
transactions of the
american mathematical society
Volume 268, Number 1, November 1981

AN EFFECTIVE VERSION OF DILWORTH'S THEOREM
BY

HENRY A. KIERSTEAD

Abstract. We prove that if (P, <p) is a recursive partial order with finite width w,
then P can be covered by (5W — l)/4 recursive chains. For each w we show that
there is a recursive partial ordering of width w that cannot be covered by 4(w — 1)
recursive chains.

0. Introduction. Loosely speaking, a subset A of the natural numbers is recursive
iff there exists an algorithm (i.e., a finite computer program) which upon input of a
natural number n outputs "1" if n El A and "0" otherwise. Similarly a partial
ordering (A, <) is recursive iff there is an algorithm which upon input of an
ordered pair of natural numbers (a, b) outputs "1" if a < b and "0" otherwise. For
a more careful definition of recursive relations see [R].

One of the attractions of finite combinatorics over infinite combinatorics is its
explicit constructions. One never has to consider whether a finite object "really"
exists. This paper is part of a program to enlarge the domain of finite combinator-
ics to certain infinite structures while preserving the explicit constructions of the
smaller domain. We shall consider a recursive combinatorics whose domain is the
recursive structures. Since finite structures are trivially recursive this domain does
indeed extend that of finite combinatorics. Moreover each structure in this domain
is explicitly exhibited by some finite computer program. Questions from the graph
theory of this combinatorics have been studied by Bean [B], [Bl], Kierstead [K],
and Schmerl [S], [Sl]. Generally their results relate the chromatic number of a
recursive graph with certain properties to its recursive chromatic number.

The following example illustrates these ideas. Dilworth's theorem [D] asserts that
any partial ordering of finite width n can be covered by n chains. If the partial
ordering is finite, then one can actually exhibit these chains (by trial and error, if
by no other method). The following easy argument demonstrates how Dilworth's
theorem for countably infinite partial orderings follows from Dilworth's theorem
for finite partial orderings.

Let P = {/>,: /' G TV). We show by induction that for all i 6 N there exist chains
Cq, .. *, Cj,_x such that:

(i) if/ < / and A: < n then C{ c C'k;
(ii)/>,. e c0+1 u ...uCJ;
(iii) if Q is a finite subset of P then C'0, . . . , C'n_, can be extended to chains that

cover Q.
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64 H. A. KIERSTEAD

For j < n let Cf = 0. Then (i) and (ii) are trivial and (iii) holds by Dilworth's
theorem. Now suppose that we have CJ0, . . . , CJn_x for ally < i. We show that there
is an m < n such that (i)-(iii) hold for Cq+x, . . . , C'„t.\ where

c, + i = ( C'k if k^m,
k      " I QU {/>,}     if*-m.

Again (i) and (ii) are trivial. If (iii) did not hold for any m < n, then for each m <n
we could find a finite Qm to witness this. Then Q = Q0 u . . . U (2„_, would
witness that (iii) did not hold for C0, . . . , C'„_x. This is a contradiction. Clearly
U,-ejv Co> • ■ • > UeAf Q-i are chains that cover P.

While the above argument shows that there is a cover of P by n chains it does
not show how to effectively or computationally produce that cover. The problem is
that at each stage i, in order to decide which chain to put Pt into, we must perform
the impossible task of considering each of the infinitely many finite subsets of P.

Schmerl showed that some noneffective steps would be required in any other
proof by constructing a recursive width 2 partial ordering that cannot even be
covered by 3 recursive chains. He asked whether there existed a finite bound, say c,
on the number of recursive chains required to cover any recursive width n partial
ordering. In § 1 we show that for each finite n there is indeed a finite c and also that
D(n) < (5" - l)/4, where D(n) is the least such c for n. Our proof also provides a
single effective procedure which, when presented with any recursive partial order-
ing of finite width, say n, will cover it with (5" — l)/4 recursive chains. In §2 we
improve Schmerl's result by constructing a recursive width 2 partial ordering which
cannot be covered by 4 recursive chains. Thus §§1 and 2 show that 5 < D(2) < 6.
In §3 we prove a uniformity result concerning D. Finally in §4 we pose some open
questions.

Schmerl has shown that if (P, <p) is a recursive partial ordering of width n
which is recursively locally finite then P can be covered by n recursive chains. A
result of the author in [K] identifies a class of recursive partial orderings of width n
that can be covered by n + 1 recursive chains.

Finally we point out that our approach to recursive combinatorics differs from
that of Jockush [J] and the approach of Metakides and Nerode [MN] to recursive
algebra. When studying a noneffective result from infinite combinatorics Jockush
analyzed its degree of noneffectiveness (unsolvability). Our approach is to modify
the result so as to make it effective. Metakides and Nerode were interested in
isolating those algebraic constructions that are effective. Thus their recursive
algebra is a restriction of algebra in general. Our investigation of recursive
combinatorics should be viewed as an extension of finite combinatorics to certain
infinite structures. It is not a restriction of infinite combinatorics since it deals with
essentially different questions.

Notation. Let (P, <p) be a partial ordering. A subset of P consisting of
pairwise comparable (incomparable) elements is called a chain (antichain). The
width of (P, <p) is the least upper bound of the lengths of its antichains. If
a, b £ P and a is incomparable to b then we write a\b. If a is comparable to b we
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DILWORTH'S THEOREM 65

write a < > b. In this paper we shall be dealing with several different partial
orderings. In §1 we shall define a new partial ordering (A, <*). <* will, of
course, refer to this ordering. <^ will refer to the usual order on the natural
numbers. | and < > always refer to (P, <p). Words associated with partial
orderings such as chain, successor, between, and maximum refer to <p unless
appropriately modified. For example *-chain refers to < * and /V-maximum refers
to <N. The usual distinctions are made between <p, < *, <N and <p, < *, <N.

(P, <p) is recursive iff P is a recursive subset of TV, the set of natural numbers,
and <p is a recursive subset of N X N. B n {i G N: i <N n) will be denoted by
B". Several times in this paper we will construct a set B by induction. Thus at a
certain point in the construction we shall know which of the first n natural
numbers are in B. At this point we could compute B" even though B has not yet
been defined. We shall slightly abuse notation by referring to B" before B is
completely defined. If (C, R) is a binary relation then (C, R)n is (C, R \C X C).
<f>, is the j'th partial recursive function of the appropriate number of variables as in
[R]. $k)(x) is <Pi(x) if the /th Turing machine converges after at most k steps in the
computation and is undefined otherwise. The reader should be careful not to
confuse <£/ and <f>fs\

The following definition is needed to state the uniformity results of §§1 and 3. A
total recursive function /: TV X N —»N is a decision procedure for a partial
ordering (P, <p) iff the following conditions hold.

(i)f(x, x) = 1 iff x G P.
(ii) If x,y G P, then/(x,.y) = 1 iff x <py.

A partial recursive function f.NXN—>Nisa decision procedure for (P, <p) on
A iff P c A, f is total on A X A and (i) and (ii) hold whenever x, y G A.

Finally we state two useful facts about partial orderings that will be used later.
Let (P, <p) be a partial ordering and suppose that/7, q, r,p', q' G P.

0.1. Fact. If p <p q,p\p', q\q', and q' <pp', then/%' and q\p'.
0.2. Fact. If p <p q <p r,p\p' and r\p' then q\p'.

1. An upper bound for D. For the purpose of exposition we present three
increasingly stronger theorems in this section. The last is the main result. The first
is a very special case of little interest except that it motivates the method of proof
used in the much more complex general case. The second is the main result
restricted to the width 2 case. It is also a special case of the inductive step used to
prove the most general result.

1.1. Theorem. Let (P, <p) be a width 2 recursive partial ordering. If P contains a
recursive chain B such that for every p G P — B there exists a unique p' G B such
that p\p', then P can be covered by 4 recursive chains.

Proof. It suffices to show that A = P — B can be covered by 3 recursive chains.
For this purpose it is useful to add more structure to A.

1.2. Definition. For/>, q G A,p < * q iff at least one of the following holds:
(D/x'f;
(2) there exist/?', q' G B such that// <p q',p'\p, and q'\q.
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66 H. A. KIERSTEAD

By the conditions on B and the width of (P, <p) it is easy to see that (A, < *) is
a recursive linear ordering.

1.3. Definition. For p, q G A, p — q iff there exists p' G B such that p\p' and
P'\q.

Clearly (A, —) is a recursive equivalence relation. The following lemma provides
the necessary combinatorial information for developing an algorithm to cover A by
recursive chains.

1.4. Lemma, (i) Each — class is convex relative to (A, < *), i.e., if p ~ r and
p < * q < * r then p — q.

(ii) Each ~ class is a chain.
(iii) If p < * q < * r and p -^ q <** r then p <p r.

Proof, (i) This is just a restatement of Fact 0.2.
(ii) This follows from the width of (P, <p).
(iii) Let q' G B be such that q\q'. Using the definitions of (A, < *) and (A, —) it

follows that/? <p q' <p r.    □
To finish the proof of Theorem 1.1 we provide an algorithm for covering A by 3

recursive chains.
Let q~ = *-max{/? G A": p < * q) and let q+ = *-min{p G Aq; q < *p). At

stage n + 1 if n G A we shall decide which of 3 sets E0, Ex, E2 to put n into. We
shall do this in such a way that we preserve the following conditions:

(3) if p, r G A n+' andp ~ r then/? and r both belong to the same E,;
(4) if /?, r G E"+x andp -*< r then there exists q G An+X such that q is *-between

/? and r andp <y- q •*- r.
So if there exists/? G A "+x such that/? ~ n and/? G Et, put n into Et. Otherwise

put n into E,, where y is the least k such that q~, q+ G Ek. This is possible because
we have 3 E, to choose from. We must check that (3) and (4) are preserved and that
each Ef is a chain. The first case of the algorithm assures that (3) will continue to
hold. Consider (4). Case 1: n ~/? andp G E". Then n G E,. Suppose r G E" and
n n^ r. Then r ^ p and by the inductive hypothesis there exists s such that j is
"■-between /? and r and /? -^ s ^ r. By the convexity of ~, s is "-between n and r.
Case 2: n <*-/? for any /? G ^4". Say n G £^. Suppose r G £". Without loss of
generality assume that n < * r. Then n < * n+ < * r and n ^ n + . Since the
algorithm put n in £,, n+ G £,• Thus by the inductive hypothesis n+ ** r. Finally
by (4) and Lemma 1.4(ii), (iii) each E" is a chain. Thus each £", is a chain,    fj

We shall use the same basic approach to prove the next two theorems. However,
as the setting becomes progressively more general, the definitions of (A, < *) and
(A, —) will become progressively more complicated. Also the basic combinatorial
lemma will become weaker and more difficult to prove.

1.5. Theorem. D(2) < 6.

Proof. Let (P, <p) be a recursive partial ordering of width 2. We begin by
constructing a recursive chain B which resembles the B of Theorem 1.1 as nearly as
possible. Let B = {p G P: for all q G Bp, q <  >/?}. We shall cover A = P - B
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DILWORTH'S THEOREM 67

by 5 recursive chains. Notice that each element of A is incomparable to at least
one, but possibly more than one, element of B. This necessitates changes in the
definitions of (A, < *) and (A, ~). Define q~ and q+ as before, but with respect
to the new A and B.

1.6. Definition. For/?, q G A,p < * q (q < *p) iff at least one of the following
holds:

(l)p<Pq(q<Pp);
(2) for all/?', q' G B, if p'\p and q'\q then/?' <^ q (q' <P/?').
Notice that because the width of (P, <p) = 2, if clause (1) does not apply top

and q and there exist /?', q' G B such that p'\p, q'\q, and /?' <p q', then for all
p, q G B, p\p and q\q implies that p <p q. With this remark we leave it to the
reader to check that (A, < *) is a recursive linear ordering.

The following facts are easily checked.
0.1*. Fact. If /?, q G A, /?', q' G 5, /?|/?', ^|^', p < * q, and q' <p/?', then /?|^'

and <?|/?'.
0.2*. Fact. If/?, q,rGA,s'G B,p\s', r\s', andp < * q < * r, then q\s'.
1.7. Definition. We define (A, ~) by specifying (A, ~)q for each q G N.

Suppose inductively that (A, ~)* has been defined and q G A. Forp G Aq+X, let
/? — # and # — /? iff at least one of the following holds:

(3)p - ?;
(4)/? ~ <?" and for some q' G Bq, q~\q' and q'\q;
(5) not (4),/? ~ <7 + , and for some q' G Bq, q\q' and q'\q+.
We would like to have made p ~ q iff there existed q' G Bq such that/?|<7' and

^r'l^r. Using Fact 0.2, it is easily seen that a new equivalence class is created at stage
q + 1 iff there do not exist/? G Aq and q' G Bq such that/?|^' and <7'|<7. However,
it is possible that at stage q + 1 we would like to make q equivalent to two
inequivalent elements of Aq+X. In this case the definition is biased towards the
smaller of the two elements. Also, if we make q —/? and/? —rwe are forced to
make q ~ r even if q and r do not share an incomparable element in Bq. With
these remarks it is easy to check that (A, ~) is a recursive equivalence relation.

The following proposition is needed for the basic combinatorial lemma.

1.8. Proposition. If p, q G A"+x,p— q, and q is the *-immediate successor ofp
in An+X, i.e., q = *-min{r G An+ ':/?<* r), then there existsp' G Bn+X such that
p\p' andp'\q.

Proof. We argue by induction on n. By the inductive hypothesis we may assume
that/? = n or q = n. The argument is similar in both cases so assume that/? = n. If
p ~ q by (5) we are done since/?+ = q. Suppose/? ~ q by (4). Then q ~p~. Also
q is the *-immediate successor of/?- in A". Thus by the inductive hypothesis there
exists/?' G B" g Bn+X such thatp~\p' andp'\q. Thus by Fact 0.2*,p\p'.   \J

1.9. Lemma (basic combinatorial lemma), (i) Each ~ class is convex.
(ii) Each ~ class is a chain.
(iii) If p, q, r, s G A, p <* q <* r <* s and p -* q ^ r ^ s then p <p s.
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Proof, (i) Suppose /? < * q < * r and p ~ r. We shall show by induction on
m = N-max{p, q, r) that q ~ r. Case 1: m = p. Then p~<*p<*p+<*q
< * r and p ~ ~ r or p + ~ r. In either case the inductive hypothesis shows that
q~ r. Case 2: m = q. p < * q~ < * q < * q+ < * r. By the inductive hypothesis
q ~ —r ~ q + . Also q + is the "-immediate successor of q ~ in A q. Thus there exists
q' G Bq such that q~\q' and 9'|? + . By Fact 0.2*, q\q'. Thus q ~ r by (4). Case 3:
m = r. The argument is similar to Case 1.

(ii) Suppose p — q and p < * q. Let /n = A/-max{/?, 9}. We shall show by
induction on the number of elements of A m *-between /? and q that p <p q. If q is
the *-immediate successor of p in A m then by Proposition 1.8 there exists /?' G A m
such that p\p' and p'\q. Thus p <* q by (1), i.e., /? <p 9. If q is not the
"-immediate successor of /? in ^4m choose r G Am such that/? < * r < * q. By (i)
/? — r — q. Thus by the inductive hypothesis/? <p r <p q.

(iii) First we prove two claims.
Claim 1. If r, s G A, r <*- s, r < * s, r' G Br, r\r' and r is the initial (i.e., A/-least)

member of its ~ class then r' <p s.
Proof. First we show that if t G A, r < * t, and r'\t then r ~ t. We argue by

induction on the number of elements of A' *-between r and t. r <N t since
otherwise r is not the initial element of its — class. By Fact 0.2*, t~\r'. Thus by the
inductive hypothesis r ~ r~. By (4) r — t. Since r ^ s it must be that r' < > s. Let
s' G Bs be such that s'\s. Not s' <p r' since otherwise by Fact 0.1*, s\r'. Thus
r' <p s' and not s <p r'. The only possibility is that r' <p s.

Claim 2. If q, r G A, q < * r, q ^ r, r' G Br, r'\r and both q and r are the initial
elements of their respective — classes then q <p r'.

Proof, q < > r' since otherwise the 7V-max{/?, q} would not be the initial
element of its ~ class. Let q' G Bq be such that q'\q. Not r' <p q' since otherwise
by Fact 0.1*, q\r'. Thus q' <p r' and not r' <p q. The only possibility is that
q <p r'.

Now we continue the proof of (iii). Without loss of generality we may assume
that q and r are the initial elements of their equivalence classes. Let r' G Br be
such that r'\r. Then r' <p s by Claim 1 and q <p r' by Claim 2. Thus q <p s. Let
q' G Bq be such that q'\q. Clearly q' <p r' <p s. Since the width of (P, <p) is 2,
p < > q orp < > q'. In either case it is easy to verify that/? <p s.

To finish the proof of Theorem 1.5 we provide an algorithm for covering A by 5
recursive chains. At stage n + 1 if n G A we shall decide which of 5 sets
E0, . . . , E4 to put n into. We shall do this in such a way that we preserve the
following conditions:

(6)ifp,sGAn+x andp — s then/? and s both belong to the same Et\
(J) if p,s G E"+x and p <* s then there exist q, r G A n+' such that q and r are

"-between/? and s, q <*•< r and neither q nor r is equivalent to either/? or s.
So if there exists/? G An+X such that/? — n andp G Et put n into Et. Otherwise

put n into Ej where j is the least k such that no element of the two ~ classes
"-immediately preceding the — class of n in An + X and no element of the two —
classes "-immediately succeeding the — class of n in A n+1 is in Ek. This is possible
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dilworth's THEOREM 69

by (6) and the fact that there are 5 Ej to choose from. We leave it to the reader,
using Lemma 1.9, to check that (6) and (7) are preserved and that each Et is a
chain.    □

1.10. Theorem. D(ri) <N(5" - l)/4.
Proof. Clearly D(l) = 1. Thus it suffices to show that D(n + 1) <Arl + 5D(n).

Notice that this is exactly what we did in the width 2 case. Let (P, <p) be a
recursive partial ordering of width n + 1. Define A and B as in the previous
theorem. We shall show that D(n + 1) <Nl + 5D(n) by constructing a recursive
partial ordering (A, <*) such that:

(1) the width of (A, < *) is iV-less than n + 1;
(2) every recursive "-chain can be covered by 5 recursive P-chains.
These are just generalizations of the properties of (A, < *) in the width 2 case.
1.11. Definition. We define (A, < *) by specifying (A, < *)q for each q G N.

Suppose inductively that (A, < *)q has been defined and q G A. For/? G Aq+X, let
p <*q(q < */?) iff at least one of the following holds:

(3)p<pq(q<pp);
(4) for all/?', q' G Bq, if p'\p and q'\q then/?' <p q' (q' <p/?');
(5) there exists r G Aq such that/? < * r (r < *p) and (3) or (4) holds when/? is

replaced by r.
We would like to have defined (A, < *) as in the width 2 case. However when

the width is greater than 2 that definition may not yield a recursive relation. To
remedy this situation we are forced to bound the quantifier in (4). But this
produces a relation which may not be transitive. Thus we are forced to add (5).
Fortunately, it turns out that in (5) we need only search over Aq to obtain the
appropriate transitive closure. The following lemma completes the proof of the
theorem.

1.12. Lemma. (A, < *) is a recursive partial ordering which satisfies (1) and (2).

Proof. Clearly (A, <*) is recursive. We shall show that (A, < *) is a partial
ordering by showing that for every n G N, (A, < *)" is a partial ordering. We
argue by induction on n. Assume (A, < *)" is a partial ordering and consider
(A, < *)n + x.

Transitivity. Suppose /?, q, r G A"+x, p < * q, and q < * r. We must show that
p < * r. If q =£ n then p < * r by the inductive hypothesis or (5). So assume q = n.
Choose /?„, r0 G A " so that /?<*/?0<*<7<*/-0<*r and in A " there are no
elements "-between p0 and q or q and r0. By the transitivity of (A, < *)" it suffices
to show that/?0 < * r0.

By our choice of p0 we know that p0 < * q by (3) or (4), but not by (5). Similarly
q < * r0 by (3) or (4). Case 1: p0 < *q by (3) and q < * r0 by (3). Then by the
transitivity of (P, <p),p0 < * r0 by (3). Case 2: p0 < * q by (4) and q < * r0 by (4).
Using the transitivity of (P, <p) again we see that p0 < * r0 by (4). Case 3:
p0 < * q by (3) and q < * r0 by (4). Suppose/?^, q' G B,p0\p'0 and q\q'. By Fact 0.1,
/?0 <p q' or/?0|<7. Thus/?0 < * r0 by (4). Case 4: pQ < * q by (4) and q < * r0 by (3).
The argument is similar to Case 3.
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Antireflexivity. Suppose there exists q G A" + x such that q < * q. This cannot be
by (3) or (4). Thus by (5) there exists r G Aq such that q <* r <* q. But then
r < * q < * r and, by the transitivity of (A, < *)"+1, r < * r. This contradicts the
antireflexivity of (A, < *)".

To prove that the width of (A, < *) is less than n + 1 it suffices to show that if /
is a "-antichain then there exists b G B such that / u {b} is a P-antichain. We
argue by induction on the cardinality of /. If the cardinality of / is 1 then we are
done by the definition of A and B. So let /'0 and /, be distinct members of /. By the
inductive hypothesis there exist b0, bx G B such that {b0} U (I - {i0}) and {bx} u
(/ — {/,}) are P-antichains. Say b0 <p bx. If i0\b0 or ix\bx we are done, so suppose
not. Then b0 <p i0 and /, <p bx. Since not /„ < * ix by (4) and Fact 0.2 there exists
b G B such that i0\b and b\ix. Clearly b0 <p b <p bx. For every j G I \ {i0, ix),j\b0
andj\bx. Thus using Fact 0.2, {b} u / is a P-antichain.

Finally we show that every recursive "-chain C can be covered by 5 recursive
^-chains. Define an equivalence relation (C, ~) as in Definition 1.7 but with A
replaced by C. Then Lemma 1.9 still holds when (A, ~) is replaced by (C, —■). The
proof is the same except that a little more care is needed to justify the next to last
line. With this established we can use the same algorithm as before (relativized to
(C, —)) to produce a covering of C by 5 recursive P-chains.    fj

For each n G N the proof of Theorem 1.10 provides an algorithm which, when
applied to any effectively given partial ordering of width n, will produce a covering
of the domain of that partial ordering by at most (5" — l)/4 recursive chains. The
algorithm consists of nesting the inductive proof of Theorem 1.10 n — 1 times
during an effective enumeration of the partial ordering. Moreover, when one
considers the procedure carefully it is apparent that it is not necessary to know the
depth of the nesting beforehand. Hence we can devise an algorithm which, when
applied to any effectively given partial ordering, will produce a cover of the domain
of that partial ordering by recursive chains. Furthermore if the partial ordering has
finite width, say w, then this algorithm will cover its domain by, at most,
(5W — l)/4 recursive chains. The result discussed in this paragraph may be stated
in the language of recursion theory as follows.

1.13. Corollary. There is a recursive function f such that if e is the index of a
decision procedure for a binary relation, (P, <p), which is a partial ordering, then fie)
is the index of a decision procedure for a binary relation E such that if we let 5, = {x:
(x, i) G E), then each St is a chain and each p G P belongs to some set St.
Furthermore if (P, <p) has width w, then at most (5W — l)/4 of the sets 5, are
nonempty.

1.14. Remark. Consider the following naive algorithm for covering an effectively
given partial ordering (P, <p) by recursive chains C0, C„ . . . . Suppose P ■ {/?,:
/ G N). Put/?0 into C0. Now suppose that we have assigned each pj, fory <N i, to
some Ck. Put /?, into Cm, where m is the first natural number such that /?, is
comparable to all the/?, already in Cm. It is not difficult to find a recursive width 2
partial ordering which the above algorithm could not cover by finitely many
chains.
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2. A lower bound for D. In order to find lower bounds for D it is useful to
consider the following game. The main results of §§1 and 2 could have been
phrased in terms of this game instead of in terms of recursive partial orderings and
recursive chains.

2.1. Definition. Let G(m, n) be the following infinite game for two players X
and Y. X plays first. At his (k + l)st turn X will have constructed a finite partial
ordering of width at most n. Y will have covered this partial ordering by m sets. X
makes his (k + l)st play by extending his partial ordering to one new element in
such a way that the width is still at most n. Y then makes his (k + l)st play by
adding this new element to one of the sets in his covering. If at the end of w plays
each of the m sets in Y's cover is a chain, Y wins; otherwise X wins. At times we
may refer to Y"'s moves as coloring a point.

An easy result from game theory shows that for any n and m either X or Y must
have a winning strategy for the game G(m, n). The alert reader will notice that the
proof of Theorem 1.1 actually shows that if (5" — l)/4 <N m then Y has a winning
strategy for G(m, n). This motivates the following definition.

2.2. Definition. D' is the function defined on the positive natural numbers such
that D'(n) is the least natural number m for which Y has a winning strategy for
G(m, ri).

2.3. Lemma. D'(ri) <N D(ri)for all n G N.

Proof. We shall show that if m <N D'(ri) then m <N D(n). So suppose m
<N D'(n). Then X has a winning strategy, say S, for G(m, ri). Moreover it is easy to
see that there is a fixed finite 5 such that, no matter how Y plays, if X follows S
then X will be assured of a win after j plays. Since a finite initial segment of S
assures a win, we may assume that S is recursive. To show that m <N D(ri) we
must construct a recursive width n partial ordering, say (P, <p), that cannot be
covered by m recursive chains. Equivalently, we must construct (P, <p) so that for
all<f>:

(1) if <j> is a partial recursive function defined on P and the range of <f> is
(0, . . . , m — 1}, then for some i <N m, <t>~x(i) is not a chain.

This will be accomplished by a diagonal argument. Let P = TV and <P,: / G A/>
be a recursive partition of N into infinite recursive sets. If x G Pt, y G P>, and
/' <N j, then let x <p y. Now for each i G N we shall define <p on Pt so as to
assure that (1) holds when <J> = fy.

First we inductively partition Pt into two recursive parts, At and Bt. Suppose that
we have Af and Bf, where /? G Pt. If for some q G Af, fy(p\q) is not defined or is
not a member of (0, . . . , m — 1}, then put /? into Bt. Otherwise put /? into At.
Notice that if fy satisfies the hypothesis of (1) then At will be an infinite set.

If /? G Aj and q, r G Bt, where q <N r, let p <F q <p r. We now finish our
construction of (P, <p) by inductively defining <p on At. Suppose that we have
(A^ <p I At X AfY and p G At. Since /? G At we have that Af is covered by
fy~x(0), . . . , fy~x(m — 1). Suppose \Af\ = k. Then this can be interpreted as the
position at X's (k + l)st turn in the game G(m, ri). Define (At, <p f At X Ai)p + X
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according to the strategy S. Suppose the hypothesis of (1) holds for fy. Then Aj is
infinite. Thus, since S is a winning strategy for G(m, ri), the conclusion of (1) holds.

2.4. Theorem. 5 < D'(2). In particular, 5 < D(2).

1 1 1

p •-/CZ^)-*-CZIX-•

q • ¥ r
2 3

Proof. We must show that X has a winning strategy for G(4, 2). We shall first
isolate three winning positions for X. Then we shall show that X can force Y into
one of these positions. For clarity it is necessary to use diagrams to describe
various positions. Consider the diagram above. It illustrates a partial ordering, say
(P, <p), that has been covered by sets. If two points are connected by lines then
the point to the left is smaller than the point to the right. The loops represent
possibly empty chains. A letter next to a point is its name; a number next to a
point corresponds to the "color" Y has given it. Thusp\q and/? <p r. This position
is called a 23 block. The prefix corresponds to the colors of q and r. Several blocks
may be connected to form a string. The diagram below illustrates a 2232 string. The
32 block of this string is called the third block. Similar definitions are made for
other ordinals.

1 1 1^1 1 1 1

• yO   *   Ot   •   /O    •   OX   • yO   •   CX  •

2 2 3 2

Each of our winning positions for X will be certain strings. We now identify
some useful plays that X can make at a block in a string. Consider the figure below.
Each of these plays has a name, for instance A(p). This means we make play A
using the new element/?./?, q, r, s are made incomparable to any point outside their
block to which they are not forced by transitivity to be comparable. Thus, if A(p)
and B(q) are played in successive blocks of a string, p\q. However, if C(r) and D(s)
are played in successive blocks of a string, r < > s. Notice that Y cannot color /?,
q, r, or 5 1.
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111 111

• i(~~~y—•—(T~^\ s^ •—jC ")—•—CZTX—•
A(p)    /\ S\^ B(q)   / \

111111

2.5. Lemma. A 232323 string is a winning position for X.

Proof. We describe X's winning strategy. First X plays B(p) at 3, i.e., B(p) is
played at the third block of the 232323 string. To avoid losing Y must color/? 2, 3,
or 4. Say Y colors/? 2. Then X plays D(p + 1) at 4. Thenp\p + 1. Y must color
/? + 1 4. Now X plays A(p + 2) at 5 and Y is helpless. If Y colors/? 3 then X plays
C(p + 1) at 2. Again Y must color /? + 1 4. Now Y is beaten when X plays
A(p + 2) at 1. If Y colors/? 4 then X plays ,4(/? + 1) at 2 to win.

2.6. Lemma. ,4 2232 srn'/ig is a winning position for X.

Proof. Again we describe X's winning strategy. First X plays D(p) at 1. If Y
colors/? 4 then X plays A(p + 1) at 2 and wins. So suppose Y colors/? 3. Then X
plays D(p + 1) at 2. Y is forced to color/? + 1 4. Thus X wins by playing A(p + 2)

2 2 p 2

2.7. Lemma. A 222 string is a winning position for X if the last loop in the last block
contains at least four elements that Y has colored 1.

Proof. This time X's strategy is a little more complicated. X's first play is to
create a new block by playing p in the preceding diagram. If Y colors p 3 then we
have a 2232 string and we are done by 2.6. A similar thing holds if Y colors /? 4. So
suppose Y colors/? 2. Then we have a 2222 string. Now X plays D(p + 1) at 1. Y
must color/? + 1 3 or 4. Since either of these plays is equivalent, say Y colors/? + 1
3. Now X plays D(p + 2) at 3. Y must color/? + 2 3 or 4. If he colors/? + 2 4 he is
finished after D(p + 3) at 2. So suppose he colors p + 2 3. X replies by playing
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p + 3 as diagrammed below. We now have a four block string. If Y colors/? + 32
then X wins by playing D(p + 4) at 2 and D(p + 5) at 3. (Notice that/? + 2 is now
in the fourth block.) If Y colors /? + 3 3 then disregarding the last block we have a
2232 string. We are done by the proof of 2.6 since D(p + 1) was the recommended
first move for yona 2232 string. The same argument holds if Y colors/? + 3 4.

2 2 p+3 p 2

Of course, xxx, xyxyxy, xxyx, and xyxx strings are also winning positions for X,
where x andy are distinct members of (2, 3, 4}. Let H be the following modifica-
tion of 0(3, 1). The rules are the same except that the game ends after each player
has made nine plays and X wins iff three consecutive elements of X's linear order
are colored xxx, four consecutive elements are colored xxyx or xyxx, or six
consecutive elements are colored xyxyxy, where x andy are distinct colors.

2.8. Lemma. X has a winning strategy for H.

/v   H   PIa\ W 3
(a) /\4M               3                  3Ki 3                    3             r   4♦V1 3                   * -J      *         -X wins

3) I  * I-  4 4
2/ \ 2 /                 2                     2
2/ v2'               \2                    2/

/
(*}- /2\ see (a) 2 \l

.   /2\ _J3 4 4
1*1-    \3'     /2\ 2 2

'WHir|i.
/2\see(.)

I * )-1 2 I      see (b)
1—\\l     \\l

Proof. Say Y uses the colors 2, 3, and 4. The details of X's strategy are left to
the reader. The preceding diagram is provided as a guide. The sequences in
parentheses represent the position at Y's turn. The * is X's last play, which Y must
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now color. The branches represent 7's alternatives. We do not consider alterna-
tives that immediately cause Y to lose or that are alphabetic or symmetric
variations. Steps have been left out following (a) and (b). This is because after (a) Y
may stall a little by using at most two 4's, but finally he must put a 3 in the desired
position. These 4's are circled. A similar thing occurs after (b).

Now we finish the proof of the theorem. X starts the game by building a linear
ordering consisting of 4(6 • 29 — 1) — 3 = 12,281 elements. Y is forced to color
6 • 29 — 1 of these the same color, say 1. Call these elements L. X's 12,281 + jth
play, for 0 <N i <N 9, will consist of choosing an element a, of L and then
introducing a new element bt which is incomparable to a„ but comparable to all
other previous elements, a, will be chosen so that there are at least 6 • 29-' — 1
elements of L above and below a, and also at least 6 • 29-' — 1 elements of L
separating a, from any previous a,. Since the previous a, also satisfy this condition,
a, can be chosen from any interval of the previous a,. The bfs will form a chain. Y
will have to color each /3, 2, 3, or 4. Thus the position after Y has made 12,290 plays
will be a string of eight blocks. Since each a, will be separated from each other a, by
at least 6 • 2° - 1 = 5 elements of L, the last loop in each block can be taken to
have at least four elements that Y has colored 1. By 2.8 X can play so that this
string includes an xxx, xxyx, xyxx or xyxyxy string. Thus by 2.5-2.7, X has a
winning strategy.

2.9. Corollary. D'(ri) + 4 < D'(n + 1). In particular, 4n - 3 < D(n).

Proof. We make two simple modifications to the proof of Theorem 2.4. The
elements in blocks that were colored 1 will be replaced by finite, width n partial
orderings such that for each of the first D '(ri) colors, i, Y has colored some member
of the partial ordering i. The following diagram shows one of these new blocks.

The rectangles are the new partial orderings that replaced the elements colored 1.
The circles are now chains of width n partial orderings. Note that if q G Q then
p\q. Thus Y cannot color/? any of the first D'(ri) colors. Now 2.5-2.7 hold with this
new kind of block and with G(4, 2) replaced by G(D'(ri) + 3, n + 1). The other
modification is that we start the game by constructing a chain of

I     D'(n)    )K
rectangles in linear order. The a, in the proof of Theorem 2.4 are now rectangles.
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3. Uniformity. In this section we shall show that for any n G N there exists an
effective procedure for covering any recursive width n partial ordering with D(ri)
recursive chains. This is not to say that we can find this procedure. If fy, is a
decision procedure [on A ] for a width n partial ordering, call that partial ordering
(Pe, <e) [(PeA, <<■*)].

3.1. Theorem. There exists a partial recursive function f. JV XJV->iV such that if
fye is a decision procedure for a width n partial ordering then {{x G Pe: fie, x) = /}:
/ < D(n)} is a covering of Pe by D(n) chains.

Proof. We shall construct a recursive width n partial ordering (U, <u) and a
partial recursive function g: N X TV —> Af so that (1) below holds, where ge is
defined by ge(x) = g(e, x).

(1) If <^e is a decision procedure for a width n partial ordering then ge [" Pe is an
order preserving embedding of (Pe, <e)into(U, <u).

Since (U, <u) will be recursive and have width n, there will exist disjoint
recursive chains C,, . . . , CD(n) which cover U. Then/will be defined by:

,,      .      { i,   where g(e, x) G C,    if g(e, x) is defined,
)(e, x) = \

{ undefined, if g(e, x) is undefined.

Clearly this/will suffice.
Thus it only remains to construct (U, <u) and g. Let U= N and let <£/e:

e G N} be a recursive partition of N into infinitely many infinite sets. We first
define g by defining g/ by induction on j. During this process we will also
inductively partition Ue into Ae and Be. Suppose we have g/, Ase, and Bse. If s £ Ue
theng/ = g/+1, A} = Ase + X, and B\ = Bse + X. Suppose 5 G Ue. Let

Ps =<N-min(N\d0(g:)).

If fy^s+X) is not a decision procedure on E = d0(g*) u {ps} for a width n partial
ordering, then put s into Be and let ge + \ps) be undefined. Otherwise let gs+x(ps) =
s. If ps G Pf put 5 into Ae. Otherwise put s into Be. Notice that if the hypothesis of
(1) holds then ge\Pe is a one-to-one map onto Ae. Finally we define <u. For
x, y G U let x <uy iff one of the following conditions holds.

(i)x G U„y G Uj and i <N j.
(ii) x G Ae andy G Be.
(iii) x,y G Be and x <N y.
(iv) x,y G Ae and g~x(x) <eE g~x(y), where 5 = <N-max(x,y) and E = d0(g*)

U {Ps}.
By the construction (U, <u) is a recursive width 2 partial ordering and (1) holds.

4. Open questions. Theorem 1.1 shows that D is a well-defined function. Theo-
rem 2.4 and Corollary 2.9 show that D is far from the identity. An obvious question
is what is D(2)l More generally, for each n G N, what is D(rip. The latter question
may be unanswerable since D may not be recursive. One way of showing that D is
recursive would be to show that D = D' and that D' is recursive. We know that
D' < D. The reason that D' might be strictly less than D is that y's winning
strategy for G(n, D'(n)) might not be recursive. Let the game Gk(m, ri) have the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



dilworth's THEOREM 77

same rules as G(m, ri) except that it ends after each player has made k plays. Let
Dk(n) be the least natural number i such that Y has a winning strategy for Gk(m, i).
It is easy to see that Dx, D2, ... is a nondecreasing sequence of recursive functions
such that lirm.^^ Dk = D'. Thus £>' is recursive in O'. One might show that D'
was recursive by showing that there was a recursive function / such that D(ri) =
D^ny(n). These considerations lead to the following questions.

4.1. Questions. Are D and D' recursive? If not, in what degrees are they
recursive?

4.2. Question. Is D' equal to DI
Another approach to analyzing D would be to study its rate of growth. Theorem

1.1 shows that D is bounded by an exponential function. Using a modification of
the proof of 2.9 it is not difficult to see that no linear function can be an upper
bound for D.
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