. The initial questionnaire draft hence contained questions
with three broad aims. First set of questions were formulated to capture current
test approach information. The next set of questions were formulated to identify
function test coverage and test artifact information. The last set of questions
were used to explicitly capture information pertaining to the issues in the current
test approach.

Step 2: Review and revise questionnaire with industry and univer-
sity supervisors - The next step was to review the questions with industry and
university supervisors. This step was considered to be essential since their expe-
rience in either conducing such interviews or being a subject of such interviews in
the past could be used to enhance the interview questionnaire to ensure high qual-
ity of data can be captured efficiently. Hence, initially, the formulated questions
as part of the questionnaire were sent to the industry and university supervisors.
Their review and suggestions captured through e-Mail and face-to-face or Skype
meetings was then used to revise the questionnaire. The revised questionnaire was
re-sent to the supervisors for further suggestions and review of the revised work.
Hence, this step was conducted in a loop till the supervisors and the researcher
agreed on the final version of the interview questionnaire. This final version was

Chapter 3. Research Method 24

similar to the initial draft with the major changes being focused on enhancing the
language to ensure unambiguity and formulating additional questions which were
to be posed to the interviewee if in case the primary question was not answered
adequately. Hence, the questionnaire was designed with flexibility, which is one of
the major advantages of conducting semi-structured interviews [34][41][42]. Such
flexibility facilitates the participant to fully express his/her viewpoints and helps
to capture a complete set of required data.

Step 3: Tailor questions for each interview participant category - On
approval of the final interview questionnaire by the supervisors, the questionnaire
was duplicated for the different interview participant categories. This duplication
process involved tailoring the questions to be more participant-category specific.
For instance, the question for interviews with system test engineers across the
different rounds ‘What are the broad steps of testing that are undertaken at the
system test level?’ was tailored to be suitable for interviews with integration test
engineers by adapting the question to being ‘What are the broad steps of testing
that are undertaken at the vehicle integration test level?’. A similar procedure for
tailoring the rest of the questionnaire was implemented and a final set of three
interview questionnaires containing open-ended and close-ended questions for the
three interview participant categories was generated. Each of these interview
questionnaires are presented in Appendix A.

Step 4: Update interview questionnaire - This step facilitated flexi-
bility of the case study design, which is one of its key characteristics [34]. Since
data collection and data analysis was conducted simultaneously, on identification
of any new insights for which data was required to be collected, the interview
questionnaire was updated for the subsequent interview rounds for the relevant
interview participant categories. This enhanced the quality and completeness of
the data collected.

3.3.2.1.5 Interview Planning and Setup
On selecting the interview participants and designing the interview, the next step
undertaken was to plan and setup the interview. The interview participants were
sent an invitation (Appendix B) over the company’s dedicated Microsoft Outlook
account. This interview invitation included the date, time and place of the inter-
view along with a brief introduction of the researcher and the aim of the interview.
This interview meeting included the interview participant, the researcher and the
industry supervisor. The presence of the industry supervisor, who had adequate
knowledge of the topics being discussed in the interview, ensured that high qual-
ity content was discussed throughout the interview as one of the means to keep
the participants engaged and enthusiastic. Based on the participant’s availability,
the invitation was either accepted or an alternative date and time was suggested

Chapter 3. Research Method 25

based on which the interview was rescheduled, an updated invitation was sent
and a confirmation was received. The interview was set up at one of the available
meeting rooms so as to ensure minimum distraction which was essential to ensure
a smooth interview was conducted [42]. The entire interview was audio recorder
on taking the consent of the interview participant. The interview implementation
suggestions stated in [42] have been studied and adopted while conducting the
interviews to ensure they were efficient and effective.

3.3.2.1.6 Transcription
Since all the interviews conducted were face-to-face and audio recorded, the same
transcription software and transcription procedure was employed for transcribing
all interviews conducted. Here, an audio-to-text transcription software ExpressS-
cribe was used. On concluding the interview, the audio file recorded on the
researcher’s phone was renamed from default to a file name that had the for-
mat ‘Participant Name.Participant Category.Interview Round’ like for instance
‘Jacob.SystemTester.Round2’. The audio file was then duplicated and stored on
the researcher’s Dropbox folder and Company Desktop folder dedicated to the
interview data files. In such a way, the interview data was stored in multiple lo-
cations to ensure there was no loss of data in case of undesirable or unanticipated
technology issues. The interview was then transcribed using the software either
on the same day or latest by the end of the week. The generated interview text
file was saved with the same file name format. At the end of the interview period,
the audio recordings and corresponding text files for the 13 interviews conducted
were present within a dedicated folder on the researcher’s Desktop and Dropbox.

3.3.2.1.7 Identification of Relevant Databases and Archived Docu-
ments
As mentioned earlier, archived documents and databases have been chosen as the
additional sources of data for this research. Data collection from these sources
involved the following steps:

a) The first step was to identify the relevant archived documents and databases
like the requirements documents, test strategy documents, test reports and
test databases. This was achieved by ensuring that one of the objectives of
the interviews was to identify relevant artifacts and request access to these
artifacts from the interview participants. After the interview, the partici-
pant was sent a follow-up e-Mail thanking him/her for their participation
and subtly re-requesting them to provide links and required permissions to
access the relevant artifacts.

b) On obtaining the required permissions and links to the relevant archived
documents and databases within the company internal folders, the docu-
ments were collected and stored within a dedicated folder for further data
analysis.

Chapter 3. Research Method 26

3.3.2.2 Data Analysis Protocol

3.3.2.2.1 Data Analysis Methods
Fundamentally, a data analysis technique that deals with predominantly qualita-
tive data, like in this study, has two parts- hypothesis generation and hypothesis
confirmation [34]. The data collection protocol of the case study facilitated collec-
tion of both qualitative (predominant) and quantitative data through interviews,
archived documents and databases. Such a combination of qualitative and quan-
titative data and consequently combined methods of qualitative and quantitative
data analysis has been found to be a better approach to investigate most software
engineering issues than either one in isolation [43].

One commonly used strategy that facilitates the analysis of qualitative and
quantitative data is the Grounded Theory (GT) approach [43]. As the name sug-
gests, GT approach provides a means of generating theory that is "grounded" in
the data in an exploratory fashion [44]. It has been studied extensively in liter-
ature in different contexts [44][45][46][47][48]. GT approach allows streamlining
and integrating data collection and analysis. There is no initial hypothesis for-
mulated, rather the theory is derived form the data collected. Thus, the validity
of the formulated theory strengthens with each collected input [49].

For this study, the popular GT approach, Constant Comparison Method, first
introduced by Glaser and Strauss [50] has been chosen as an appropriate data
analysis technique for hypothesis generation. Though Glaser and Strauss de-
signed this method together, they soon split and presented their own versions of
this GT method. Strauss and Corbin’s GT version focuses on the need to have
verification as an essential component of data analysis and theory building [51],
the need to have research questions pre-set as a means of establishing boundaries
and the need to ensure the researcher has certain pre-acquired knowledge of the
phenomena under study through literature [46]. On the contrary, Glaser’s GT
version fundamentally opposes all the above factors and maintains that verifica-
tion is not a primary concern, that research questions are developed during coding
process and that pre-acquired literature knowledge should be avoided to ensure
there are no prior assumptions formed by the researcher. In the current study,
since research questions are pre-formulated and pre-acquired literature knowl-
edge of the phenomena under study is relied upon by the researcher, Strauss and
Corbin’s GT version [49][52] has been adopted.

The theory so generated has been confirmed through an important and popu-
lar hypothesis confirmation method of triangulation [43]. Hence, the final output
of the data analysis presents results that are both grounded and supported by a
body of evidence. The steps followed during data analysis are elaborated in the
following sections.

Chapter 3. Research Method 27

3.3.2.2.2 Theoretical Sensitivity, Theoretical Sampling and Theoreti-
cal Saturation
The Strauss and Corbin’s GT version that has been adopted for this study sup-
ports the concept of theoretical sensitivity where the researcher uses not only the
data being collected but also his pre-exisiting knowledge and literature to identify
what is important [53]. To do so, the first step in data analysis using GT was
to perform theoretical sampling. Theoretical sampling is defined as "sampling
on the basis of emerging concepts" [52]. Data analysis was hence implemented
simultaneously with data collection. On conducting an interview and transcrib-
ing the corresponding audio file, the generated content was exported to a word
processor. This was done to correct any grammatical mistakes made during the
transcription process. There after, with the final interview transcript in hand,
a critical data analysis activity termed as ‘micro analysis’ [52] was performed.
Here, the interview data was thoroughly read and scrutinized line by line. This
was done in order to identify and note the concepts in the form of new questions
that arise or theoretical ideas and thoughts of the researcher. These concepts can
be termed as building blocks of the ‘emerging theory’ [52]. Each such concept
identified was transformed into a ‘code’ that represents this concept and which
was later to become a part of the theory [46], more about which is discussed in the
next section where the coding process is further elaborated. The emerging theory
in the form of ‘codes’ of the concepts identified was noted using the technique of
memoing [46] within the word processor file. This information was then used to
refine the interview questionnaire and align the study with the emerging results
which was the primary aim of undertaking theoretical sampling. This procedure
was implemented throughout the data collection period. Hence, data collection
was driven by concepts emerging from the evolving theory.

There comes a point in such a theory building process where there is no new
knowledge in the form of code categories or relationships among these categories
that can be identified on continued data collection and data analysis. This phe-
nomena is termed as theoretical saturation [52]. Theoretical saturation remains
one of the ultimate ways of determining that the data collection and data anal-
ysis process can be concluded when there is no new data emerging regarding a
category or when all categories and their relationships are well identified and
established. It was hence used as an exit criteria for the data collection and
data analysis process, and an entry criteria for the study to move to proposing a
verification strategy based on the data analysis results.

3.3.2.2.3 Coding
According to Strauss and Corbin, coding can be defined as "the analytic processes
through which data are fractured, conceptualized, and integrated to form theory"
[52]. During micro analysis of the data, the concepts identified were converted

Chapter 3. Research Method 28

into ‘codes’ which were used to represent the concepts. These codes formed the
initial emerging theory and were refined through several steps to identify all rel-
evant code properties - which are its characteristics that give it a meaning, code
categories - which represent a group of concepts that stand for a specific phenom-
ena and relationships among them to establish the final theory from the data.

Coding based qualitative data analysis can be performed by adopting one of
the two approaches - with the use of Computer-Assisted Qualitative Data Analysis
Softwares (CAQDAS) like ATLAS/ti [54] or without the use of CAQDAS. Studies
conducted to understand the merits and demerits of both these approaches like
[54] and [55] have shown that each approach has its own pros and cons that are
arguable. But the fundamental idea remains that CAQDAS is just a tool that
is used to assist, to a certain extent, in managing the complexity that is often
faced during qualitative data analysis. The adoption of CAQDAS does not re-
place the need for creative and meticulous data analysis that is fully dependent
on the researcher. Hence, based on careful consideration of the pros and cons,
data analysis was performed without the use of CAQDAS.

According to Strauss and Corbin’s approach to data analysis, the coding pro-
cess involves three types of coding for the data - open coding, axial coding and
selective coding [46]. How each of these coding was performed is elaborated below.

Open Coding: Open coding is an iterative coding technique where the data
being analyzed is broken down into meaningful units and labelled with codes that
represent the concepts that are indicated by these data units [46]. This part of
data analysis pertained to naming and categorizing the phenomena (represented
as concepts [52]) by examining the data. On breaking down the interview data
into units, these units were constantly compared for similarities and differences
to identify the underlying concept they represent and then an open code was
attached to this text [47]. This open code was either directly taken from the
text or generated by the researcher, whichever was deemed as most suitable to
aptly represent the meaning of the data unit [46]. While open codes were being
generated in such a manner, the researcher also focused on identifying open codes
that were conceptually similar or related in meaning, so as to group them under
higher abstraction concepts called ‘open code categories’ [47].

For instance, consider the following snippet of an interview transcript with a
function owner.

"Q. As a function owner, what would you say is your role in testing the
software function?
A. We have been discussing this aspect off late that as a function owner what

Chapter 3. Research Method 29

should I be testing... But to be honest there is not good coverage from my side."

On reading and analyzing this data unit from the transcript, the phenomena
that there might be a possibility that there is inadequate knowledge or lack of
clear understanding of function owner’s test role in the current test approach has
been derived. This data unit (text in the transcript word processor file) was then
tagged with the open code ‘Ambiguity of test role at function level’ . Over time,
the concept was further explored in other interview transcripts and was identi-
fied to be occurring in several instances (interview transcripts) of the function
owner interviews. Hence, this open code was tagged progressively to all relevant
data units in the corresponding interview transcripts. Overtime, all such relevant
open codes were established which included ‘Ambiguity of test role at function
level’ and ‘Lack of bigger picture’ . A more in-depth analysis of the similarities
and difference among the mentioned open codes and other open codes showed that
both of these open codes can be best categorized and represented by the open
code category - ‘People Knowledge Issues’ . Hence, this was established as one
of the final open code categories resulting from this step of data analysis. A sim-
ilar procedure was followed to obtain all the open codes and open code categories.

Axial Coding: Axial coding as defined by Strauss and Corbin is "the pro-
cess of relating categories to their subcategories, termed axial because coding occurs
around the axis of a category, linking categories at the level of properties and di-
mensions" [52]. It was an intermediate step that involved re-fracturing the data
that was broken down in open coding [47]. So, this part of analysis involved
establishing relationships between the open code categories that were identified
through open coding. These axial codes were a means of elevating the data to a
higher level of abstraction so as to represent the categories that encompass the
open code categories [47].

For instance, three of the open code categories established from open cod-
ing and encompassing the relevant open codes include people knowledge issues,
knowledge transfer issues, and explicit test issues. Analysing these categories
more extensively, has lead to an understanding that there are two fundamental
types of relationships that exist among them - causes relationship and hindrance
relationship. The causes relationship between issues is used to represent a set of
issues that are caused or exist due to another set of issue in a cause-and-effect
manner. Hence, solving the root cause issues is expected to solve the resultant
effect issues. On the other hand, issues that are connected through the hindrance
relationship indicate that one set of issues are causing a hindrance to solving an-
other set of issues. Hence, solving issues under both these categories is required
to get a complete solution. Going by these definitions, it was established through
further analysis of the data that knowledge transfer issues of having inadequate
means of sharing knowledge among test engineers across test levels are a hin-

Chapter 3. Research Method 30

drance to solving people knowledge issues of having a lack of unambiguous and
clear bigger picture of the testing approach. Moreover, both these issue code
categories along with other issue categories are a cause of the explicit test issues.
On establishing all such possible relationships between all open code categories,
relevant axial code categories were identified. For instance, the axial code cat-
egory - People Issues was seen to encompass the open code categories of people
knowledge issues and knowledge transfer issues since both of these were found
to be predominantly people related issues. A similar procedure was followed to
identify all open code category relationships and generate all axial code categories.

Selective Coding: The final step of the coding process was selective coding
which involved integrating the axial categories and refining the theory [52]. At
this point, a ‘core category’ around which the theory was built was identified.
This core category was central to all the axial categories and the final theory was
established.

3.3.2.2.4 Triangulation
Triangulation is the hypothesis confirmation method used in this study. It deals
with gathering different types of evidence to confirm the theory generated [43].
There exist several approaches to triangulation which can be categorized into
two main groups - between-methods triangulation and within-methods triangu-
lation [56]. For this study, a between-methods triangulation approach of data
triangulation [34] and two within-method triangulation approaches of evaluator
triangulation and user group triangulation [56] have been used. A brief descrip-
tion of each of the three triangulation methods adopted is as follows:

Data Triangulation: Data triangulation is a between-methods approach that
involves using more than one source of data in order confirm the theory generated
[34]. Here, data from relevant archived documents and databases was used to con-
firm the theory generated from the analysis of the data collected from interviews.

User Group Triangulation: User group triangulation is a within-method ap-
proach where in multiple users from the same group and/or multiple user groups
are used to confirm whether the theory is specific to a particular group or is more
generic [56]. Here, conducting interviews with participants belonging to differ-
ent categories and having multiple participants from each category ensured user
group triangulation was implemented.

Evaluator Triangulation: Evaluator triangulation is a within-method approach
that involves having more than one evaluator or facilitator evaluate the same phe-
nomena to see if they all agree on the results obtained [56]. Here, having several
practitioners and researchers evaluate the results of data analysis and the theory
generated ensured evaluator triangulation was implemented.

Chapter 3. Research Method 31

3.3.2.2.5 Validation using Existing Historic Data
The cross-functional verification strategy proposed as part of the study is based
on the data analysis results. This proposed strategy has been planned to be
validated using one of the following two methods: validation using historic data
or validation through survey. Owing to the nature of the proposed verification
strategy, and considering the recommendations from the supervisors, validating
the strategy using existing historic data has been deemed apt. Here all required
and relevant data pertaining to a distributed software function - Fuel Level Dis-
play has been collected during data collection and was used to implement the
proposed strategy and analyse the results of the strategy to assess its feasibility
and effectiveness.

Chapter 4

Case Study Results

This chapter presents the results obtained on conducting the research as per
the research design laid out and reported in Chapter 3.

4.1 Current Approach to Test Distributed Soft-

ware Functions at Scania

This section presents the current approach implemented at the case company,
Scania, in order to test their distributed software functions. This information has
been captured to answer RQ1 through the interviews conducted and from relevant
Scania internal documents like [4] specifying the test roles and responsibilities for
each test level.

A function of the software of an automotive vehicle is viewed as a set of in-
puts and outputs across one or more ECU systems that results in the execution
of a specific behaviour of the vehicle. Examples of such software functions in-
clude fuel level display, oil level display and more safety critical functions like
advanced emergency braking. A graphical representation of how a software func-
tion, termed as a User Function (UF), is viewed at different test levels across the
V-model at Scania is illustrated in Figure 4.1.

Considering the left side of the Scania V-model, owing to the increasingly
distributed nature of software functions across several systems of a vehicle, a
UF is viewed as a set of Allocation Elements (AEs) at the system test level in
case of those ECU systems that are developed in-house. AEs are fundamentally
software modules that are allocated or embedded to a particular ECU system.
Hence, each UF at Scania is viewed as a set of AEs distributed across one or
more ECU systems which on interaction result in the execution of the function’s
desired behaviour within the vehicle. A particular UF can require one or more
AEs allocated to one ECU system for its execution, and, on the other hand, one
ECU system can contain AEs required for the execution of more than one UF.
Hence, at the system test level, the system requirements take the form of a set of

32

Chapter 4. Case Study Results 33

Figure 4.1: How distributed software functions are tested across different test
levels of the V-model at Scania

AE requirements written in structured natural language.

At the vehicle integration test level, a UF is viewed as a set of Use Cases
and its Scenarios. A use case according to the OMG-Unified Modelling Language
(UML) specification is "the specification of a sequence of actions, including vari-
ants that a system (or a subsystem) can perform, interacting with actors of the
system" [57]. This definition remains unchanged in the OMG-Systems Modelling
Language specification [58]. A use case hence describes a piece of behaviour of a
system [59]. Putting this in the current context, use case of an automotive embed-
ded software function can be defined as ‘the specification of sequence of actions,
including variants, that a function can perform, based on interaction among one
or more vehicle sub-systems and the environment’. Here, the environment can
be the driver, another vehicle, etc. and vehicle sub-system is used to refer to any
ECU system like the Engine Management System, Brake Management System
and Instrument Cluster. Therefore, use cases of a function act as part functions
describing different behaviours of the function that together make up the entire
function and its comprehensive behaviour.

Each single sequence of interaction between the ECU systems and the en-
vironment is termed a scenario of the use case [59]. For instance, one scenario
for a function use case may pertain to the sequence of steps it follows to exe-
cute the desired behaviour in a vehicle with a gas engine and another scenario
may pertain to an alternative unique sequence of steps it follows to execute the
same desired behaviour but in a vehicle with a diesel engine. Therefore, a use
case can be considered to be a set of scenarios. Scenarios are popularly used for

Chapter 4. Case Study Results 34

requirements specification and testing of the overall system implementation and
have been recognized by UML as being part of the behavioural diagrams called
Sequence Diagrams [60]. Scenarios are usually represented using formal graphical
notations like the Message Sequence Charts (MSCs), Live Sequence Charts, etc.
[59]. At Scania, the scenarios of a software function’s use case are represented
using MSCs. Visually, an MSC consists of a number of interacting ECU systems
and the environment each represented with a vertical line. The communication
among the different ECU systems is represented using horizontal arrows between
the vertical lines from the sending to the receiving system. The MSCs generally
include notes that are present within the diagrams to provide more information
regarding the interaction and the function execution.

At the vehicle integration test level, in addition to the use cases and scenar-
ios, each UF has a corresponding requirements document in which the function
requirements take the structured natural language form.

Mapping the structural breakdown of a UF to the right side of the Scania
V-model pertaining to testing the UF as illustrated in Figure 4.1, each test level
was identified to have the following primary test objectives and test approach. It
is important to note here that, since the scope of the thesis research is limited to
test coverage based on requirements, the code test level where the test focus is
inclined towards code coverage was not considered. Therefore, only the system,
function and vehicle integration test levels were considered.

The System Test Level at Scania is where the system testing of the indi-
vidual ECU systems is performed. In the V-model, this test level corresponds to
ECU and Part System levels (refer to Figure 4.1). Different test groups belong-
ing to different departments across the organization take up the responsibility for
testing one or more of the ECU systems.

At this test level, the test target is the software of the ECU system under test.
This includes all software modules (AEs) allocated to that ECU system. The
software is tested by mounting it on the corresponding system hardware. Here,
white-box and black-box testing of the individual ECU system is done to ensure
the system’s software behaves as expected. Generally, the test environment used
for system test level is a HIL test rig lab where parts or all of the ECU system’s
interfaces are simulated. As mentioned earlier, the expected system behaviour
is presented in the form of the system’s requirements (set of AE requirements
documents) which generally take a structured natural language form. Hence,
testing is done and test results are reported against these system requirements.
The test coverage of the system is therefore presented in terms of the number of
system requirements that have been tested. In case of supplier systems, testing
at this system test level is performed at the suppliers end, and it is up to the sys-

Chapter 4. Case Study Results 35

tem test leader to decide how much system testing should be taken up there after.

The dynamic nature of the automotive industry requires continuous devel-
opment of software and corresponding systems. This in turn leads to multiple
software versions that need to be tested across all the test levels. Owing to this
factor, testing of the software at the system test level at Scania is taken up in
short-cycles called test rounds all around the year where each test round spans
from one to four test weeks. Hence, test reports are generated once every week to
every four test weeks depending on how each ECU system test group has planned
to execute its testing activities.

Moving on, as the name suggests, Function Test Level deals with testing
each of the distributed software functions across all the ECU systems that are
involved in its execution. The responsibility for testing each function at this test
level is given to an individual called the ‘function owner’ in an appropriate orga-
nization department.

At this test level, the test target is the corresponding software modules across
all the ECU systems, regardless of their relative importance, that are required for
the execution of the concerned function in a vehicle. Hence, the function require-
ments are to be tested and not a specific ECU system containing major part of
the functionality. Here, black-box testing of the function is performed based on
the function owner’s knowledge of the function to check for the correctness of the
function output in several scenarios. The test environment is either a HIL test
rig lab, where part or all of the systems involved in the function are simulated, or
a real vehicle. At this test level, it was identified that testing is mostly performed
based on function owner’s knowledge and not systematically against any function
requirements. Moreover, no test reports are generated from this test level.

The Vehicle Integration Test Level is where all the distributed software
functions of the vehicle are aimed to be tested. It is at the highest level in the
Scania V-model corresponding to the complete vehicle level in Figure 4.1. This
test responsibility is taken up by dedicated integration test groups at Scania.

At this test level, the test target is the interface communication among the
ECU systems for the execution of all software functions of the vehicle. Hence, each
software function is aimed to be tested by testing the communication among the
involved ECU systems using both a white-box and black-box testing approach.
One test group performing the integration testing in a HIL test rig lab is respon-
sible for white-box testing of the communication among the ECU systems as a
means of testing the software functions. On the other hand, the test group per-
forming the integration testing in real vehicles is responsible for black-box testing
of the communication among the ECU systems as a means of testing the software

Chapter 4. Case Study Results 36

functions. Here, the integration testing by both the test groups is performed and
test results are reported against the function scenarios. Hence, currently, the test
coverage of distributed software functions is in terms of the number of scenarios
of the total scenarios of the function that have been tested.

As mentioned earlier, due to continuous development of software leading to
multiple software versions that need to be tested at all levels, the integration test
level at Scania plans and executes the testing activities in one-month short cycles
called test rounds. During this one-month span, two test weeks are spent on test
planning and the remaining two test weeks are spent on test execution. The test
reports are hence generated once every four test weeks.

4.2 Summary of Interviews

With one of the primary research objectives being the identification of issues
with the current approach to test distributed software functions at the system test
level, function test level and the vehicle integration test level, interviews with 13
test engineers from the aforementioned test levels have been conducted in three
rounds. A brief description of the interview participants as a means to present
their suitability as interview subjects is stated in Table 4.1. The description is
in terms of their test role title, test level to which their role can be accurately
mapped to and experience in their current role.

Interview
Round

Interview
Participant

Test
Level

Test Role Title Experience

1

Interviewee 1
Complete
Vehicle

Actual Vehicle
Tester

11 years

Interviewee 2
Complete
Vehicle

HIL Lab Integration
Tester

1.5 years

Interviewee 3 Function
Function Owner for
fuel level display

8 months

Interviewee 4 System
Main ECU 2 Lead
Test Engineer

1 year

2

Interviewee 5
Complete
Vehicle

Actual Vehicle
Tester

5 years

Interviewee 6 Function
Function Owner for
obstructed camera
warning

8 years

Interviewee 7 Function
Function Owner for
advanced emergency
braking

1 year

Chapter 4. Case Study Results 37

2 Interviewee 8 System
Engine Management
System Tester

4.8 years

3

Interviewee 9
Complete
Vehicle

HIL Lab Integration
Tester

4.3 years

Interviewee 10 Function
Function Owner for
oil level display

10 months

Interviewee 11 Function
Function Owner for
gearbox status pre-
sentation

5 years

Interviewee 12 System
Main ECU 1 System
Lead Test Engineer

1.5 years

Interviewee 13 System
Gear Management
System Test Devel-
oper

3 years

Table 4.1: Brief description of the interview participants’ background

As presented above, each of the three interview rounds included a subset of par-
ticipants such that, in each round there was at least one participant from each
of the three test levels. Hence, each interview round ensured that issues from
the three relevant test levels could be captured and analyzed to improve the sub-
sequent data collection approach for the remaining interview rounds. Moreover,
the experience of the interview participants from each test level ranges from 1
year or less (termed by the participants themselves as being relatively new to
the role) to a couple of years (termed by the participants themselves as being
very accustomed to their role). Such a heterogeneous set of interview subjects, in
terms of their varied experience of test role, ensured that the data collected was
not biased and was from different viewpoints - viewpoint of practitioners who are
new to the role, of practitioners who are setting into the role and of practitioners
who are highly accustomed to their role.

4.3 Transcription

As mentioned earlier in Section 3.3, all 13 interviews conducted were face-to-
face interviews that were audio recorded. Each of the audio interview file was
transcribed within one week from the interview date using ‘ExpressScribe’ soft-
ware. Figure 4.2 presents a snapshot of the transcribing software interface. It
visualizes the naming pattern used for the files and the features of the software
that assisted in transcribing the audio files.

Chapter 4. Case Study Results 38

Figure 4.2: Snapshot of ExpressScribe software used to transcribe the interview
audio files

On concluding the transcription process, the transcribed interview content
was exported to Microsoft Word Processor with the same naming pattern as
the audio file to maintain consistency. One of the primary purpose of opting
to handle the final version of the transcribed interview using a word processor
was to perform grammatical spell checking on the transcribed content. This was
necessary to ensure effective transcription of the interviews. Finally, towards the
end, the interview participant name, test role, test level, and interview date, time
and location were added to the final interview transcript to ensure all details
pertaining to the interview are consolidated within this document.

4.4 Post Interviews - Theoretical Sampling

On obtaining the final version of each transcribed interview, the next step was
a post interview activity of thoroughly reading the transcript in order to note
any new questions or theoretical implications that were derived from the content.
These notes were made by highlighting the corresponding text and adding the
new questions or theoretical implications identified from this text to a comment
added as a memo within the word processor file. An instance of an interview
transcript containing text from where an initial theoretical implication was iden-
tified by the researcher is presented in Figure 4.3.

A similar instance of an interview transcript containing text from where a new
question arose is presented in Figure 4.4. Based on analyzing the criticality, and

Chapter 4. Case Study Results 39

Figure 4.3: Snapshot of interview transcript with a note of researcher identified
theoretical concept

Figure 4.4: Snapshot of interview transcript with a note to modify interview
questionnaire based on interview data analysis

Chapter 4. Case Study Results 40

deducing the need to explicitly include the new question that arose, the corre-
sponding questionnaire was modified for the next round of participants.

Hence, one evident advantage of performing theoretical sampling was iden-
tified to be the modification and improvement of the interview questionnaire
that assisted in enhancing data collection. In addition, this step proved to be a
crucial pre-activity to perform coding. Codes were initially identified from the
memos and comments written during theoretical sampling and were later followed
by steps that were executed to further strengthen the base for generating these
codes.

4.5 Open Coding - Preliminary Results of the In-

terviews

The preliminary results pertaining to the issues with the approach imple-
mented to test distributed software functions across the three test levels at the
case company were identified based on performing the first step of data analysis.
This step included performing open coding of the interview data till theoretical
saturation was reached. It was performed iteratively over the interview period.
The process followed to derive the open codes and open code categories, along
with an instance of this process is as presented in Chapter 3.

Figure 4.5: Open codes and open code categories

The process of open coding resulted in a set of 28 open codes, each pertaining
to a test issue. These open codes were then placed within 8 primary open code
categories based on the similarities and differences among the open codes. In
addition, it was observed that there were certain open codes pertaining to test
issues that were fundamentally present due to the existence of other issues that

Chapter 4. Case Study Results 41

were placed within one of the eight primary categories. Such open codes were
categorized under ‘cascading issues’ for each of the primary categories for which
this phenomena was observed. This lead to a total of thirteen open code cate-
gories that emerged from this data analysis step. A final set of the open codes,
the primary open code categories and the secondary open code categories in the
form of cascading issues is illustrated in Figure 4.5. Wherever applicable, the
primary and secondary open code categories are color coordinated in order to
enhance understandability.

Studying the preliminary qualitative data analysis results using a quantitative
approach provides a means of motivating the inclusion of each of the identified
open code categories in the final set of categories emerging from this step of data
analysis. Hence, the frequency of occurrence of each one of the eight primary
open code categories among the thirteen interviews conducted was identified.

Figure 4.6: Frequency of occurrence of open code categories

The presence of any one of the open codes in the interview transcript was
considered as one occurrence of the open code category it belonged to. Hence,
the frequency of occurrence of an open code category was calculated as the number
of interviews(x) where any of the codes under the category was identified, divided
by the total number of interviews(y). It is important to note here that, in this
context, the frequency of occurrence is not used to analyze the relative criticality
or the relative importance of the corresponding issues. Rather, this aspect is
studied to analyze the level of awareness of the test issues among the interview
participants and the magnitude of presence of the identified issues in the case

Chapter 4. Case Study Results 42

company. A graphical representation of the frequency of occurrence of each one
of the eight primary open code categories is presented in Figure 4.6. The data
pertaining to the graph is presented in Table C.1 in Appendix C.

4.6 Axial Coding - Establishing Relationships be-

tween Categories

On identifying and establishing a final set of open codes and open code cat-
egories that represent the test issues and test issue categories respectively, the
next data analysis step was undertaken using axial coding. The objectives of this
data analysis step were to identify

a) the relationships that exist among the identified test issues and

b) possible higher abstraction issue categories that can assist in representing
the underlying theory at a more generic level.

The process followed to perform axial coding to fulfill the aforementioned ob-
jectives and an instance of how the process was implemented is as discussed in
Chapter 3.

Figure 4.7: Relationships among open code categories

A visual illustration of the relationships that were identified among the open
code categories to fulfill Objective a) is presented in Figure 4.7. The two primary
relationships that were identified among the open code categories, as defined and
discussed in Chapter 3, are the ‘causes’ and the ‘hindrance’ relationship. Each

Chapter 4. Case Study Results 43

of the two kinds of relationships among the open code categories are represented
uniquely to explicitly illustrate the difference. For the causes relationship, the
direction of the arrow is used to point from the causing issue to the effected issue.
Similarly, for the hindrance relationship, the direction of the arrow is used to
point from the issues that cause a hindrance to the issues that are effected by it.
The relationships between open code categories which take the form A causes/is
a hindrance to B and B causes/is a hindrance to C so A causes/is a hindrance to
C are not explicitly visualized but are implied.

It is important to note here that, besides the relationships that exist among
the primary open code categories, the relationships between the primary and
secondary open code categories have also been explored, established and suit-
ably represented in Figure 4.7. As the name suggests, cascading issues which are
represented by the secondary open code categories are a consequence of the cor-
responding primary issues within the primary code categories. Hence, there is a
‘causes’ relationship that has been identified to exist between them. For instance,
the Knowledge Transfer (KT) issues (refer to Figure 4.7) ‘cause’ the cascading
KT issue of possible hindrance to a more data-driven testing approach. Similar
is the case with the other primary open code categories that cause corresponding
cascading issues.

The next step of axial coding was to identify higher abstraction axial code
categories to fulfill Objective b). On iteratively analyzing the relationships be-
tween the open code categories, a final set of four axial code categories have been
identified. The four axial code categories were identified to accurately represent
all the open code categories at a higher level of abstraction. These include: People
Issues, Process Issues, Technology Issues and Explicit Test Issues. Figure 4.8 pro-
vides a visual depiction of the axial code categories and the corresponding open
code categories that they encompass. Each axial code category can be defined as
follows:

People Issues: People issues category pertains to all those issues that are
fundamentally related to the human resources involved directly or indirectly with
the testing activities and the test approach at different test levels considered. For
instance, issues like ‘Lack of bigger picture’ and ‘Test reports not shared across
test levels ’ are predominantly pertaining to people aspect of the test approach
and hence included within this category.

Process Issues: Process issues category is used to refer to any issue pertain-
ing to processes surrounding and undermining the effectiveness of the current test
approach. These include issues with requirements specification, variant handling
and traceability-based alignment of requirements and test approach.

Chapter 4. Case Study Results 44

Figure 4.8: Axial code categories

Technology Issues: Technology issues category is used to refer to issues
that are related to a lack of adequate tool support for either the test approach
itself or the surrounding processes that influence the test approach. For instance,
it includes issues like lack of test management tool and lack of requirements
management tool.

Explicit Test Issues: Explicit test issues category is used to refer to the set of
fundamental test approach issues that are identified to be a consequence of all the
issues presented within the previous three categories. For instance, this category
includes issues such as ‘Inaccurate function test coverage measurement’ and ‘Lack
of means to identify test redundancies and test gaps’.

4.7 Selective Coding - Identifying the Core Cate-

gory

The last step in the data analysis coding process was to perform selective cod-
ing. Here, the four derived higher abstraction axial code categories were further
analyzed to study the relationship between them. The objective was to derive
the final underlying theory based on deducing the core category that logically
relates the other categories. An illustration of the identified relationships among
the axial code categories and the final core category is presented in Figure 4.9.

It was identified that there is a very intricate relationship that can be rep-
resented through a multi-way dependency among the set of people, process and

Chapter 4. Case Study Results 45

Figure 4.9: Identified core category based on relationships among axial code
categories

technology issues. These set of issues together led to the explicit test issues.
For instance, let us consider the complex relationship between one set of people,
process and technology issues which is presented in Figure 4.10. Hence, it was
inferred from the results obtained on performing several steps of data analysis,
that an intricate set of people, process and technology issues formed the source
for fundamental test issues at the case company.

Figure 4.10: An instance of people, process and technology issue relationship

Chapter 4. Case Study Results 46

4.8 Triangulation - Confirming the Derived The-

ory

Data Triangulation: Archived documents and databases have been used as
the alternative sources of data collection in order to perform data triangulation
[34] and confirm the theory that was generated through the coding process. These
alternative data sources were identified through interviews and interactions with
case practitioners and included several requirements documents, test reports, test
result databases, architectural tools and so on.

For all applicable test issues and issue categories represented in the form
of open codes and open code categories, corresponding alternative evidence for
their validity from the alternative data sources were identified. For instance,
one of the open code category that was generated and inferred to being a part
of the issues with the current test approach was ‘requirements specification is-
sues’. One of identified issue within this open code category was - ‘Incomplete,
vague and untestable high-level function requirements specification’. To confirm
this interview data analysis result, the function requirements specifications from
the internal company database were analyzed to identify if there is an actual
generic case of function requirements specifications being incomplete and vague
across several functions. Initially, of the 300-odd functions, a sample of 10 func-
tions that differed in terms of their complexity and their ownership (the internal
organization departments that handled these functions) were identified and es-
tablished to be an adequate sample with the help of the industry and university
supervisors. Analysis of these functions helped capture the required quantitative
data that 9/10 (90%) functions had incomplete specifications in their scenario
form. Moreover, it was observed that the textual specification document for the
functions was written within structured templates in vague natural language that
lead to several untestable requirements. The above observations indicated that
there was indeed an issue of incomplete, vague and untestable high-level function
requirements specifications for several functions with different complexities. This
helped confirm the previously obtained result and strengthen its validity.

User Group Triangulation: While, most of the open codes and open
code categories could be confirmed using the data gathered from the archived
documents and databases, there were some that could not be aptly triangulated
using that approach. For instance, the ‘people knowledge issue’ of ‘ambiguity of
test role at function level’ was more suited to be studied and analyzed through
interaction with people than through analyzing documents and databases. Hence,
the confirmation of its existence within the case company was done by conduct-
ing interviews with multiple test engineers from the function test level to check
whether the ambiguity of test role knowledge was specific to one interview subject

Chapter 4. Case Study Results 47

or was a common phenomena among the test engineers of the function test level.
Hence, in this way user group triangulation [56] was performed for the suitable
open codes and open code categories.

Evaluator Triangulation: In addition to the above approaches, evaluator
or facilitator triangulation approach [56] was used to validate the conclusions
drawn from the interview data analysis. This was implemented by presenting
the data analysis results to industry practitioners who have been working in
conditions where they most likely face these issues, and PhD researchers who are
conducting ongoing research within similar areas. This ensured other independent
researchers’ and industry practitioners’ confirmation was obtained for the theory
that was generated based on data analysis of the interview data.

Chapter 5

Data Analysis

The results obtained on performing an initial detailed analysis of the data
collected during the case study are as presented in the previous Chapter 4. These
results help answer a subset of research questions RQ1, RQ2 and RQ3, while
paving the way for research question RQ4 to be answered. Taking into considera-
tion that RQ1 has been explicitly answered in the previous chapter, this chapter
aims to further analyze the case study results to explicitly answer research ques-
tions RQ2 and RQ3 while setting the context for answering RQ4.

5.1 Issues with Current Approach to Test Dis-

tributed Software Functions at Scania

On analyzing the data from interviews and confirming the results with suit-
able triangulation approaches, it was inferred that, there exists no comprehensive
test coverage information for the distributed software functions across the sys-
tem, function and vehicle integration test levels at the case company. Moreover,
it was identified that this was due to a intricate set of issues with the people, pro-
cess and technology aspects (refer to Table 5.1) that are involved in testing the
distributed software functions across the three test levels. This analysis thereby
answers research question RQ2.

At the vehicle integration test level, it was identified that there is inaccu-
rate measurement of test coverage for the distributed software functions. This
was mainly due to reporting the test results in terms of the number of scenarios
that are tested against the incomplete set of scenarios pertaining to that func-
tion. Here, the incompleteness of the scenario-based requirements specification
of a function indicates that, the scenarios tested at this level today represent
only a small set of several possible execution paths of the function across dif-
ferent vehicle variants and in different real-time execution situations. While on
one hand the scenario-based requirements specifications are incomplete, on the
other hand, the structured natural language requirements document for the func-
tions are non-implementation specific and too vague to report test results against.

48

Chapter 5. Data Analysis 49

Hence, evidently, there is a clear gap and a need to explore suitable strategies for
testing performed at the vehicle integration test level for the distributed software
functions. This conclusion is on par with what has been reported in [1] that iden-
tified this gap based on a review of the research in test, verification and validation
within the automotive domain.

Table 5.1 summarizes the issues pertaining to the approach implemented to
test the distributed software functions at the case company, including the issues
discussed above. It can be observed that the issues identified at the case company
are similar to the issues found in the literature as presented in Section 2.3. It is
important to note here that, Table 5.1 presents high-level issue categories and a
brief summary of the issues that each category comprises, in order to provide a
comprehensive view. A complete list of all the issues in the form of open codes
is presented in Figure 4.5 of Chapter 4.

No Issue Category Description of Issues

1 People Issues

Ambiguity of test role at function test level
and a lack of bigger picture of function test
effort distribution across test levels
Lack of appropriate means to share knowl-
edge pertaining to test results across the test
levels

2 Process Issues

Incomplete, vague and untestable higher
level function requirements specification
Variant-focused testing is highly dependent
on each individual tester’s knowledge with
lack of means to handle function variants
through simplistic representation
Lack of adequate traceability across require-
ments and test results of the different test
levels

3 Technology Issues

Lack of tool support to assist in test manage-
ment, requirements management and change
management
Complexity of having test artifacts (test re-
sults, test reports, test cases, etc.) and func-
tion and system requirements spread across
multiple locations with limited interoperabil-
ity

Chapter 5. Data Analysis 50

4 Explicit Test Issues

No comprehensive function test coverage in-
formation across test levels
Ambiguous and inaccurate test reports gen-
erated at vehicle integration test level
Lack of test report generation at the function
test level
Lack of appropriate means to identify where
or whether redundant testing and risky test
gaps are present across the test levels

Table 5.1: Issues identified with the current approach to test distributed
software functions at Scania

5.2 Alternative Approaches to Address Test Is-

sues

On identifying the current test approach issues, the next objective was to
propose an effective cross-functional verification strategy that would help in ad-
dressing these issues. The strategy aims to help provide a means to identify and
improve test coverage for distributed software functions at the vehicle integra-
tion level, while reducing test redundancies and test gaps across the test levels.
In other words, the strategy aims to resolve the explicit test issues by address-
ing their cause which includes the identified people, process and technology issues.

Below in Sections 5.2.1 and 5.2.2 the possible alternative approaches to address
the test issues through an in detail study of the people, process and technology
issues are discussed. Following this, in Section 5.2.3, the identified alternative
approaches are presented.

5.2.1 Understanding People, Process and Technology

The identified issue categories leading to explicit test issues, namely, the
People, Process and Technology issue categories, each in itself represent a com-
plex area of study. In the current case, the existence of issues with high inter-
dependencies within all three challenging areas leads to an extremely complex
phenomena. Given the time constraint for the thesis research, providing a com-
prehensive solution with multiple strategies that aim to resolve all the issues in
each complex area, was deemed to be infeasible. Hence, the first step was to iden-
tify an appropriate subset of the issues that can be suitably addressed through
the proposed verification strategy. It is important to note here that, since the
three areas of people, process and technology are highly interdependent as also

Chapter 5. Data Analysis 51

recognized by other researchers like in [61], [62] and [63], no individual solution
to the subset of issues exists in isolation. Therefore, though the verification strat-
egy proposed in this research aims to provide an effective solution for one subset
of issues, it would likely reach its full potential in terms of its efficiency when
it is complemented with solutions that address the remaining subset of issues.
Here, the terms ‘effectiveness’ and ‘efficiency’ are often used in close association
with each other while assessing the results of any approach, process or strategy.
Effectiveness is best defined as doing things right. It is a study of the value of
the results obtained. On the other hand, Efficiency is concerned with doing right
things. It relates to maximizing the results using optimum resources, that is,
least time, effort and cost, once its effectiveness is established [64].

Table 5.2 provides a tabular representation of the identified alternative issue
subsets. It includes a brief analysis of the expected value of basing the proposed
verification strategy on the alternative approaches that aim to address and resolve
each one of the identified issue subsets. This comparative analysis was conducted
based on capturing scientific knowledge from literature studying the relationships
among people, process and technology. This literature was identified based on
performing a literature review according to the guidelines presented in [37]. The
results of the analysis were then used as a basis to select one of the issue subsets
to be the focus of the verification strategy proposed in this research.

Based on the analysis of alternative issue subsets, it has been concluded that
alternative (3), that is, an approach with a focus on addressing the process issues,
is most suitable and viable in the current context. This is because it has been
identified in literature (refer to Table 5.2) and observed in the case study results
(refer to Figure 4.10), that process issues lie at the core of the three identified
issue categories. Technology is adopted to fit the process established, and people
knowledge and effort is built around the process. Hence, addressing the process
issues will help pave the way to studying and addressing the people and technology
issues that persist around the established process. Hence, the verification strategy
proposed in this research aims to address the process issues in order to resolve
the explicit test issues identified in the current approach for testing distributed
software functions. It is important to note here that, the proposed strategy will
be most efficient when followed by solutions and well established approaches that
provide

a) a means of adopting adequate technology support for the proposed effective
process, and

b) an overall enhancement of people knowledge around the new process and
technology.

Chapter 5. Data Analysis 52

No
Issues Subset

Description
People Process Technology

1 X X X

Efficient people, effective processes and
supportive technology have been iden-
tified to be the critical success factors
for organizations in several disciplines
including knowledge management [65]
and several aspects of software devel-
opment including verification [62]. In
the context of the automotive industry,
improving and integrating these three
areas has been reported in [63] to have
led to tremendous success for Toyota,
an important player within this indus-
try. Hence, it can be inferred that a
verification strategy that aims to ad-
dress the issues pertaining to people,
process and technology aspects of test-
ing is relatively the most effective solu-
tion [62] as compared to solutions that
aim to address issues within any one of
the areas in isolation.

2 X

In an organization, people implement
the processes and use the technology
to do so in an enhanced manner [61].
There is an increasing focus within or-
ganizations to identify people issues
and thereby derive suitable solutions
to resolve these issues. This is due to
recognition that people are a critical
success factor for efficient process ex-
ecution and process improvement [66]
and also for the adoption of technology
[67]. However, while people issues are
very critical and important to resolve,
the overall efficiency of people effort
might be hindered in case of issues with
the process that has been laid down for
them to implement or the technology
that has been provided for them to use.

Chapter 5. Data Analysis 53

3 X

A process is what has been laid down
to ensure the objectives and goals of
any task are met. A focus on processes
can improve the effectiveness and effi-
ciency of the task under consideration
[61]. Technology should be adapted to
fit the processes and people [63]. More-
over, people competencies and knowl-
edge should be refined to adapt to the
processes and technology [65], in a con-
tinuous learning and implementation
environment [63]. Hence, approaches
that deal with addressing and improv-
ing the process lie at the core of peo-
ple and technology enhancement ap-
proaches [62].

4 X

Technology is used to save time and
cost in the act of people executing pro-
cesses [61]. Hence, for the successful
adoption of technology in order to get
most value from its investment, a focus
on resolving people and process issues
is essential [67].

Table 5.2: Alternative people, process and technology issue subsets

5.2.2 Understanding the Fundamental Process Issue Areas

In this section, with an aim to address and resolve the identified process issues,
an understanding of the fundamental areas where the process issues lie in the gen-
eral context and specific context of the automotive industry is presented. These
process issue areas include requirements specification, traceability and variant
handling as depicted in Figure 4.8. It is interesting to note here that, each of the
process issue areas have been identified to be challenges in the related literature
pertaining to automotive software testing approach as presented in Chapter 2.

Requirements Specification
Requirements Engineering as defined by IEEE standard [68] is a process that

contains all the activities to establish and maintain the requirements that are to
be met by the software or the system. Such definitions of requirements engineer-
ing in the context of not only software engineering but a more generic definition in
the context of systems engineering have been given by several authors like in [69]

Chapter 5. Data Analysis 54

and [70]. Laplante in his book [70] defines requirements engineering as a branch
of engineering that deals with the goals and constraints of a system and that
is concerned with the relationships of these factors to requirements specification
and their evolution over time and across families of systems. Hence, requirements
engineering as a discipline contains several activities like requirements elicitation,
requirements analysis, requirements specification, requirements verification and
validation and requirements management.

Requirements specification for a software or a system is one activity within
requirements engineering which as defined by the IEEE standard is a "structured
collection of the requirements (functions, performance, design constraints, and
attributes) of the software/system and its operational environments and external
interfaces" [68]. There are several methods for requirements specification that
can be most suitably classified into informal, semi-formal and formal approaches
[71]. The informal methods are based on using common natural language. Such
informal methods have been found to contribute to 79% of specifications in soft-
ware engineering [72] and also most commonly used in systems engineering [73].
The semi-formal methods are based on using either structured natural language
through forms and templates [72] or use-case based requirements engineering [59].
Lastly, the formal methods are based on using formalized language in the form of
mathematical notations and formal logic [74]. Many specification languages and
methods for informal, semi-formal and formal approaches have been developed
to support the requirements specification process, each with its own advantages
and disadvantages [74].

As identified by the Standish Group [75], one of the major factors for failure
of projects or products developed through these projects is not technical issues
but having incomplete requirements specification. On the other hand, one of the
major success factors for projects or products developed through these projects is
to have clear requirements specification [69]. Moreover, such requirements spec-
ification issues, like ambiguity and incompleteness, directly impact testing that
is done against these requirements. This makes the disciplines of requirements
specification and testing highly entwined. Therefore, having an effective process
for requirements specification has a positive influence on the testing process [76].
Hence, evidently, having incomplete, vague and ambiguous requirements specifi-
cation for the distributed software functions in the current context is a critical
issue to be solved from the test perspective.

Even within the automotive industry, enhancing competency and efficiency in
requirements specification and thereby in testing has been identified to be one of
the fundamental technological core competencies required for handling automo-
tive software [7]. However, while such issues with requirements specification for
the distributed software functions have been found to be a challenge, solutions

Chapter 5. Data Analysis 55

derived through research to solve these issues are sparse [23][29].

Hence, to identify a feasible and effective approach to resolve the current re-
quirement specification issues, a comparative analysis of the possible requirements
specification methods in the automotive context from the testing perspective is
required.

Variant Handling
Software and System Product Line Engineering (PLE) is a discipline that has

emerged based on developing not just one software or one system, but a family or
portfolio of softwares and systems with variations in their functions and features
[77]. In both software and systems engineering, PLE approach has been given
a lot of attention in the past decade. Adoption of PLE as a means of offering
highly customizable end products has been found to be a promising approach for
improved productivity, enhanced quality, reduced costs and competitive advan-
tage [78][79]. However, it adds a new dimension of variant handling complexity
to all aspects of software and system development [80][81].

Handling variants efficiently, which is termed variability management, has
been found to be a key activity for successful PLE. Many approaches have been
developed for variability management [82]. One most widely used variant manage-
ment approach is through feature models that aim to model variant information
in a way that assists in simplifying variant handling through different stages of de-
velopment [83]. These feature models either represent the structural perspective,
the functional perspective or both perspectives of the product [80]. For instance,
a structural feature model for automotive vehicles might deal with modelling in-
formation pertaining to all the hardware and mechanical components variants of
the vehicle on which the functions execute. Whereas, a functional feature model
for automotive vehicles might deal with modelling all the variations of the func-
tions that are present in the vehicles.

One popular approach to generating these feature models is through require-
ments specifications and product description documents [80]. While this process
and how to automate this process have been studied and reported in literature
[84][85][86], what has not been adequately focused on is how this process can be
enhanced through incorporating adequate variant information within the require-
ments specification in a suitable manner.

In the context of the automotive industry, while several automotive compa-
nies have adopted PLE and gained the advantages it offers, they have also been
found to be afflicted with the issue of variant handling across their software and
system development [87][88]. One such aspect of automotive software and system
development that is challenged by variant handling complexity is testing [1][2].

Chapter 5. Data Analysis 56

In general testing in PLE has been found to be predominantly concerned with
the functional feature models [80]. However, in the current context of testing
automotive distributed software functions across the test levels, adequate variant
information for the functions is required to be modelled from both the functional
and structural perspective.

So it can be inferred that, in order to ensure effective testing of the distributed
functions in a PLE context of the automotive industry, it is important to capture
both functional and structural variant information of the functions within their
requirements specification. This ensures that the test effort is driven based on
variant knowledge which is very crucial in PLE. Having such variant information
either missing or implicit within the requirements effects both feature modelling
and subsequently testing [83].

The variant information can be incorporated in the natural language require-
ments [84], in semi-formal requirements models [89] or in formal requirements
[90]. Hence, to identify a feasible and effective method to capture variant infor-
mation and resolve the current variant handling issues, a comparative analysis
of the possible approaches to incorporate variant information within the function
requirements specification in the automotive context from the testing perspective
is required.

Traceability
Requirements and Test Traceability provides a means of aligning requirements

and testing during software and system development [91][92]. Establishing a link
through traceability between these two disciplines has been found to improve the
overall outcome of the software and system development process [91]. A forward
traceability from requirements to tests helps to determine what requirements are
covered by which test. Similarly, backward traceability from tests to require-
ments helps to find root cause of failed tests and to improve change management.
Traceability also helps to identify degree of test coverage of requirements and en-
ables adopting a suitable and accurate metric for test coverage measurement [91].
Having such accurate means of measuring test coverage is crucial for industries
[92] and is a test issue we aim to resolve. Hence, focus on traceability from the
testing perspective is essential.

Though researchers and industry practitioners identify the need for linking
requirement and testing, most often little effort is put into realizing this need,
leaving a gap between the two areas [91][93]. Consequently, traceability is one of
the challenges in aligning requirements and testing processes [76].

Such is the case even within the context of the automotive industry, where
alignment of requirements and testing through traceability has been found to be

Chapter 5. Data Analysis 57

an challenge in [1]. Moreover, for large and complex systems like in the case of
automotive systems, requirements usually exist at multiple levels of abstraction.
Hence, a more complex and integrated traceability solution with hierarchical and
forward-backward traceability is required. Here, hierarchical traceability is estab-
lished among the requirements and forward-backward traceability is established
between the requirements and the test artifacts [69][92].

Effective traceability rarely happens by chance or through ad hoc efforts. To
establish effective traceability it is important to explicitly address it in the re-
quirements and testing processes [93] and follow a systematic approach for its
implementation [94] . Incorporation of traceability has been studied in the con-
text of several requirements specification and testing approaches. Majority of
these studies have been found to be focusing on establishing traceability in for-
mal model-based requirements specification and testing [91]. Other studies have
addressed establishing traceability through semi-formal requirements specifica-
tion and testing based on use cases and scenarios [60][95].

Hence, to identify a feasible and effective means of establishing traceability
between requirements specification and test artifacts to resolve the current trace-
ability issues, an analysis of the possible approaches to establish traceability in
the automotive context from the testing perspective is required.

5.2.3 Deriving Alternative Process Enhancement Approaches

Based on the study of the process issue areas, the identified alternative process
enhancement approaches are presented in Table 5.3.

No Process Enhancement Approaches

(1)

Enhancing distributed software function requirements specification
to obtain a complete, unambiguous and testable set of requirements
by setting standardized guidelines, templates and completeness cri-
teria to the existing natural language requirements.

Enhancing variant knowledge by adding required functional and
structural variant information pertaining to the function to its re-
quirements specification using natural language.

Establishing traceability between the natural language require-
ments across test levels and test artefacts.

Obtaining comprehensive test coverage information across the test
levels based on coverage of natural language requirements of the
function.

Chapter 5. Data Analysis 58

(2)

Enhancing distributed software function requirements specification
to obtain a complete, unambiguous and testable set of requirements
by defining a semi-formal model based on use cases and scenarios
to represent the function requirements.

Enhancing variant knowledge by adding required functional and
structural variant information pertaining to the function to its
scenario-based model.

Establishing traceability between the semi-formal scenario model
across test levels and test artefacts.

Obtaining comprehensive test coverage information across the test
levels based on coverage of the semi-formal scenarios that represent
the function.

(3)

Enhancing distributed software function requirements to obtain a
complete, unambiguous and testable set of requirements by defin-
ing formal mathematical models to represent the function require-
ments.

Enhancing variant knowledge by adding required functional and
structural variant information pertaining to the function to its for-
mal model.

Establish traceability between the formal model across test levels
and test artefacts.

Obtaining comprehensive test coverage information across the test
levels based on coverage of the formal model that represents the
function.

Table 5.3: Alternative process enhancement approaches

5.3 Comparative Analysis of the Alternative Pro-

cess Enhancement Approaches

A comparative analysis of the three identified alternative process enhance-
ment approaches was performed to assess the relative effectiveness and feasibility
of each alternative. This analysis was initially done based on scientific literature
knowledge pertaining to the pros and cons of each of the alternatives in the general
context of software engineering, the specific context of embedded system software
engineering and targeted context of automotive embedded system software en-
gineering. The scientific knowledge was captured through a literature review
conducted according to the guidelines in [37]. In addition, to further strengthen

Chapter 5. Data Analysis 59

the basis to present one of the alternatives as the relatively most effective and fea-
sible approach to test automotive distributed software functions, industry expert
opinions based on their experience were captured. Here, their estimations of the
cost and value of implementing each of the solutions in the automotive industry
was collected through interviews. The results of the comparative analysis based
on scientific literature are presented in Section 5.3.1, followed by the results based
on industry expert opinion in Section 5.3.2. The final comprehensive conclusions
drawn from the comparative analysis are presented in Section 5.3.3.

5.3.1 Comparative Analysis based on Scientific Literature

The three process enhancement approaches identified (refer to Table 5.3) sug-
gest taking three different approaches to enhancing requirement specification of
the distributed software functions. Enhancing requirements specification in all
three of the approaches is based on addressing completeness, testability and am-
biguity aspects of the requirements and variant information handling capabilities.
This is considered the first step towards improved testing of the distributed soft-
ware functions across the test levels in the automotive case company.

Approach (1) involves enhancing the current natural language requirements
specification for the distributed software functions with structured guidelines and
templates to tackle incomplete and ambiguity. Across several industries, either
unstructured natural language or structured natural language using templates
and guidelines is most widely used requirements specification technique. This is
due to its ease of adoption and lack of need of any special skills which implies low
cost of implementation [73]. Attempts have been made to address and enhance
completeness and unambiguity of natural language textual requirements by pro-
viding guidelines and metrics for measuring and improving completeness [71][73]
and by extending adequate tool support [72]. Yet, such natural language textual
requirements, irrespective of the level of abstraction of the system or software
they define, have been found in ample of cases to still be prone to misinterpreta-
tion, ambiguity, inconsistencies and inaccuracy [74][96]. Moreover, from the test
perspective, though it is a highly recommended practice in almost all the natu-
ral language requirements specification guidelines to ensure the requirements are
testable, it is rarely ever religiously implemented in practice giving rise to several
non-testable requirements [96]. In addition, it has been found through experience
and reported in literature that textual natural language requirements are "only
part of the game" [23]. While, natural language requirements are very important
to capture and present certain requirements at any level of the V-model of auto-
motive software development and testing, they are not sufficient. The industry
identifies the need for the textual requirements at each level to be supported with
adequate ways to capture and present various other complex attributes of the
industry like variant information, distributed functionality with several scenar-

Chapter 5. Data Analysis 60

ios of execution in real time, etc. These are hard to capture effectively through
natural language textual requirements [23]. Hence, generating natural language
textual requirements has been found to be only a part of handling requirements
of the automotive system software through different phases of development like
implementation and testing. The requirements specification should be compli-
mented with suitable system modelling that can help capture the other complex
information in an implementable, testable, maintainable and traceable manner
[69].

Approach (2) involves enhancing the requirements specification for distributed
software functions by implementing semi-formal use case and scenario-based mod-
elling as a means to capture complete and unambiguous set of requirements in the
form of function scenarios. One of the major advantages stated in literature of
adopting use cases and scenarios for requirements specification is its support for
functional testing and test case generation. Moreover, it has been found in [96]
to be able to adequately capture requirements for product line variant handling.
In addition, it provides an easier means of linking requirements specification to
other artifacts like test artifacts [97]. Hence, it is of no surprise that such UML
based modelling for requirements has been found to be the most widely used
based on a survey conducted by [72] and is recommended by several software
development approaches like Unified Software Development Process for require-
ments specification [59]. Yet, generating scenarios for testing from the use case
based requirements specification is still labour intensive with lack of adequate tool
support [98]. This makes it comparatively less cost effective than approach (1).
UML itself is a modelling language for ensuring suitable models of systems and
softwares are developed without ambiguity and inconsistency. Yet, in addition,
there is supporting literature providing guidelines for writing use cases and gen-
erating the corresponding scenarios to avoid ambiguities and errors and ensure
high quality of implementation of this approach in a way that will help capture
all of its advantages [59][97][98].

Approach (3) involves adopting a formal approach to specifying requirements
of the distributed software functions based on mathematical models using math-
ematical entities. Formal methods have their obvious advantages in discovering
and appropriately addressing incompleteness and ambiguity in requirements spec-
ification [99]. Moreover, it is well established in literature that formal methods
can be used for effectively verifying requirements and eventually cut down cost of
testing through automatic test case generation from the formal models [100] with
adequate tool support [101]. Yet adoption of formal methods comes with a re-
quirement of high mathematical skills for their profitable use. It is also perceived
to be cumbersome and difficult due to its complexity in dealing with requirements
in mathematical and logical notations [71][74]. The above factors indicate that
adoption of solution (3) in the current context might require exorbitant initial

Chapter 5. Data Analysis 61

investment with a slow rate of value addition to the industry. But on the other
hand, there are researchers like Hall [102] who have tried to argue that high cost,
need for extraordinary mathematical skills and difficulty to adopt formal methods
for requirements specification are myths. The author argues that while the initial
cost of implementation is high, formal methods provide a means to cut down the
cost of development over time and enhance the effectiveness of the testing process.
That aside, for systems and functions with changing requirements and product
families with variant handling complexities, like in the safety critical automotive
and aircraft industries, formal specifications pose maintainability and traceability
complexities along with the other stated factors that sometimes tend to outweigh
the advantages it offers in other fronts [103].

On addressing requirements specification and variant information handling,
the three alternative process enhancement approaches proceed to address means
of handling traceability between the higher level distributed software function
requirements and lower level system requirements, and across the test results
obtained from the system, function and vehicle integration test levels. This es-
tablished traceability is then suggested to be used as a means to obtain compre-
hensive test coverage information for the distributed software functions.

According to a systematic mapping study [91] conducted to identify useful
approaches for alignment of requirements specification and testing, it has been
found that, majority of the research focus for establishing traceability between
these two disciplines is on semi-formal and formal approaches to Model Based
Testing (MBT). As the name suggest MBT is based on using models of the soft-
ware or system under test in order to drive the testing effort. In semi-formal
MBT, requirements which are modelled in the form of behavioural models (use
cases, scenarios in the form of Message Sequence Charts etc) are aligned with test-
ing by using these models to automatically or semi-automatically generate test
cases [91]. Hence, traceability can be established between requirements specifica-
tion and testing by mapping the behavioural models to the relevant test artifacts.
On the other hand, formal MBT focuses on aligning testing with requirements,
specified in the form of formal models using formal languages, by generating test
cases from these formal models and subsequently establish traces between them
[104].

While formal methods have been found to be one of the best options for
model based requirements specification, testing and aligning these two disciplines
for safety critical systems like the systems within automotive industry [91], it has
also been found to be difficult for practitioners to implement. It is expected to
require high experience in representing requirements in mathematical and logical
notations [71][74]. This makes it is a highly cost-intensive solution. Moreover,
formal methods have limited scalability as one of their challenges when dealing

Chapter 5. Data Analysis 62

with large and complex systems [91].

On the other hand, focusing on semi-formal methods through use cases and
scenarios as a means to model and test the functional behaviour of a software
or a system has been found to have their own challenges like the challenge of
generating executable test cases for enhancing efficiency of testing [105]. But
exploring semi-formal MBT methods and addressing the challenges within it has
been found to generate solutions that are more cost effective and scalable as com-
pared to the formal MBT methods. This makes it an interesting area of research
with high focus from the industry for whom cost effectiveness and feasibility of
solutions are critical [91].

Based on the knowledge acquired from the relevant scientific literature, the
comparative assessment of the alternative approaches can be summarized as pre-
sented in Table 5.4. Here, the comparative assessment is based on the overall Cost
in terms of time and effort, certainty of Return on Investment(ROI) and value of
the ROI on adopting and implementing each of the alternative approaches. For
this assessment a relative ordinal scale of Highest(H), Medium(M) and Least(L)
was used.

Approach
Criteria for Assessment

Cost Certainty of ROI Value of ROI
(1) L M L
(2) M H M
(3) H L H

Table 5.4: Results of comparative analysis of the alternative process
enhancement approaches based on scientific literature

5.3.2 Comparative Analysis based on Industry Expert Opin-

ion

Industry expert opinion on the relative feasibility and effectiveness from the
testing perspective of the three alternative process enhancement approaches was
captured through interviews of practitioners from within the case company. This
was to strengthen the basis for stating one of the alternative approaches as being
relatively most effective and feasible. During the interviews, the researcher pre-
sented the three alternative approaches at an adequate level of detail to ensure
the interviewees captured the essence of each alternative without any ambiguity
or misinterpretation of core concepts involved in each. While conducting the in-
terviews, the researcher had been working simultaneously on capturing the pros
and cons of each alternative based on scientific literature. Yet, these details were
not presented to the interviewees to ensure that their opinions were not influenced

Chapter 5. Data Analysis 63

by any other factors and were purely based on their own individual experience.

Here, the practitioners selected as interview subjects are termed ‘industry ex-
perts’ since they have been carefully chosen with the assistance of the industry
supervisor to ensure practitioners with vast experience and high knowledge in
the relevant areas were selected to share their opinions. A total of six industry
experts were identified to be most suitable and interviewed. Their opinion on the
relative feasibility and effectiveness of adopting the alternative approaches was
captured through their assessment of each approach based on the the following
three criteria: Cost of implementation in terms of people effort and time, cer-
tainty of ROI and Value of the ROI. The interviewees were requested to provide
their comparative assessment of the alternative approaches for each criteria using
a relative ordinal scale of Highest(H), Medium(M) and Least(L).

Table 5.5, Table 5.6 and Table 5.7 present the relative assessments provided
by the industry experts for alternative approach (1), (2) and (3) respectively.

Alternative Approach (1)
Assessment Criteria/

Industry Expert
Cost

Certainty of
ROI

Value of
ROI

Expert 1 L H M
Expert 2 L H L
Expert 3 L M L
Expert 4 L H L
Expert 5 L L L
Expert 6 L H L

Table 5.5: Results of comparative analysis of process enhancement approach (1)
based on industry experts

Alternative Approach (2)
Assessment Criteria/

Industry Expert
Cost

Certainty of
ROI

Value of
ROI

Expert 1 M M H
Expert 2 M M H
Expert 3 M H M
Expert 4 M M M
Expert 5 M H H
Expert 6 M M H

Table 5.6: Results of comparative analysis of process enhancement approach (2)
based on industry experts

Chapter 5. Data Analysis 64

Alternative Approach (3)
Assessment Criteria/

Industry Expert
Cost

Certainty of
ROI

Value of
ROI

Expert 1 H L L
Expert 2 H L M
Expert 3 H L H
Expert 4 H L H
Expert 5 H M M
Expert 6 H L M

Table 5.7: Results of comparative analysis of process enhancement approach (3)
based on industry experts

Evidently, based on the data presented in Table 5.5, majority of the industry
experts who have been interviewed believe that adopting approach (1) might cost
the least and also have the highest certainty of ROI relative to the other two
alternatives. But what is also clear is that majority of them believe the ROI on
such an investment will add least value to the industry in terms of solving the
test issues at hand.

Based on the industry expert opinion of adopting alternative (2) presented
in Table 5.6, it is evident that all industry experts interviewed believe this ap-
proach would cost somewhere between what would cost the company to adopt
approach (1) and approach (3). While there is no such clear common ground for
their assessment of certainty and value of ROI, majority of them believe that the
industry can be somewhat certain (medium to high) of the ROI. Moreover, the
value of the ROI is expected to be relatively high as compared to alternative (1)
and (3) based on their experience.

Finally, analyzing the industry expert opinion of adopting alternative (3) pre-
sented in Table 5.7, it can be observed that all of the industry experts interviewed
believe this approach would cost the highest of the three alternatives. More-
over, majority of them also believe that there is relatively least certainty of ROI
on adopting this approach. Their opinion of the value addition on successfully
adopting this approach has no clear indications, which might be pointing towards
a trend that within the industry there are contradicting views on the value addi-
tion of adopting this approach.

Chapter 5. Data Analysis 65

5.3.3 Comprehensive Results of Comparative Analysis

Table 5.8 presents the comprehensive tabulated view of the results from the
comparative analysis of the three alternative process enhancement approaches
based on scientific literature and industry expert opinion.

Approach
Estimation based on
Scientific Literature

Estimation based on
Industry Expert Opinion

Cost
Certainty of

ROI
Value of

ROI
Cost

Certainty of
ROI

Value of
ROI

(1) L M L L H L
(2) M H M M M H
(3) H L H H L M

Table 5.8: Comprehensive results of comparative analysis of alternative process
enhancement approaches

Based on the captured scientific literature knowledge and opinions of the
industry experts interviewed, it can be inferred that the process enhancement
approach (2) is expected to be relatively most feasible and effective for imple-
mentation and adoption in order to suitably address and enhance the testing of
distributed software functions.

Chapter 6

An Effective Cross-Functional Verification
Strategy

6.1 Proposed Cross-Functional Verification Strat-

egy

This section presents the proposed cross-functional verification strategy for
testing the distributed automotive embedded software functions. The strategy
proposes enhancing the requirements specification of the distributed software
functions by implementing a semi-formal use case and scenario-based modelling
that provides a means to capture complete and testable requirements with ade-
quate function variant information. There after, the strategy proposes adopting
a multi-level reuse concept of combining test results from the system, function
and vehicle integration test levels by establishing appropriate traceability across
the requirements and among the test results. The obtained comprehensive test
coverage information pertaining to the distributed software functions can then
used to identify test gaps and test redundancies to enhance testing at the ve-
hicle integration test level. In Section 6.1.1, a summary of the previous work
related to the proposed strategy is presented. This is followed by the steps for
implementation of the proposed verification strategy in Section 6.1.2.

6.1.1 Summary of Previous Work

Modelling requirements for verification is not a new concept. It has been
adopted for various verification activities, most popularly for testing and is termed
MBT. MBT has been found to help significantly enhance the testing process [91].
Basing the testing effort on model-based requirements specification approaches
has been found to identify more errors in requirements and implementation than
those hand crafted from textual requirements [106]. A semi-formal approach,
based on the use of scenarios for modelling requirements within MBT is being
increasingly studied in literature [103][105][107][108]. A large part of the research
that focuses on using such semi-formal model-based approach to aligning require-
ments specification and testing through traceability has been found to involve

66

Chapter 6. An Effective Cross-Functional Verification Strategy 67

proposing solutions but little research focus is on evaluating and validating these
proposed solutions [91].

Tsai et al. in [108] explore scenario-based traceability in order to select test
cases for impact analysis and regression testing of changes. The authors propose
the use of scenarios in regression testing of system software function changes for
reduced test effort through improved impact analysis. Fundamentally it is similar
to the work in the current research in terms of exploring scenarios for improved
testing. It differs in aspects where the current research aims to capture scenarios
and propose their suitability in reducing test gaps and test redundancies and im-
proving test effort distribution based on establishing traceability across multiple
test levels of the automotive industry V-model.

Thangarajan et al. in [95] explore scenarios in agent-oriented software en-
gineering. They focus on adding additional structure to scenarios in order to
facilitate traceability and testing through automatic test case generation, execu-
tion and analysis. While yet again, scenarios are proposed to be useful in the
context of establishing the desired traceability, the authors focus more on the
traceability between the scenarios and implementation code for improved testing.
On the other hand, the current research focuses on traceability between scenarios
and lower-level systems requirements and test results to obtain comprehensive
test coverage information for improved test effort distribution.

Nebut et al. in [103] present work on deriving function tests from use cases
in the form of test scenarios through test objectives. The major focus of the
presented research, similar to [95] and [108], is on the automation of the process
of using scenario-based requirements specification and testing. Where as, in the
current research, the focus is on studying and validating the effectiveness of using
scenarios for testing and traceability in the automotive industry.

Arnold et al. in [105] explore the concept of modelling requirements using
scenarios and contracts for validation of requirements. Here, contracts are pre-
conditions and post conditions to scenarios of the system execution. The authors
further discuss their approach based on validation performed for their proposed
model. Hence, the authors approach deals with exploring scenarios for validation
of requirements and more so a formal approach to defining and implementing
scenarios.

Within the context of embedded system software, specifically in the auto-
motive industry, most previous related work in MBT and subsequent study on
traceability and alignment of the disciplines of requirements specification and
testing is based on formal methods [109][110][111]. While some studies focus on
the concept of test scenarios as a means of managing the requirements of the

Chapter 6. An Effective Cross-Functional Verification Strategy 68

increasingly complex automotive embedded software, they take a formalized ap-
proach to the generation and use of test scenarios like in [5], [112] and [113].

Moreover, most of the testing focus through such formal modelling methods
is concentrated at the system integration and lower test levels of the automotive
V-model [5][32][114][115][116][117]. While some apply their approaches to dis-
tributed functions at the vehicle integration test level like in [109], focus on this
area in general is limited. MBT at the vehicle integration test level and more
specifically a semi-formal scenario-based MBT at this level of the automotive test
process is unknown today but with great potential for improvement [32].

Hence, exploring the application of semi-formal modelling of requirements
and variability information in order to generate test scenarios and subsequently
tracing the obtained scenarios to lower-level system requirements and testing is an
area that is explored little in the automotive industry, but with great potential
to add value to the testing process. Such a multi-level reuse of test effort has
been recognized for test effort reduction during test case generation in [118] and
[119]. Within the current thesis research, this concept of multi-level reuse is dealt
with a broader perspective of reducing overall test effort, by identifying where test
redundancies and test gaps lie across multiple test levels. Such comprehensive test
strategies to cope with the complex aspects of the automotive software testing
process like [12], are limited for integration testing of the distributed software
functions.

6.1.2 Steps for Implementation of the Proposed Cross- Func-

tional Verification Strategy

Following is a detailed description of the steps for implementation of the pro-
posed verification strategy based on alternative approach (2) presented in Table
5.3. A brief outline of these steps is presented in Figure 6.1.

STEP 1. Enhancing requirements specification
This is the first step in the implementation of the strategy which deals
with adopting a use case and scenario-based modelling of the dis-
tributed software function requirements. This step is implemented as
a means to obtain complete and testable set of requirements of the
distributed software functions in the form of scenarios with sufficient
function variant information.

STEP 1.1 Identification of function use cases
For the distributed software function under consideration, iden-
tify possible use cases. Here, as defined in Chapter 4, each use
case of a function describes one of its unique behaviour. Use

Chapter 6. An Effective Cross-Functional Verification Strategy 69

cases can be considered to be part functions that describe its dif-
ferent behaviours that together make up the entire function and
its comprehensive behaviour. For example, while one of the use
cases for a function can be activation of a particular feature, the
other use case can be deactivation of the feature. These together
with other use cases, if present, make up the entire function. It
is important to note here that, no use case models are to be
generated. Rather the possible use cases are to be identified.

Figure 6.1: Steps for implementation of the proposed verification strategy

STEP 1.2 Identification of function use case variants
For each use case of the function, identify possible use case vari-
ants, that is, all possible contexts in which the function use case
takes a different sequence of actions to execute the same be-
haviour described by the use case. For instance, if activation
of a feature is one of the use case of a function, its variants can
be identified to be all those contexts in which different steps are
executed to reach the same outcome. For example, the activation
of the feature maybe executed differently in vehicles with liquid
engine and in vehicles with gas engine. In this case, the use case
variants include vehicles with liquid engine and vehicles with gas
engine.

STEP 1.3 Generating Use Case Descriptions (UCDs) with adequate
variant information
The next step is to generate an UCD for each use case of the
function. An UCD is a step-by-step description of the interac-
tion between the participating systems required to execute the

Chapter 6. An Effective Cross-Functional Verification Strategy 70

use case in its operational environment. It is to be written in
structured natural language. There are several different tem-
plates and guidelines that have been proposed in literature for
generating UCDs. One such template is presented by Somé [59]
which is the inspiration for the current template proposed. The
template is tailored and enhanced to be fit for the automotive
domain. An UML representation of an abstract UCD template
is as shown in Figure 6.2. A more detailed description of the
abstract UCD template with the content to be presented in each
of its sections is presented in Figure 6.3.

Figure 6.2: UML representation of abstract UCD template

Here, based on the use case variants identified in the previous
step, the information pertaining to how the steps of execution of
the use case vary in case of each such identified variant is to be
incorporated into the UCD using variant points. These variant
points are inserted at the beginning and ending of the steps of
use case execution that are specific to each particular variant.

STEP 1.4 Generating Use Case Trees (UCTs)
In this step, an UCT is to be generated for each use case of the
function. An UCT is a graphical tree-structure representation
of all possible paths for the use case execution from when pre-
conditions are met to reach the post-conditions. Each node of

Chapter 6. An Effective Cross-Functional Verification Strategy 71

Figure 6.3: Abstract UCD template

the tree represents one Use Case (UC) step or its alternative.
Here, each alternative UC step should be represented as a single
node irrespective of how many steps it has under it. Hence, the
tree that is generated as a result has several paths, each path
containing a unique combination of steps specified in the UCD.

STEP 1.5 Identification of all possible paths in the UCT
In this step, all possible UCT paths are to be identified such that

a) Nodes common to all variants are covered at least once for
each variant

b) Nodes specific to a particular variant are covered at least
once for that variant

STEP 1.6 Generating MSCs for each identified UCT path
Each UCT path identified as a result of the previous step, is con-
sidered to be a ‘scenario’. As defined in Chapter 4, a scenario is
one single sequence of interaction between the involved systems
to execute a use case of the function. Paths covering the primary

Chapter 6. An Effective Cross-Functional Verification Strategy 72

UC Steps for each variant are to be represented by the main sce-
nario. All the other paths covering one of more of the alternative
UC steps are termed as the alternative scenarios.

Now, MSCs are to be generated to represent each identified sce-
nario. Adequate notes should be used within the MSC to cap-
ture important information from the UCD within the scenario
models. This is necessary to enhance understandability of the
models. Such scenario-based modelling of the requirements en-
hances the implementation-specific representation of the function
requirements and provides testable semi-formal scenarios. Here,
the level of implementation-specific details to be incorporated
within the scenario models is critical and required to be estab-
lished. To generate a scenario, the communication between any
two systems through signals is to be depicted in the MSC of the
scenario, based on the information provided in the UCD. This
signal information in the UCD for inter-system communication
should be presented as non-implementation specific signal values
for implementation specific signal names (stated in Figure 6.3).
The motivation behind using non-implementation specific signal
values is to provide a means of avoiding a need to redundantly
reflect any change to the signal values for all the scenarios in
which the corresponding signal is used. Such redundancy would
lead to inefficient means of handling changes to the function’s
inter-system communication signals.

For instance, let us consider the signal totalfuellevel(value) which
can have a valid input value ranging from 0-100, an invalid Error
or Not Available value represented as ‘NA/ERR’. Now represent-
ing the invalid signal value using totalfuellevel(NA/ERR) would
mean any change to the corresponding value used to represent the
error or not available condition would require substantial effort to
reflect this change in all scenarios that use this signal value. In-
stead, in such a case, if using a non-implementation specific signal
value that represents the condition like totalfuellevel(Error/Not
Available), would provide a means to store the corresponding
implementation-specific value in a central repository and reflect
it in the scenarios dynamically. This would ensure any change in
the implementation-specific signal values can be handled at one
location and be reflected consistently across all scenarios that
utilize this signal value. Similar concept can be extended for
the signal names. Such a means would support both consistent
change management as well as a means to automate the gener-
ation of the scenario MSCs from the UCDs using suitable tools.

Chapter 6. An Effective Cross-Functional Verification Strategy 73

Since, this thesis work deals with laying down a suitable process
for enhancing distributed software function testing and does not
consider the surrounding tool and people aspect required, we will
address this in the discussion and future work section.

STEP 1.7 Presenting a comprehensive view of the function
On identifying possible UCT paths and representing them as sce-
narios using MSCs, the next natural step is to present the final
set of scenarios of the function for each use case, based on the
variant information. This representation is used to provide a com-
prehensive view of the function as a set of complete and testable
function scenarios.

STEP 2. Establishing traceability across test levels
This step can be illustrated as in Figure 6.4. Here, to establish trace-
ability by capturing the requirements test coverage results across the
test levels, it is important to identify the test rounds at each test level
that correspond to testing the same software version. This is neces-
sary to ensure the correct requirements test coverage information is
captured across the test levels.
It is important to note here that since the systems and signals in-
volved in the execution of the main scenario vary in case of different
variants, we consider scenarios for each variant individually for estab-
lishing traceability.

Figure 6.4: Illustration of traceability across system, function and vehicle
integration test levels

Chapter 6. An Effective Cross-Functional Verification Strategy 74

STEP 2.1 Considering the system test level
The first step is to consider the system test level. Here, there is
a need to initially establish traces between the function scenarios
and system level requirements. There after, the system level re-
quirements test coverage pertaining to the relevant requirements
can be captured against the function scenarios. This provides
an understanding of how much of the function is tested at the
system test level across all the relevant systems.

STEP 2.1.1 Breaking down each scenario to the corresponding
system views
To establish traces between the function scenario and system
level requirements, each function scenario should be taken
and broken down to the system view. Thus, each scenario
has a corresponding set of system views of all the systems
that contribute to its realization. Here, each system view
represents a set of all relevant input and output combina-
tions pertaining to that system’s role in the scenario. This
is depicted in Figure 6.5.

Figure 6.5: Illustration of the concept of function scenario and it’s
corresponding system views

STEP 2.1.2 Mapping system views to system requirements
For each system view of a function scenario, the requirements
of the system that pertain to ensuring the desired output
is generated for the provided input i.e, requirements that
handle the interface signals under consideration should be
mapped to the scenario. This, performed for all the systems

Chapter 6. An Effective Cross-Functional Verification Strategy 75

involved in the scenario will produce a set of requirements of
each involved system that together make up the system level
requirements for that function scenario.

STEP 2.1.3 Mapping system requirements to system requirements
test coverage results
To obtain system level test coverage information for the func-
tion scenario, the test coverage results for the correspond-
ing system level requirements spread across multiple systems
should be gathered and mapped to the function scenario.
The above steps (2.1.1 to 2.1.3) are to be iterated for all
function scenarios in order to collect the entire function’s
system level test coverage information for each test round.

STEP 2.2 Considering the function test level
The next step is to consider the function test level. The test
focus at this level, as discussed previously in Section 4.1, is on
testing the overall function requirements. Therefore, the test
results should be mapped to the corresponding scenarios for each
test round. Here, the scenarios and their expected outcomes,
represent the function requirements that are to be tested.

STEP 2.3 Considering the vehicle integration test level
The last step is to consider the vehicle integration test level. At
this test level, as discussed previously in Section 4.1, the test
focus is on interface communication across the systems involved
in the execution of the function scenarios. Therefore, at this test
level, similar to the case of the function test level, the test results
are to be mapped against the function scenarios for each test
round.

STEP 2.4 Presenting the function’s comprehensive test coverage
information
In this step, the obtained comprehensive test coverage informa-
tion for the function, across the three test levels should be pre-
sented accordingly.

On implementing the above steps of the verification strategy, comprehensive
function test coverage information across the system, function and vehicle integra-
tion test levels for the distributed software functions is expected to be obtained.
This information can then be used to identify risky test gaps, test redundancies
and make a more data-driven decision during integration testing of the distributed
software functions at the vehicle integration test level.

Chapter 6. An Effective Cross-Functional Verification Strategy 76

6.2 Validation of the Proposed Cross-Functional

Verification Strategy

The proposed verification strategy was validated by implementing it using his-
toric data pertaining to a legacy embedded software function in Scania Trucks,
UF18- Fuel Level Display (FLD). This function is distributed across a total of
six systems which are system tested across three different departments within
the organization. It has two variants, each using a different subset of systems
for its execution. Moreover, it is a legacy function. This indicates that it is
required to be present on every truck irrespective of the vehicle and fuel type.
It can be considered to be a simple function which has mediocre safety critical
nature. While there are other more safety critical functions, they are too complex
to study within the given time frame of the thesis. Hence, all the above factors
provide a multi-fold motivation for the choice of the function used for validating
the proposed strategy.

6.2.1 Implementation of the Proposed Verification Strat-

egy on FLD Function

The results of implementing the proposed strategy on the chosen FLD function
based on the steps presented in Section 6.1 are as follows.

STEP 1 Enhancing requirements specification
Each sub-step performed to realize the goal of this step, which is to ob-
tain the final semi-formal scenario-based representation of the chosen
function, was initially performed based on the researcher’s study and
analysis of the function’s integration and system level requirements
and other relevant descriptive documents which assisted in gaining a
complete understanding of the function. To further strengthen the
completeness and accuracy of the obtained final results, each sub-step
results were discussed, reviewed and refined with the function owner
who is responsible for the function.

STEP 1.1 Identification of function use cases
For the FLD function there exist two use cases or function parts
which make up the whole function. The first use case is to detect
and display the fuel level on the Instrument Cluster (ICL) which
is the display component of the truck where the driver (considered
as part of the truck environment) can view the fuel level in the fuel
gauge. The second use case is to detect, activate and deactivate
low fuel level warning based on when the corresponding activation
and deactivation conditions are met in the truck. The low fuel

Chapter 6. An Effective Cross-Functional Verification Strategy 77

level warning is then displayed accordingly on the ICL. Naming
the identified use cases based on their primary behaviour, the
function’s use cases are as presented in Figure 6.6.

Figure 6.6: FLD function use cases

Figure 6.7: FLD function use case variants

STEP 1.2 Identification of function use case variants
The FLD function has two function use case variants, namely, the
FLD function execution in trucks with gas engine (Compressed
Natural Gas and Liquefied Natural Gas fuel types) and the FLD
function execution in trucks with liquid engine (Diesel fuel type).
The subset of systems involved in the execution of the function
variants vary. Hence, the representation of the use cases of the
function can be further enhanced based on the two variants iden-
tified as illustrated in Figure 6.7.

STEP 1.3 Generating UCDs with adequate variant information
For each of the two use cases (UC18_1 and UC18_2) an UCD
was written by referring to the given UCD template to ensure

Chapter 6. An Effective Cross-Functional Verification Strategy 78

the UCD captures all steps in the execution of the use cases for
all variants. The final UCDs were reviewed and refined with the
help of the function owner. The UCDs for UC18_1 and UC18_2
are presented as Figures D.2 and D.1 respectively in Appendix
D. It is important to note here that, due to confidentiality of
the logic that is built in the relevant systems for execution of
the FLD function, certain requirements have been captured at
a higher level of abstraction within the UCDs presented in this
report.

STEP 1.4 Generating UCTs
The next step in the natural order of implementing the strategy
included generating the UCTs for each use case, based on the
corresponding UCDs. Here, the primary UC Steps in the Steps
section of the UCD (refer to Figures D.2 and D.1) which describe
how the function is executed in case of valid conditions/inputs
and the corresponding alternative steps which describe how the
function is executed in case of invalid conditions/inputs are dif-
ferentiated for improved understanding based on color coding the
nodes accordingly. Here, green color nodes are used to represent
the UC steps in case of valid conditions and red color nodes are
used to represent the alternative UC steps in case of invalid con-
ditions. Figures E.1 and E.2 in Appendix E represent the UCTs
for UC18_1 and UC18_2 respectively.

STEP 1.5 Identification of all possible paths in the UCTs
Now considering the UCTs for each use case separately, there
are a total of 5 paths identified for UC18_1 that cover all the
nodes based on the conditions stated for the identification of the
paths in Section 6.1. Of these, paths 1 and 2 cover the primary
UC steps for each variant and hence are part of the UC18_1
main scenario. The remaining 3 paths cover one or more of the
alternative UC steps and are hence the alternative scenarios for
UC18_1. Similarly, for UC18_2 there are a total of 3 paths
identified that cover all the nodes as per the conditions. Of these,
paths 1 and 2 cover the primary UC steps for each variant and
hence are part of the UC18_2 main scenario. The remaining one
path is represented as the alternative scenario for this use case.
Hence, a total of 6 scenarios, 4 scenarios of UC18_1 and 2 of
UC18_2 represent the entire FLD function.

STEP 1.6 Generating MSCs for each identified UCT path
In this step, each scenario identified was represented using an
MSC. The MSCs were generated manually as of today. An ex-
ample MSC for the alternative scenario 1 of UC18_1 is presented

Chapter 6. An Effective Cross-Functional Verification Strategy 79

in Figure 6.8. This scenario depicts how the function is executed
and fuel level estimation is calculated when the fuel level sensor
signal value is error or not available.

Figure 6.8: MSC for UC18_1 Alternative Scenario 1

STEP 1.7 Presenting a comprehensive view of the function
Each of the 6 function scenarios along with the paths they cover
and variants they pertain to can be summarized as illustrated in
Figure 6.9.

STEP 2. Establishing traceability across test levels
An essential task while establishing traceability across requirements
and test results of the three test levels for the FLD function was to
identify the appropriate test rounds across the test levels that con-
tribute to testing the same system software versions. For this, a top
down approach was implemented. Here, three of the latest test rounds

Chapter 6. An Effective Cross-Functional Verification Strategy 80

Figure 6.9: Comprehensive set of FLD function scenarios

(spread over a period of three months) at the vehicle integration test
level were chosen. The test results for each of these test rounds was
reported on test weeks TW1602, TW1606 and TW1610. Here, the
software versions of all the relevant systems (systems that are involved
in the execution of the chosen FLD function) were identified. This in-
formation was then used as a basis to identify the test rounds and test
reports at the function and system test level where the corresponding
software version was tested.

STEP 2.1 Considering the system test level
In order to consider the system level requirements and test cov-
erage information, in a manner that can be effectively mapped to
the function scenarios, the following steps were executed.

STEP 2.1.1 Breaking down each scenario to the corresponding
system views
Each scenario was taken and broken down to the correspond-
ing system views of all the systems that were involved in its
realization. For instance, let us consider function scenario
SCN2 which represents alternative scenario 1 for UC18_1
for liquid engine trucks (refer to Figure 6.9). It has 4 sys-
tems that are involved in its execution, namely, Main ECU
2 (ME2) that handles the main fuel level estimation calcula-
tion, Engine Management system - Diesel engine (EMD) that
sends important and required information needed for the fuel
level estimation calculation, Instrument Cluster (ICL) that
displays the fuel level in the fuel gauge, and Main ECU 1
(ME1) which in this scenario helps bridge messages in the
form of signals across different systems. The scenario and
each of the system views for SCN2 (UC18_1 Alternative
Scenario 1) are depicted in Figure 6.8 and Figure 6.10 re-
spectively.

Chapter 6. An Effective Cross-Functional Verification Strategy 81

Figure 6.10: Set of system views for FLD function SCN2 (UC18_1 Alternative
Scenario 1)

STEP 2.1.2 Mapping system views to system requirements
For each system view generated for the function scenario, the
requirements of the system that pertain to ensuring the de-
sired output is generated for the given input were identified
and mapped to the function scenario. For instance, taking
the case of function scenario SCN2, for each of the 4 sys-
tems the corresponding system level requirements were iden-
tified. Among the three systems ME2, ME1 and ICL, ME2
and ME1 belonged to one organizational department and the
ICL belonged to another organizational department. This
lead to a slight variation in the naming patter used for the
system level requirements for these systems. Yet, the level
of abstraction of the requirements remained consistent which
ensured the system level requirements could be captured ac-
curately for all 3 systems. Coming to the case of the EMD
system, it was identified that the requirements for this sys-
tem were being formulated and was a work in progress. This

Chapter 6. An Effective Cross-Functional Verification Strategy 82

is one of the major gaps identified in successfully implement-
ing the proposed strategy that will be discussed in the later
sections. To handle this missing information, the researcher
captured the requirements of the system in all the appli-
cable scenarios and reviewed and revised the captured re-
quirements with the organizational team handling the EMD
system development and testing. This ensured the require-
ments were stated precisely. A similar means was employed
in handling the missing requirements at system level for the
Engine Management system - Gas engine (EMO) which be-
longed to the same engine management organizational de-
partment. On performing this for each function scenario of
each use case variant, a comprehensive set of system level
requirements pertaining to the FLD function were identified.
This is as presented in Figure 6.11.

Figure 6.11: FLD function scenarios mapped to system level requirements

Chapter 6. An Effective Cross-Functional Verification Strategy 83

STEP 2.1.3 Mapping system requirements to system requirements
test coverage results
On capturing system level requirements across the systems
involved in the execution of the FLD functions scenarios, the
corresponding test results from the relevant test rounds were
captured and mapped accordingly. The test results captured
from the different test rounds at the system level are reported
against the chosen test weeks of the integration test level
(TW1602, TW1610, TW1614) as presented in Figure 6.12.
The overall coverage of a scenario at the system test level for
a test round is calculated as a percentage value obtained from
dividing the number of system level requirements tested by
the total number of system level requirements identified. For
instance, Figure 6.13 presents the system test level coverage
of SCN2 for TW1606.

Figure 6.12: System level requirements coverage across test rounds TW1602,
TW1606 and TW1610

Figure 6.13: System level requirements coverage for FLD function SCN2 for test
round TW1606

Chapter 6. An Effective Cross-Functional Verification Strategy 84

STEP 2.2 Considering the function test level
At the function test level for the FLD function, while there is
a black-box testing of the function scenarios that is performed
by the function owner, there are no test reports generated or
test results stored. Hence, the test results for the considered
test rounds were captured based on interaction with the function
owner regarding when and what was tested during these test
rounds. The consequence of unavailability of test results and test
data from this test level on the proposed strategy and on the
overall testing process is discussed in the later sections.

STEP 2.3 Considering the vehicle integration test level
At the vehicle integration test level, the test results reported
against the previous incomplete scenarios of the function were
captured and mapped against the newly generated complete set
of scenarios for each of the test rounds considered. The results
of this step are presented in Table 6.14.

Figure 6.14: Vehicle integration test level scenario coverage results

STEP 2.4 Presenting the function’s comprehensive test coverage
information
As a result of the above steps, comprehensive test coverage in-
formation for the FLD function across the three test levels was
obtained for each of the three test rounds considered. The re-
sults obtained for test round TW1606 are presented in Figure
6.15. Similar comprehensive function test coverage information
for test rounds TW1602 and TW1610 are presented in Figures
F.1 and F.2 in Appendix F.

The obtained comprehensive function test coverage information for FLD func-
tion across the system, function and vehicle integration test levels for the consid-
ered three test rounds helped identify the following:

Chapter 6. An Effective Cross-Functional Verification Strategy 85

Figure 6.15: Comprehensive FLD function scenario test coverage across the
three test levels for test round TW1606

• From the data presented in Figures 6.15, F.1 and F.2, it is evident that
most of the test effort across the test levels for testing the FLD function is
focused on liquid engine trucks. This exposes the risky test gap in testing the
function adequately across test levels for its implementation in gas engine
variant of the trucks.

• There is redundant testing of the main function scenarios, SCN1 and SCN5,
at the function and vehicle integration test levels. On obtaining comprehen-
sive function test coverage information across test levels, such redundancies
can be avoided by ensuring the function and vehicle integration test levels
cover different scenarios of the function.

• On further studying the data presented in Figure 6.12, it is evident that
most of the test gaps at the system level for testing the FLD lie in ME1,
EMO and GSC systems.

• With the data now present at the vehicle integration test level, any change
can be traced from the system it is pertaining to, to the appropriate function
scenarios that it effects. This reduces the effort in analyzing the change
impact at the vehicle integration level.

Chapter 6. An Effective Cross-Functional Verification Strategy 86

• The strategy presents a clear need to report the test results from each of
the test levels. Any unknown test effort at any test level will be a barrier
in identifying the test gaps and test redundancies, and thereby a barrier
to performing more informed testing at the higher vehicle integration test
level.

Another important result obtained on implementation of the proposed verifi-
cation strategy was the identification of a potential error in the function design
for one of its variant which was unnoticed previously.

Chapter 7

Discussion and Limitations

7.1 Discussion

The research conducted helped identify the current approach to test dis-
tributed automotive embedded software functions as described in literature [1][2]
and as implemented at the case company (refer to Section 4.1), in order to answer
research question RQ1. This helped capture knowledge and gain a comprehensive
understanding of the state-of-the-art approach used to test distributed software
functions across the test levels of the automotive industry V-model. In addition,
the issues with the current test approach implemented at the case company have
been identified to answer research question RQ3. Based on the analysis of the
data collected, it was deduced that the issues exist within three fundamental ar-
eas. These areas are the people, process and technology aspects of the current
test approach that in turn lead to the explicit test issues as presented in Section
5.1. The people issues have been found to be profoundly dealing with lack of ade-
quate knowledge transfer across the different test levels and consequently among
the different departments of the organization that deal with testing activities.
Moreover, it was also found that the current test approach is hindered by a lack
of bigger picture of test effort across the test levels for all involved test engineers.
There was also ambiguity in the test role at the function test level which was
identified. Under technology issues, it was found that the efficiency of the cur-
rent test approach was effected significantly due to the lack of suitable tools to
assist and reduce manual effort in test management, requirements management
and change management. Each of these disciplines are highly intertwined with
the test approach and hence have an impact on its effectiveness and efficiency.
Further, the process issues were found to be incomplete and untestable function
requirements which inefficiently captured function variant information. In ad-
dition, there was a lack of established traceability along the requirements and
across the requirements and test results of the V-model that was identified.

The explicit test issues so caused due to the above mentioned set of people,
process and technology issues include: lack of comprehensive function test cover-
age information across test levels, ambiguous and inaccurate test reports generated

87

Chapter 7. Discussion and Limitations 88

at vehicle integration test level, lack of test report generation at function test level
and lack of appropriate means to identify where or whether redundant testing and
risky test gaps are present. The study of these explicit test issues helped recognize
that there was in fact no comprehensive test coverage information of how much
the distributed software functions are tested across the different test levels at the
case company. This helped answer research question RQ2. Another observation
was that the overall people, process, technology and explicit test issues identified
at the case company were similar to the ones identified in literature presented
in Section 2.3. Of the three set of issues, process issues have been found to be
comparatively most widespread in terms of their existence and knowledge of the
hindrance they are causing to the effectiveness of the current test approach as
presented in Section 4.5.

There after, the general areas of people, process and technology were further
studied in Section 5.2.1 It was then identified based on scientific literature knowl-
edge and analysis of the case study results that, the process issues lie at the core
of the three identified issue categories. Technology is adopted to fit the process
established, and people knowledge and effort is built around the process. Hence,
addressing the process issues was deduced to pave the way to further studying
and addressing the people and technology issues that persist around the estab-
lished effective process. Thus, initially to propose a cross-functional verification
strategy, a study of the alternative process-enhancement approaches and their
comparative analysis based on scientific literature knowledge and industry ex-
pert opinion was conducted. This helped draw conclusions that a semi-formal
use case and scenario-based approach to aligning requirements specification and
testing can be deemed relatively most feasible and effective solution to address
and enhance the process of the current test approach.

Hence, the proposed cross-functional verification strategy presents an ap-
proach of use case and scenario-based semi-formal modelling of requirements
specification and testing at the vehicle integration test level of the automotive
industry V-model. There after, a means to establish adequate traces across the
system, function and vehicle integration test levels is provided. Based on the
results obtained on implementing the verification strategy on a legacy function
at Scania, it was inferred that the proposed strategy proves to be an effective
means of obtaining multi-level comprehensive test coverage information for dis-
tributed software functions in a practical real world setting. This information
was found to assist in identifying test redundancies and test gaps across the test
levels. Therefore, it provides a means to enhance test effectiveness of integration
testing of the distributed software functions based on more informed decisions
driven by the comprehensive test coverage information. This study thus helped
answer the final research question RQ4.

Chapter 7. Discussion and Limitations 89

Moreover, the implementation of the proposed verification strategy helped
identify a potential function design error. This opens up the possibility of more
extensively investigating the value of the proposed strategy for enhancing the
function designs through the proposed means of identification and rectification of
possible design errors across the function variants.

The strategy presents a manner in which the requirements and testing data
across test levels can be comprehensively tied together to aid in effectively testing
the distributed software functions. This consequently led to identifying the two
critical gaps or missing links which have the capability to potentially hamper
the effectiveness of the strategy. These include missing system-level requirements
and missing test reports at function test level. These gaps or missing links should
be filled to ensure the strategy can be realized to its full potential and obtain
maximum value.

While the strategy’s effectiveness is validated based on implementation, its
efficiency will likely reach its highest potential with the incorporation of suitable
tool support and right people knowledge with this strategy as identified based on
the study presented in Section 5.2.1.

During the implementation of the strategy, it was noted that considerable
effort was invested in manually generating the function scenario models. A sim-
ilar or more effort is foreseen for generating the executable test cases from these
function scenarios manually. However, the area of implementation of the strategy
that took up most of the effort was collecting valuable and critical information in
the form of requirements and test results from all concerned test levels to estab-
lish the desired traces across the test levels. This information was spread across
several departments within multiple data sources. Hence, these aspects that ac-
count to maximum effort in terms of time and cost being spent on implementing
the strategy present areas where the efficiency of the strategy can most likely be
further enhanced.

Study of suitable approaches and complementing tools that can be adopted
to enhance the efficiency by reducing the manual effort through semi-automation
or complete automation of the above mentioned areas of implementation presents
a promising platform for future research. There has been research conducted to
study how the processes of generating scenario models from restrictive language
text and generating executable test cases from scenarios can be automated like
in [95][103][108]. Hence, exploring this area more extensively would help identify
suitable means of how the data can be most effectively and efficiently represented,
stored, accesses and maintained across multiple data sources. There after, it can
also help identify potential tools that can assist in considerably reducing the man-
ual effort invested in implementing this aspect of the verification strategy in the

Chapter 7. Discussion and Limitations 90

automotive industry.

The other area of implementation which accounted to maximum manual ef-
fort as mentioned above, is for gathering and establishing the required traces
across requirements and test results. Handling this step, which is predominantly
manual as of today, would require exploring potential Requirements Management
and Test Management tools which support cross-communication between them.
Moreover, it also requires studying the people knowledge that needs to be estab-
lished around using these tools for enhancing the execution of the process that
has been laid down. While, any such tool will still require adequate manual effort,
it will help manage the traces and extract information regarding the distributed
software function test coverage across the test levels more efficiently. Hence, this
area provides a great platform for research into suitable requirements manage-
ment and test management tools, and people aspect of adopting those tools that
can support the complexity that software in automotive industry poses.

In essence, the process issues identified with the current test approach have
been addressed using the proposed verification strategy. The strategy’s feasibility
and effectiveness was then established as result of an initial study in a real world
setting of the automotive industry. The efficiency of this strategy can be addressed
by studying the people knowledge and technology tool support aspects that are
needed to complement the process-based strategy. Thereby, this would provide a
comprehensive people, process and technology-based solution to the test approach
issues identified. The current study therefore sets the process-focused platform for
moving towards a comprehensive solution for the issues with the current approach
to test distributed software functions in the automotive industry.

7.2 Threats to Validity

It is an essential step to determine the threats to validity of a research study
and its results as a means of judging the quality of the study. The criticality
of this step multiplies in studies implementing empirical research methods that
are prone to a wide magnitude of possible threats [120]. The chosen research
method - Case study is one such empirical method. Hence, identifying validity
threats and specifying appropriate mitigation strategies employed is essential to
determine the quality of the research. For empirical quantitative studies such
as the one chosen for this thesis, there are 4 major types of validity threats as
identified in [120]. These include - construct validity, conclusion validity, internal
validity and external validity/generalisability. A description of these major valid-
ity threats and others deemed to be relevant to the current research, along with
mitigation strategies adopted to avoid them to the best of the researcher’s ability
are presented in this section. The mitigation strategies employed are based on

Chapter 7. Discussion and Limitations 91

existing scientific literature [33][34][40][121].

7.2.1 Construct Validity

Construct validity deals with the extent to which the operational measures
studied accurately represent what is being investigated [34]. In the conducted re-
search, there were two possible threats to construct validity. One was a possibility
of designing interview questions that may be misinterpreted by the interviewees
and lead to collecting data irrelevant to what was being studied. This risk was
mitigated in two ways. Firstly, the designed interview questions were reviewed
and revised with the help of the thesis supervisors to ensure their suitability
and validity. There after, the data collected was analyzed simultaneously while
conducting the interviews so as to re-adjust the interview questions if deemed
necessary based on discussion with the supervisors. Moreover, data triangulation
was employed where in the theory generated was confirmed by collecting data
from multiple sources of evidence.

Another critical threat to construct validity was the use of terms that were
considered to be generic but might mean different things in different contexts and
sometimes according to different perspectives. Hence, to mitigate this threat, the
terms that posed this threat were defined when and where necessary in the report
to ensure a common understanding of the terms is maintained as suggested in
[121].

7.2.2 Internal Validity

Internal validity deals with how causal relationships are examined and relevant
conclusions are drawn [34]. In the conducted research, there is a possible risk of
poor data analysis leading to incorrect conclusions since the researcher is novice.
There were multiple counter measures adopted to tackle this risk. Firstly, the
results of data analysis were elaborately discussed with the thesis supervisors as
well as with the senior engineers and other participants of the case study. More-
over, the results of data analysis were backed with adequate literature support
to validate the conclusions drawn. In addition, data collection and data analysis
were conducted simultaneously, which is one of the most important strategies
of ensuring internal validity according to [40]. However, there still is a possible
internal validity threat that exists in this research due to the consideration of
limited test result data (test results of three test rounds considered) for drawing
conclusions from the implementation of the proposed strategy. This threat can be
mitigated by focusing future work on studying the results of implementation of
the verification strategy on more extensive test result data spread across several
test rounds.

Chapter 7. Discussion and Limitations 92

There also exists a possible threat to internal validity due to conducting a
literature review for the comparative analysis performed and reported in Section
5.2.1 and Section 5.3.1 rather than a systematic literature review [122]. This
presents a risk that some relevant scientific literature was not considered for the
study.

7.2.3 External Validity/Generalisability

External validity deals with the extent to which the research findings can
be generalized and are viable and of interest outside the investigated case [34].
Since the research was conducted within a single automotive company, it might
encounter such an external validity threat where the findings cannot be general-
ized to other companies. This risk of generalisability was mitigated to a great
extent by explaining in sufficient detail the context within which the study was
conducted and the characteristics of the case being investigated. In addition,
sufficient literature pertaining to the automotive domain is referred in order to
establish links between the current work and other related work, as a means of
addressing its generalisability.

Another major external validity threat lies in the implementation of the pro-
posed strategy for only one distributed software function. This threat exists in
this research work and can be mitigated by focusing future work on strengthening
the validity of the proposed strategy by extending its implementation to a large
number of more complex distributed functions.

7.2.4 Repeatability

Repeatability deals with whether the study conducted is repeatable, hence
making it reliable [34]. For this research, there was a risk that the case study
conducted will not be adequately documented to make it repeatable. This risk
was mitigated by using the case study protocol to design the research. Moreover,
the actions undertaken throughout the research were discussed with and reviewed
by the thesis supervisors with the help of weekly thesis status meetings. Such an
auditing has been found to help mitigate this risk [33].

7.2.5 Scope

Owning to the complexity of the problem domain that was considered for this
research, there is a risk that the scope of the thesis project may be misinterpreted.
To mitigate this risk, the scope of the project was adjusted with the assistance of
the thesis supervisors according to the needs and possibilities at the case company
and according to the consideration of the contribution of this work to the research
body of knowledge. The decision on whether to and how to reduce the project

Chapter 7. Discussion and Limitations 93

scope was based on a consensus between the researcher, industry supervisor and
university supervisor. The decided scope is specified in Chapter 1 in the report
to avoid misinterpretation.

Chapter 8

Conclusion and Future Work

8.1 Summary and Conclusion

With the advent of software for the realization of several functions of a vehi-
cle like fuel level display and advanced emergency braking, there has been and
continues to be several challenges that the automotive industry faces to which
it was unfamiliar a few decades ago [7][8][23][24][26]. This is discussed based on
relevant scientific literature and presented in Chapter 2 and identified at the case
company and reported in Section 5.1. One such identified facet of the software-
related challenges in the automotive industry is in the area of system software
testing [1][2].

The automotive embedded software functions are increasingly distributed in
nature, implying that the software modules for the realization of the functions
are distributed across several ECU systems of the vehicle. This adds to the com-
plexity of integration testing the distributed software functions at the vehicle
integration test level of the automotive V-model [2].

There exists research that focuses on several aspects of system software test-
ing both in the general context and within the automotive industry as presented
in Chapter 2 and Section 6.1.1. However, there is limited scientific literature
focusing on the challenges in integration testing of the distributed software func-
tions [1][2] and possible effective and feasible strategies to tackle these challenges
within the automotive industry.

Hence, the current thesis research contributes to the area of integration test-
ing of distributed automotive embedded software functions. Initially, the current
approach for testing the distributed software functions, along with the challenges
with the current approach are studied, both in literature and the case company
as presented in Chapter 2, Section 4.1 and Section 5.1. There after, an effective
cross-functional verification strategy is proposed. This strategy provides a means
to solve the process-based challenges of the current test approach and thereby en-
hance the effectiveness of integration testing of the distributed software functions.

94

Chapter 8. Conclusion and Future Work 95

Implementation of the proposed strategy on a legacy automotive distributed
software function, Fuel Level Display, has given promising results. The broad
concept of multi-level reuse of test results across the system, function and ve-
hicle integration test levels of the automotive V-model was found to provide an
effective and feasible means of capturing comprehensive test coverage informa-
tion pertaining to the distributed software functions. Consequently, it has been
identified that there is a critical link between requirements and testing that needs
to be established across all test levels for implementing the multi-level reuse con-
cept. Such ‘traceability’ links provide a means to identify test redundancies and
test gaps across the test levels for testing the distributed software functions. It
hence helps take more data-driven decisions at the vehicle integration test level
for integration testing of the functions.

Moreover, the proposed approach to use case and scenario-based function re-
quirements specification has been found to provide a means to capture test-driven
requirements in the form of function scenarios. This was found to make them suit-
able for establishing the desired traceability between requirements specifications
and testing across the test levels. Identifying the different execution scenarios of
the function also helped suitably capture the variant information pertaining to
the function’s execution. In addition, the implementation of the strategy helped
identify a potential function design error. This opens up the interesting possibility
to more extensively study the effectiveness of the proposed strategy for enhance-
ment of distributed automotive embedded software function design through use
case and scenario-based requirements specification.

8.2 Future Work

The future work for the thesis research includes:

• Strengthening the claim of effectiveness and feasibility of the proposed ver-
ification strategy by implementing it on a wider scale with more number of
complex distributed functions and by capturing more extensive test result
data spread across several test rounds.

• Strengthening the claim of effectiveness and feasibility of the proposed ver-
ification strategy by studying the results of its implementation within the
wider context of several automotive companies.

• Exploring potential approaches, tools and the required people knowledge
surrounding these tools that can possibly help reduce the manual effort and
thereby optimize the cost and effort in the implementation of the proposed
verification strategy.

Chapter 8. Conclusion and Future Work 96

• More extensively studying the value of the proposed verification strategy
for enhancement of the distributed automotive embedded software function
designs through use case and scenario-based requirements specification.

References

[1] A. Kasoju, K. Petersen, and M. V. Mäntylä, “Analyzing an automotive
testing process with evidence-based software engineering,” Information and
Software Technology, vol. 55, no. 7, pp. 1237–1259, 2013.

[2] D. Sundmark, K. Petersen, and S. Larsson, “An exploratory case study of
testing in an automotive electrical system release process,” in 6th IEEE
International Symposium on Industrial Embedded Systems (SIES). IEEE,
2011, pp. 166–175.

[3] A. M. Pérez and S. Kaiser, “Top-down reuse for multi-level testing,” in 17th
IEEE International Conference and Workshops on Engineering of Computer
Based Systems (ECBS), 2010, pp. 150–159.

[4] M. Adenmark, “Scania Test Levels, Scania Internal Document
(REST08012),” 2008.

[5] M. Conrad, “A systematic approach to testing automotive control software,”
Proceedings to International Congress on Transportation Electronics (Con-
vergence ’04), pp. 297–308, 2004.

[6] F. Saglietti, “Testing for dependable embedded software,” in 36th EU-
ROMICRO Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2010, pp. 409–416.

[7] K. Grimm, “Software technology in an automotive company: major chal-
lenges,” in Proceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, 2003, pp. 498–503.

[8] B. Katumba and E. Knauss, “Agile development in automotive software
development: Challenges and opportunities,” in Product-Focused Software
Process Improvement. Springer, 2014, pp. 33–47.

[9] J. S. Her, S. W. Choi, J. S. Bae, S. D. Kim, and D. W. Cheun,
“A component-based process for developing automotive ecu software,” in
Product-Focused Software Process Improvement. Springer, 2007, pp. 358–
373.

97

References 98

[10] F. Franco, M. Mauro, S. Stevan, A. B. Lugli, and W. Torres, “Model-
based functional safety for the embedded software of automobile power
window system,” in 11th IEEE/IAS International Conference on Industry
Applications (INDUSCON), 2014, pp. 1–8.

[11] M. Conrad, “Verification and validation according to ISO 26262: A work-
flow to facilitate the development of high-integrity software,” Proceedings
to 6th European Congress on Embedded Real Time Software and Systems
(ERTS2), 2012.

[12] S. S. Barhate, “Effective test strategy for testing automotive software,”
in International Conference on Industrial Instrumentation and Control
(ICIC). IEEE, 2015, pp. 645–649.

[13] R. Awédikian and B. Yannou, “A practical model-based statistical approach
for generating functional test cases: application in the automotive industry,”
Software Testing, Verification and Reliability, vol. 24, no. 2, pp. 85–123,
2014.

[14] J. McDonald, L. Murray, P. Lindsay, and P. Strooper, “Module testing
embedded software-an industrial pilot project,” in Proceedings to the 7th
IEEE International Conference on Engineering of Complex Computer Sys-
tems(ICECCS). IEEE, 2001, pp. 233–238.

[15] O. Praprotnik, M. Gartner, M. Zauner, and M. Horauer, “A test suite
for system tests of distributed automotive electronics,” in 2nd Inter-
national Conference on Advances in Circuits, Electronics and Micro-
electronics(CENICS). IEEE, 2009, pp. 67–70.

[16] G. Dhadyalla, N. Kumari, and T. Snell, “Combinatorial testing for an au-
tomotive hybrid electric vehicle control system: a case study,” in IEEE 7th
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2014, pp. 51–57.

[17] “IEEE Standard for System and Software Verification and Validation,”
IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004), pp. 1–223, May
2012.

[18] J. S. Collofello, “Introduction to software verification and validation,” Soft-
ware Engineering Institute Curriculum Module (SEICM), Carnegie Mellon
University, Tech. Rep. SEI-CM-13-1.1, 1988.

[19] D. R. Wallace and R. U. Fujii, “Software verification and validation: an
overview,” IEEE Software, vol. 6, no. 3, p. 10, 1989.

References 99

[20] ISO 26262-1:2011 Road vehicles Functional safety - Part 1: Vocabulary,
International Organization for Standardization(ISO), Geneva, Switzerland,
November 2011.

[21] L. Freedman, Strategy: A history. Oxford University Press, 2013.

[22] A. Sherer, J. Rose, and R. Oddone, “Ensuring functional safety compli-
ance for ISO 26262.” Proceedings of the ACM/EDAC/IEEE 52nd Annual
Design Automation Conference(DAC), 2015, p. 98.

[23] M. Weber and J. Weisbrod, “Requirements engineering in automotive
development- Experiences and challenges,” in Proceedings of the IEEE Joint
International Conference on Requirements Engineering, 2002, pp. 331–340.

[24] F. Fabbrini, M. Fusani, G. Lami, and E. Sivera, “Software engineering in
the European automotive industry: Achievements and challenges,” in 32nd
Annual IEEE Computer Society International Conference on Computers,
Software and Applications(COMPSAC), 2008, pp. 1039–1044.

[25] M. Broy, “Automotive software and systems engineering,” in Proceedings of
the 3rd ACM and IEEE International Conference on Formal Methods and
Models for Co-Design(MEMOCODE), 2005, pp. 143–149.

[26] M. Broy, “Challenges in automotive software engineering,” in Proceedings of
the 28th International Conference on Software Engineering. ACM, 2006,
pp. 33–42.

[27] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering au-
tomotive software,” Proceedings of IEEE, vol. 95, no. 2, pp. 356–373, 2007.

[28] G. Hurlburt and J. Voas, “Software is driving software engineering?” IEEE
Software, vol. 33, no. 1, pp. 101–104, Jan 2016.

[29] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B. Penzen-
stadler, K. Pohl, and T. Weyer, “Guiding requirements engineering for
software-intensive embedded systems in the automotive industry,” Com-
puter Science- Research and Development, vol. 29, no. 1, pp. 21–43, 2014.

[30] J.-L. Boulanger and V. Dao, “Requirements engineering in a model-based
methodology for embedded automotive software,” in IEEE International
Conference on Research, Innovation and Vision for the Future in Comput-
ing Communication Technologies(RIVF), 2008, pp. 263–268.

[31] A. Puschnig and R. T. Kolagari, “Requirements engineering in the devel-
opment of innovative automotive embedded software systems,” in Proceed-
ings of the 12th IEEE International Requirements Engineering Conference.
IEEE, 2004, pp. 328–333.

References 100

[32] E. Bringmann and A. Kramer, “Model-based testing of automotive sys-
tems,” in 1st IEEE International Conference on Software Testing, Verifica-
tion, and Validation, 2008, pp. 485–493.

[33] R. K. Yin, Case study research: Design and methods. Sage Publications,
2013.

[34] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2008.

[35] P. Rossi, J. Wright, and A. Anderson, Handbook of Survey Research, ser.
Quantitative Studies in Social Relations. Elsevier Science, 2013.

[36] C. Robson and K. McCartan, Real world research. Wiley, 2002.

[37] J. Rowley and F. Slack, “Conducting a literature review,” Management
Research News, vol. 27, no. 6, pp. 31–39, 2004.

[38] (Accessed: January 24, 2016) Scania. [Online]. Available: http:
//www.scania.se/

[39] M. N. Marshall, “Sampling for qualitative research,” Family practice, vol. 13,
no. 6, pp. 522–526, 1996.

[40] J. M. Morse, M. Barrett, M. Mayan, K. Olson, and J. Spiers, “Verification
strategies for establishing reliability and validity in qualitative research,”
International Journal of Qualitative Methods, vol. 1, no. 2, pp. 13–22, 2002.

[41] J. Rowley, “Conducting research interviews,” Management Research Review,
vol. 35, no. 3/4, pp. 260–271, 2012.

[42] D. W. Turner III, “Qualitative interview design: A practical guide for novice
investigators,” The qualitative report, vol. 15, no. 3, p. 754, 2010.

[43] C. B. Seaman, “Qualitative methods in empirical studies of software engi-
neering,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.
557–572, 1999.

[44] S. Looso, R. Borner, and M. Goeken, “Using grounded theory for method
engineering,” in 5th International Conference on Research Challenges in
Information Science (RCIS), 2011, pp. 1–9.

[45] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study
the experience of software development,” Empirical Software Engineering,
vol. 16, no. 4, pp. 487–513, 2011.

http://www.scania.se/
http://www.scania.se/

References 101

[46] G. Coleman and R. O’Connor, “Using grounded theory to understand soft-
ware process improvement: A study of Irish software product companies,”
Information and Software Technology, vol. 49, no. 6, pp. 654–667, 2007.

[47] J. Lawrence and U. Tar, “The use of grounded theory technique as a practi-
cal tool for qualitative data collection and analysis,” The Electronic Journal
of Business Research Methods, vol. 11, no. 1, pp. 29–40, 2013.

[48] O. Badreddin, “Thematic review and analysis of grounded theory applica-
tion in software engineering,” Advances in Software Engineering, vol. 2013,
p. 4, 2013.

[49] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1, pp.
3–21, 1990.

[50] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The discovery of grounded
theory: Strategies for qualitative research.” Nursing Research, vol. 17, no. 4,
p. 364, 1968.

[51] A. Cooney, “Choosing between Glaser and Strauss: An example,” Nurse
researcher, vol. 17, no. 4, pp. 18–28, 2010.

[52] A. Strauss and J. Corbin, Basics of qualitative research: Grounded theory
procedures and techniques. Sage Publications, 1990.

[53] S. Sarker, F. Lau, and S. Sahay, “Building an inductive theory of collabo-
ration in virtual teams: An adapted grounded theory approach,” in Pro-
ceedings of the 33rd Annual Hawaii International Conference on System
Sciences. IEEE, 2000, pp. 1–10.

[54] J. W. Drisko, “Using qualitative data analysis software,” Computers in Hu-
man Services, vol. 15, no. 1, pp. 1–19, 1998.

[55] A. Atherton and P. Elsmore, “Structuring qualitative enquiry in manage-
ment and organization research: A dialogue on the merits of using software
for qualitative data analysis,” Qualitative Research in Organizations and
Management: An International Journal, vol. 2, no. 1, pp. 62–77, 2007.

[56] C. E. Wilson, “Triangulation: the explicit use of multiple methods, mea-
sures, and approaches for determining core issues in product development,”
Interactions, vol. 13, no. 6, pp. 46–47, 2006.

[57] “OMG Unified Modeling Language Specification - Version 2.5,” OMG,
March, 2015. [Online]. Available: http://www.omg.org/spec/UML/2.5/

http://www.omg.org/spec/UML/2.5/

References 102

[58] “OMG Systems Modelling Language Specification version 1.4,” OMG,
June, 2015. [Online]. Available: http://www.omg.org/spec/SysML/1.4/

[59] S. S. Somé, “Supporting use case based requirements engineering,” Infor-
mation and Software Technology, vol. 48, no. 1, pp. 43–58, 2006.

[60] L. Naslavsky, T. A. Alspaugh, D. J. Richardson, and H. Ziv, “Using scenar-
ios to support traceability,” in Proceedings of the 3rd International Work-
shop on Traceability in emerging forms of Software Engineering. ACM,
2005, pp. 25–30.

[61] Y. Zhang, J. Zhang, and J. Chen, “Critical success factors in IT service man-
agement implementation: People, process, and technology perspectives,” in
International Conference on Service Sciences (ICSS). IEEE, 2013, pp.
64–68.

[62] A. Khodabandeh and P. Palazzi, “Software development: People, process,
technology,” CERN ECP Report 95/5 at CERN School of Computing, So-
pron, Hungary, Tech. Rep., 1994.

[63] K. Radeka, “The toyota product development system: integrating people,
process and technology by james m. morgan and jeffrey k. liker,” Journal
of Product Innovation Management, vol. 24, no. 3, pp. 276–278, 2007.

[64] R. Biloslavo, C. Bagnoli, and R. Rusjan Figelj, “Managing dualities for ef-
ficiency and effectiveness of organisations,” Industrial Management & Data
Systems, vol. 113, no. 3, pp. 423–442, 2013.

[65] G. D. Bhatt, “Knowledge management in organizations: examining the in-
teraction between technologies, techniques, and people,” Journal of knowl-
edge management, vol. 5, no. 1, pp. 68–75, 2001.

[66] M. Korsaa, J. Johansen, T. Schweigert, D. Vohwinkel, R. Messnarz,
R. Nevalainen, and M. Biro, “The people aspects in modern process im-
provement management approaches,” Journal of Software: Evolution and
Process, vol. 25, no. 4, pp. 381–391, 2013.

[67] M. D. Konrad, “Attention to process and people are key to technology
adoption,” in Proceedings of the 20th International Computer Software and
Applications Conference(COMPSAC). IEEE, 1996, p. 436.

[68] “Systems and software engineering – Life cycle processes –Requirements
engineering,” ISO/IEC/IEEE 29148:2011(E), pp. 1–94, Dec 2011.

[69] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. Springer
Science & Business Media, 2010.

http://www.omg.org/spec/SysML/1.4/

References 103

[70] P. Laplante, Requirements Engineering for Software and Systems, 2nd ed.,
ser. Applied Software Engineering Series. CRC Press, 2013.

[71] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural language
software requirements: A comprehensive survey,” ACM SIGSOFT Software
Engineering Notes, vol. 40, no. 5, pp. 1–7, 2015.

[72] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market research for require-
ments analysis using linguistic tools,” Requirements Engineering, vol. 9,
no. 1, pp. 40–56, 2004.

[73] A. Ferrari, F. dell’Orletta, G. O. Spagnolo, and S. Gnesi, “Measuring and
improving the completeness of natural language requirements,” in Require-
ments Engineering: Foundation for Software Quality. Springer, 2014, pp.
23–38.

[74] M. Von der Beeck, T. Margaria, and B. Steffen, “A formal requirements engi-
neering method for specification, synthesis, and verification,” in Proceedings
of the 8th Conference on Software Engineering Environments. IEEE, 1997,
pp. 131–144.

[75] T. Clancy, “The standish group report chaos, retrieved Apr 10, 2016 from
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf,” Chaos
Report, Tech. Rep., 1995.

[76] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalmsteiner,
B. Regnell, P. Runeson, T. Gorschek, and R. Feldt, “Challenges in align-
ing requirements engineering and verification in a large-scale industrial
context,” in Requirements Engineering: Foundation for Software Quality.
Springer, 2010, pp. 128–142.

[77] C. W. Krueger, “Industry trends in systems and software product line engi-
neering,” in 15th International Software Product Line Conference (SPLC).
IEEE, 2011, pp. 360–360.

[78] L. Brownsword and P. Clements, “A case study in successful product line
development,” Software Engineering Institute(SEI), Carnegie Mellon Uni-
versity, Tech. Rep. CMU/SEI-96-TR-016, 1996.

[79] J. D. McGregor, D. Muthig, K. Yoshimura, and P. Jensen, “Guest editors’
introduction: Successful software product line practices,” IEEE Software,
vol. 27, no. 3, pp. 16–21, 2010.

[80] N. Itzik and I. Reinhartz-Berger, “Generating feature models from require-
ments: Structural vs. functional perspectives,” in Proceedings of the 18th
International Software Product Line Conference. ACM, 2014, pp. 44–51.

References 104

[81] S. Bühne, K. Lauenroth, and K. Pohl, “Modelling requirements variability
across product lines,” in Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering, 2005, pp. 41–50.

[82] S. Kato and N. Yamaguchi, “Variation management for software product
lines with cumulative coverage of feature interactions,” in Proceedings of
the 15th International Software Product Line Conference (SPLC). IEEE,
2011, pp. 140–149.

[83] S. Thiel and A. Hein, “Modeling and using product line variability in auto-
motive systems,” IEEE Software, vol. 19, no. 4, p. 66, 2002.

[84] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and
P. Heymans, “Feature model extraction from large collections of informal
product descriptions,” in Proceedings of the 9th Joint Meeting on Founda-
tions of Software Engineering. ACM, 2013, pp. 290–300.

[85] N. Niu and S. Easterbrook, “Extracting and modeling product line func-
tional requirements,” in Proceedings of the 16th IEEE International Re-
quirements Engineering(RE) Conference, 2008, pp. 155–164.

[86] N. Weston, R. Chitchyan, and A. Rashid, “A framework for constructing se-
mantically composable feature models from natural language requirements,”
in Proceedings of the 13th International Software Product Line Confer-
ence(SPLC). Carnegie Mellon University, 2009, pp. 211–220.

[87] C. Tischer, A. Müller, M. Ketterer, and L. Geyer, “Why does it take that
long? establishing product lines in the automotive domain,” in Proceedings
of the 11th International Software Product Line Conference(SPLC). IEEE,
2007, pp. 269–274.

[88] S. Baumgart, X. Zhang, J. Froberg, and S. Punnekkat, “Variability manage-
ment in product lines of safety critical embedded systems,” in Proceedings of
the International Conference on Embedded Systems (ICES). IEEE, 2014,
pp. 98–103.

[89] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany, “Applying product line
sse case modeling in an industrial automotive embedded system: Lessons
learned and a refined approach,” in Proceedings of the ACM/IEEE 18th In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), 2015, pp. 338–347.

[90] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi, “Formal description
of variability in product families,” in Proceedings of the 15th International
Software Product Line Conference(SPLC). IEEE, 2011, pp. 130–139.

References 105

[91] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in Proceedings of
the 4th IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2011, pp. 476–485.

[92] S. M. Ooi, R. Lim, and C. C. Lim, “An integrated system for end-to-end
traceability and requirements test coverage,” in Proceedings of the 5th IEEE
International Conference on Software Engineering and Service Science (IC-
SESS), 2014, pp. 45–48.

[93] P. Rempel, P. Mader, and T. Kuschke, “An empirical study on project-
specific traceability strategies,” in Proceedings of the 21st IEEE Interna-
tional Requirements Engineering (RE) Conference, 2013, pp. 195–204.

[94] J. Kukkanen, K. Vakevainen, M. Kauppinen, and E. Uusitalo, “Applying
a systematic approach to link requirements and testing: a case study,” in
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2009, pp. 482–488.

[95] J. Thangarajah, G. Jayatilleke, and L. Padgham, “Scenarios for system
requirements traceability and testing,” in Proceedings of the 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume
1. International Foundation for Autonomous Agents and Multiagent Sys-
tems(IFAAMAS), 2011, pp. 285–292.

[96] L. Bass, J. K. Bergey, P. C. Clements, P. F. Merson, I. Ozkaya, and R. Sang-
wan, “A comparison of requirements specification methods from a software
architecture perspective,” Software Engineering Institute(SEI), Carnegie
Mellon University, Tech. Rep., 2006.

[97] C. Denger, B. Paech, and B. Freimut, “Achieving high quality of use-case-
based requirements,” Informatik-Forschung und Entwicklung, vol. 20, no.
1-2, pp. 11–23, 2005.

[98] A. G. Sutcliffe, N. A. Maiden, S. Minocha, and D. Manuel, “Supporting
scenario-based requirements engineering,” IEEE Transactions on Software
Engineering, vol. 24, no. 12, pp. 1072–1088, 1998.

[99] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future
directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp. 626–643,
1996.

[100] J. P. Gibson, “Formal requirements models: simulation, validation and veri-
fication,” Department of Computer Science, National University of Ireland,
Maynooth, Tech. Rep. NUIM-CS-2001-TR-02, 2001.

References 106

[101] C. Heitmeyer, J. Kirby, and B. Labaw, “Tools for formal specification, veri-
fication, and validation of requirements,” in Proceedings of the 12th Annual
Conference on Computer Assurance (COMPASS). IEEE, 1997, pp. 35–47.

[102] A. Hall, “Seven myths of formal methods,” IEEE Software, vol. 7, no. 5, pp.
11–19, 1990.

[103] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel, “Automatic test
generation: A use case driven approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 140–155, 2006.

[104] K. Han, J. Youn, and J. Cho, “A functional requirements traceability man-
agement methodology for model-based testing framework of automotive em-
bedded system,” in Proceedings of the 3rd International Conference on Ad-
vances in Vehicular Systems, Technologies and Applications (IARIA), 2014,
pp. 46–51.

[105] D. Arnold, J.-P. Corriveau, and W. Shi, “Modeling and validating require-
ments using executable cotnracts and scenarios,” in Proceedings of the 8th
ACIS International Conference on Software Engineering Research, Man-
agement and Applications (SERA). IEEE, 2010, pp. 311–320.

[106] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner, “One evaluation of model-based test-
ing and its automation,” in Proceedings of the 27th International Conference
on Software Engineering. ACM, 2005, pp. 392–401.

[107] R. Tommy, N. Prasannakumaran, K. Sumithra, and S. Kesav, “Test sce-
nario modeling: Modeling test scenarios diagrammatically using specifica-
tion based testing techniques,” in Proceedings of the Third International
Conference on Computer, Communication, Control and Information Tech-
nology (C3IT). IEEE, 2015, pp. 1–7.

[108] W.-T. Tsai, X. Bai, R. Paul, and L. Yu, “Scenario-based functional regres-
sion testing,” in Proceedings of the 25th Annual International Computer
Software and Applications Conference(COMPSAC). IEEE, 2001, pp. 496–
501.

[109] S. Siegl, K.-S. Hielscher, R. German, and C. Berger, “Formal specification
and systematic model-driven testing of embedded automotive systems,” in
Proceedings of the Europe Conference & Exhibition on Design, Automation
& Test(DATE). IEEE, 2011, pp. 1–6.

[110] M. Broy, S. Chakraborty, S. Ramesh, M. Satpathy, S. Resmerita, and
W. Pree, “Cross-layer analysis, testing and verification of automotive con-
trol software,” in Proceedings of the International Conference on Embedded
Software (EMSOFT). IEEE, 2011, pp. 263–272.

References 107

[111] R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Petters-
son, “A model-based testing framework for automotive embedded systems,”
in Proceedings of the 40th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (SEAA). IEEE, 2014, pp. 38–47.

[112] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf, “Linking functional
requirements and software verification,” in Proceedings of the 17th IEEE
International Requirements Engineering(RE) Conference, 2009, pp. 295–
302.

[113] M. Conrad, I. Fey, and S. Sadeghipour, “Systematic model-based testing of
embedded automotive software,” Electronic Notes in Theoretical Computer
Science, vol. 111, pp. 13–26, 2005.

[114] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach, M. Conrad, and I. Fey,
“Model-based testing of embedded automotive software using Mtest,” in
SAE World Congress. Citeseer, 2004, pp. 8–11.

[115] H. Shokry and M. Hinchey, “Model-based verification of embedded soft-
ware.” IEEE Computer, vol. 42, no. 4, pp. 53–59, 2009.

[116] T. Bauer, F. Bohr, D. Landmann, T. Beletski, R. Eschbach, and J. Poore,
“From requirements to statistical testing of embedded systems,” in Pro-
ceedings of the 4th International Workshop on Software Engineering for
Automotive Systems. IEEE Computer Society, 2007, p. 3.

[117] E. Bringmann and A. Krämer, “Systematic testing of the continuous behav-
ior of automotive systems,” in Proceedings of the International Workshop
on Software engineering for Automotive Systems. ACM, 2006, pp. 13–20.

[118] A. M. Perez and S. Kaiser, “Integrating test levels for embedded systems,” in
Proceedings of the Testing: Academic and Industrial Conference- Practice
and Research Techniques(TAIC PART). IEEE, Sept 2009, pp. 184–193.

[119] C. Pfaller, A. Fleischmann, J. Hartmann, M. Rappl, S. Rittmann, and
D. Wild, “On the integration of design and test: a model-based approach
for embedded systems,” in Proceedings of the International Workshop on
Automation of Software Test. ACM, 2006, pp. 15–21.

[120] R. Feldt and A. Magazinius, “Validity threats in empirical software engineer-
ing research-an initial survey.” in Proceedings of the Conference on Software
Engineering and Knowledge Engineering(SEKE), 2010, pp. 374–379.

[121] R. Valerdi and H. L. Davidz, “Empirical research in systems engineer-
ing: challenges and opportunities of a new frontier,” Systems Engineering,
vol. 12, no. 2, pp. 169–181, 2009.

References 108

[122] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK,
Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

Appendices

109

Appendix A

Interview Questionnaires

Figure A.1: Interview questionnaire for system test engineers

110

Appendix A. Interview Questionnaires 111

Figure A.2: Interview questionnaire for function owners

Appendix A. Interview Questionnaires 112

Figure A.3: Interview questionnaire for integration test engineers

Appendix B

Interview Invitation

Figure B.1: Snapshot of an interview invitation sent via Microsoft Outlook

113

Appendix C

Frequency of Occurrence of Open Code
Categories

Open Code Category

No.of
interviews
where issue

was identified
(x)

Total
no.of in-
terviews

(y)

Frequency
of occur-

rence

x/y*100
)

Traceability Issues 13 13 100
Requirements Specification Issues 12 13 92.31
Explicit Test Issues 10 13 76.92
Variant Handling Issues 10 13 76.92
Tool Support Issues 9 13 69.23
Knowledge Transfer Issues 7 13 53.85
People Knowledge Issues 5 13 38.46
Multiple Data Sources Issues 4 13 30.77

Table C.1: Frequency of occurrence of open code categories in the interviews
conducted at the case company

114

Appendix D

UCDs for UC18_1 and UC18_2

Figure D.1: UCD for UC18_2

115

Appendix D. UCDs for UC18_1 and UC18_2 116

Figure D.2: UCD for UC18_1

Appendix E

UCTs for UC18_1 and UC18_2

Figure E.1: UCT for UC18_1

117

Appendix E. UCTs for UC18_1 and UC18_2 118

Figure E.2: UCT for UC18_2

Appendix F

Comprehensive Test Coverage Information

Figure F.1: Comprehensive FLD function scenario test coverage across the three
test levels for test round TW1602

119

Appendix F. Comprehensive Test Coverage Information 120

Figure F.2: Comprehensive FLD function scenario test coverage across the three
test levels for test round TW1610

