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ABSTRACT Most variable-speed wind turbines employ advanced control scheme to improve their per-
formance. In this paper, an extended optimal torque controller is designed based on effective wind speed
estimation to control the variable-speed wind turbine. To do this, multilayer perceptron based nonlinear
input-output mapping is firstly used for approximating the nonlinear aerodynamics of the wind turbine.
In other words, based on this nonlinear mapping, effective wind speed is estimated from the measured rotor
speed, the measured pitch angle, and the observed aerodynamic torque by the disturbance observer. After
that, the optimal rotor speed command for capturing maximum wind energy is derived from the estimated
effective wind speed. And then the optimal torque command is calculated by combing the standard optimal
torque formula and a proportional control loop that is added to effectively reduce the moment of inertia.
At last, some simulation results are validated to display the availability of the improved effective wind
speed estimation algorithm and control strategy. Moreover, the corresponding simulation results indicate
that compared with the existing methods, the proposed method increases the accuracy of the effective wind
speed estimation by 2-7% and the energy production efficiency by 0.35%.

INDEX TERMS Effective wind speed estimator, maximum wind energy capture, extended optimal torque
control, variable-speed wind turbine.

NOMENCLATURE

υe effective wind speed
ρ air density
Ta,Pa aerodynamic torque and aerodynamic power
Cp coefficient of aerodynamic power
Cpmax maximum power coefficient
λ tip speed ratio
λopt optimal tip speed ratio
R rotor radius
β pitch angle
ωr , ωg rotor speed and generator speed
ω∗
r optimal rotor speed command

sdt , ddt stiffness and damping coefficient of drive train

The associate editor coordinating the review of this manuscript and
approving it for publication was Huanqing Wang.

Jr , Jg inertias of blade rotor and generator
Tg generator torque
Tsh,

Tsh
N

low-speed and high-speed shaft torque
N gearbox ratio
θr , θg rotor and generator rotational angles
L observer gain
F observer parameter
∧ estimation
Kp proportional gain

I. INTRODUCTION

Because of a great shortage of conventional energy, renew-
able energy without pollution has received much inter-
est [1]. Wind energy, as a renewable energy technology, has
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received wide attentions [2]–[4]. And variable-speed wind
turbine (VSWT) becomes more and more popular due to
its high-quality power and high-efficiency power produc-
tion [5], [6]. In the operating range from cut-in to rated wind
speeds, the VSWT can capture maximum wind energy by
optimally adjusting the rotor speed. The dominant control
method to extract maximum wind energy from VSWT is
known as maximum power point tracking control, which
mainly consists of two categories [7]: direct power controller
and indirect power controller. And this direct power controller
straightway maximizes the output electrical power. Though
studying the power change on basis of the preformed curve of
the system, the direct power controller may give good perfor-
mance except that the robustness is not guaranteed [8]. The
indirect power controller aims at maximizing the extracted
mechanical wind energy, by using power signal feedback
control [9], tip speed ratio control [10], and optimal torque
control (OTC) [11], etc. In [9], the power signal feedback
controller is based on the measured power curve of the wind
turbine, and this wind turbine seems still not adequate to be
installed in complex areas, where the wind turbulence is often
very high. In [10], the tip speed ratio controller regulates the
rotor speed to maintain the optimal value, but it depends on
accurate wind speed information. In [11], an adaptive torque
controller is proposed, which seeks the gain that maximizes
power capture despite aerodynamic uncertainty and turbulent
effects. The disadvantage of the optimal torque control is the
slow response for wind variations, resulting in the less energy
capture.
To easily implement capturing maximum wind energy,

the wind speed information should be provided to improve
system performance [12], [13]. Wang et al. [12] proposes
the advanced light detection and ranging (LIDAR)-enabled
controller, which outperforms the baseline optimal torque
controller. In this study, the optimal torque control to the wind
turbine system combined with a proportional control loop is
proposed to decrease the impact of the moment of inertia,
which uses the previewed wind speed measured by LIDAR
that greatly increases the cost of the system. In reality, most
VSWTs employ mechanical anemometers to obtain wind
speed information, but these anemometers reduce system
performance and increase the equipment and maintenance
costs of the VSWT. Therefore, replacing the anemometer
with effective wind speed (EWS) estimator on basis of soft
computing technique has caused considerable interest all over
the world [14].
In the existing literature, there are four categories of the

soft computing-based wind speed estimation methods: fuzzy
logic model [15], statistical model [16], artificial neural net-
work model [17]–[20], hybrid models [21]–[25]. In [15],
a sensorless fuzzy wind speed estimator on basis of fuzzy
logic principles heuristically inferred from the typical wind
turbine power curve is proposed, but it is trivial to seek out a
suitable input limit. In [16], a wind speed estimation method
on basis of autoregressive statistical model is presented, but
it involves complex computation. In [17], EWS is estimated

by using support vector machine, which is only applicable
to the problem characterized by nonlinearity, small sample,
local minima, high dimension and has high generalization.
In [18], a new wind speed estimation way using support
vector regression for wind power system is proposed, but
it is largely dependent on the wind turbine power without
thinking about power losses. In [19], a Gaussian radial basis
function network-based wind speed estimation algorithm is
proposed. In [20], a sensorless EWS estimation algorithm on
the basis of the unknown input disturbance observer and the
extreme learning machine (UIDOB-ELM) for the VSWT is
presented, but the estimator is not accurate enough at some
catastrophe points.Meanwhile, the hybrid techniques, such as
adaptive neuro-fuzzy inference system [21], particle swarm
optimization based support vector regression approach [22],
genetic algorithm based support vector machine model [23],
new hybrid metaheuristic model using radial movement opti-
mization and particle swarm optimization [24], have received
more attention because of high estimation accuracy. However,
the hybrid models are usually complicated and hard to imple-
ment in real-time controllers for nonlinear systems.

In recent years, many researchers focus on the modeling
and control of nonlinear systems by using advanced meth-
ods. In the aspect of modeling, T-S modeling is the cur-
rent research hotspots [25]–[28]. But the fuzzy gains are
not easy to get in wind turbine system application. Up to
now, multilayer perceptron (MLP) with simple structure
has received much interest in modeling complex nonlinear
systems. In [29], a wind speed estimation method for direct-
drive small wind turbine generator system based on mul-
tilayer perceptron neural network is proposed, which has
been verified to be a fast and smooth method. However, this
method does not consider energy losses of system. In [30],
Velo et al. use MLP to determine the annual average wind
speed at a complex terrain site. In [31], based on the truck
velocity, total resistance and gross vehicle weight, the fuel
consumption of haul trucks in surface mines is predicted
using the MLP model, which is trained and tested using
real data collected from a surface mining operation. And the
haul truck fuel consumption can be accurately estimated by
the model on the basis of the values of the haulage param-
eters. Hence, a good idea could be to use MLP approxi-
mate the nonlinear aerodynamics of wind turbine, and thus
new EWS algorithms may be constructed. In the aspect of
control, the advantages of some estimation-based control
techniques are clear [32]–[37]. In [32], an observer-based
adaptive backstepping decentralized controller is developed
by using the approximation capability of radial basis function
neural networks. In [33], a systemic fuzzy adaptive control
scheme is proposed based on fuzzy approximation property
and backstepping technique. In [34], an adaptive fuzzy output
feedback controller is proposed based on multi-input and
multi-output switched fuzzy observer. In [35], an observer-
based adaptive finite-time tracking control scheme is pro-
posed by combining backstepping approach and dynamic
surface control technique.
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Motivated by the above observations, a novel EWS
estimation-based extended optimal torque control (EOTC)
scheme is proposed for maximum wind energy capture of
VSWT in this study. And the EWS is estimated based on
the measured pitch angle, the measured rotor speed and the
observed aerodynamic torque.
The wind speed information is vital to improve the

real-time advanced control performance, while advanced
control could provide more energy capture for the wind tur-
bine. The above situation motivates this study. The achieved
contributions can be summarized as follows.

1) The disturbance observer (DOB) is proposed to
observe aerodynamic torque, which is simpler and
more accurate than the unknown input disturbance
observer (UIDOB).

2) The nonlinear MLP mapping is used to estimate
the EWS, which is more accurate than the existing
estimators.

3) An extended optimal torque controller for tracking
the optimal torque command calculated is proposed
through using the estimated EWS, which is combined
with an added proportional controller to reduce the
moment of inertia.

The structure of this article is organized as follows:
The wind turbine model and operation are described in
Section II. And the EWS estimator based on DOB and MLP
(DOB-MLP) and the detailed designs are explained in
Section III. Section IV presents the extended optimal torque
controller to extract maximum wind energy. And the simula-
tion results are presented in Section V. The conclusions are
made in Section VI.

II. WIND TURBINE MODELING AND OPERATION

In this section, the basic of wind turbine model and operation
is described.

A. AERODYNAMIC MODELLING OF WIND TURBINE

The aerodynamic model of the wind turbine can be described
by power coefficient Cp, which is a function of both the blade
pitch angle β and tip speed ratio λ. λ is defined by

λ = ωrR
/

υe (1)

where ωr is the rotor speed, R is the rotor radius, and e is the
rotor EWS.
Given the power coefficient, the aerodynamic torque Ta of

the WT is given by [20]

Ta =
1

2λ
ρπR3Cp(λ, β)υ

2
e =

1

2λ3
ρπR5Cp(λ, β)ω

2
r (2)

where ρ is the air density.
From (1) and (2), the EWS can be represented as:

υe = f (Ta, β, ωr ) (3)

where f (·) is the nonlinear function characterizing the EWS.

FIGURE 1. Operation regions of WT.

B. SHAFT SYSTEM MODELLING OF WIND TURBINE

The drive train model is represented by a two-mass
model [6], [20], [38], where the high-speed generator
and low-speed turbine are described by different masses,
and the connecting shaft is modeled as a damper and
a spring. Therefore, the motion equations are given
by [20]











Jr ω̇r = Ta − Tsh

Jgω̇g = Tsh/N − Tg

Tsh = sdtγ + ddt γ̇

(4)

where N is gearbox ratio, ωg is generator rotational speed,
Tg is generator torque, and γ = (θr − θg/N ); θg and θr
are generator and rotor rotational angles, respectively; Jg and
Jr are the inertia moment of the generator and the rotor,
respectively; Tsh/N and Tsh are the high-speed and low-speed
shaft torque, respectively; sdt is the stiffness coefficient of the
flexible coupling between the two masses, and ddt is the shaft
damping.

C. OPERATION OF WIND TURBINE

As indicated in Figure 1, the operation of wind turbine
includes four operating regions:
Region 1, in which the wind turbine cannot operate nor-

mally, the range of wind speed is 0-3 m/s for the wind turbine
in a general case.
Region 2, in which the wind turbine operates from cut-in

to rated wind speeds, the optimal rotor speed is obtained and
the maximum wind energy is extracted (also called partial
load), the range is 3-10.9 m/s. In this paper, only Region 2 is
considered.
Region 3, between rated and cut-out wind speeds, where

the turbine must limit the captured wind energy for safety,
the rotor speed is maintained at rated value through pitching
the blades (also called full load), and the range of wind speed
is 10.9-25m/s.
Region 4, in which the wind turbine is turned out to prevent

the wind turbine from being damaged, the range is above
cut-out wind speed 25m/s.

III. ESTIMATION OF EFFECTIVE WIND SPEED

In this section, the DOB-based aerodynamic torque estimator
and MLP mapping are detailed.
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FIGURE 2. Block diagram of the disturbance observer.

A. DISTURBANCE OBSERVER BASED AERODYNAMIC

TORQUE ESTIMATION

To make it easier to design the aerodynamic torque observer,
the two-mass drive train model (4) can be represented as the
state-space model:

{

ẋ = Ax + BTg + DTa

y=Cx
(5)

where the system matrix is presented as:

A =





0 1 −1/N
−sdt /Jr −ddt /Jr ddt /(JrN )
sdt /(JgN ) ddt /(JgN ) −ddt /(JgN 2)



,

C =
[

0 1 0
]

,

B =
[

0 0 −1/Jg
]T
, D =

[

0 1/Jr 0
]T
.

And the state is represented as x = [γ, ωr , ωg]T .
Besides, the rotor speed ωr and the generator torque Tg

can be measured. And the measured rotor speed ωr is also
the input of the following MLP algorithm.

For the system described in (5), the aerodynamic
torque Ta is considered as the disturbance input, the following
DOB [39] is given by

{

ṗ = −LD(p+ Lx) − L(Ax + BTg)

T̂a = p+ Lx
(6)

where T̂a is the disturbance estimate, p is an auxiliary vector
and L is the observer gain matrix to be designed.

The structure of the DOB is shown in Figure 2, in which the
disturbance input Ta is estimated. According to (5), the orig-
inal system is obtained. Then, based on (6), the DOB is got.
It can be derived from the DOB (6) that

˙̂
Ta = LD(Ta − T̂a) (7)

If the estimation error of the disturbance is e1 = Ta − T̂a,
the dynamic characteristics of disturbance estimation is as
follows.

ė1 = Ṫa − LDe1 (8)

FIGURE 3. Structure of the MLP-based effective wind speed estimator.

The observer gain L is designed as follows: L =

F(DTD)−1DT , where F is the observer parameter, and the
observer gain L is chosen such thatF > 0 holds. Thus, we can
derive the dynamics of the DOB as:

ė1 = Ṫa − Fe1 (9)

when F is given, the disturbance input Ta is observed. The
observed T̂a will be used as the input of following MLP
model.

B. MULTILAYER PERCEPTRON BASED EFFECTIVE WIND

SPEED ESTIMATION

Given the information of the aerodynamic torque Ta,
the blade pitch angle β and the rotor speed ωr , the EWS
can be figured out from the nonlinear inverse function of (2).
However, searching for the solution of nonlinear inverse
function may be time-consuming and reduce system perfor-
mance. A novelmethod to resolving this trouble is using ELM
algorithm [20]. But this estimator estimates imprecisely at
some catastrophe points. Therefore, MLP instead of ELM
algorithm is used to estimate the EWS in this paper.

In addition, the nonlinear function (2) can be expressed
as (3). Therefore, the proposed EWS estimation method is on
the basis of the MLP-based input-output mapping, which is
capable of approximating the nonlinear function (3). MLP in
most applications covers feedforward neural networks with
one input layer, one hidden layer, and one output layer.
And the MLP-based EWS estimation model has three inputs
(T̂a, β, ωr ) and one output υ̂e, as presented in Figure 3.

The input-output mapping for MLP is given by:

y(k)p = gaussian(k)p





Nk−1
∑

i=1

W
(k−1)
ip · y

(k−1)
i − b(k)p



 ,

p = 1, 2, · · · ,Nk ; k = 1, 2, · · · ,M (10)

whereW (k−1)
ip is the weight vector connecting the ith node in

the (k − 1)th layer and the pth node in the kth layer, y(k−1)
i

is the output of the ith node in the (k − 1)th layer, y(k)p is the
output of the pth node in the kth layer, b(k)p is the threshold of
the pth node in the kth layer, and gaussianp(k) is the gaussian
activation function of the pth node in the kth layer.
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FIGURE 4. Block diagram of the MLP-based optimal rotor speed
estimator.

Gaussian activation function can be expressed as:

gaussian(x) = e−x
2/2σ 2 (11)

where σ is a parameter whose value controls the smoothness
properties of the activation function.
In this paper, the learning rule used is generalized delta

rule. Then weights are updated on the basis of the errors
between the desired andmodel output. And the algorithm step
is given by [40]:
Step 1: Initialization randomly.
Step 2: Calculating the output vector.
Step 3: Calculating the error propagation terms.
Step 4: Updating the weights with (12).
Step 5: Calculating the total error εtotal with (13).
Step 6: Iterating the calculation by going back to

Step 2 until the total error is less than the desired error.

W
(k−1)
ip (t + 1) = W

(k−1)
ip (t) + ψ

I
∑

n=1

δ(k)np y
(k−1)
ni (12)

where δknp = gaussian
(k)
np (·) ·

[

Nk+1
∑

l=1
δ
(k+1)
nl W

(k)
pl (t)

]

, ψ is the

learning rate and t is the number of iterations.

εtotal =

I
∑

n=1

NM
∑

j=1

(

y
(M )
nj − ŷ

(M )
nj

)2
(13)

where εtotal is the total error, y(M )
nj is the desired output,

ŷ
(M )
nj is the model output.

IV. EXTENDED OPTIMAL TORQUE CONTROL FOR

MAXIMUM WIND ENERGY CAPTURE

In this section, the Multilayer perceptron based sensorless
optimal rotor speed estimation and the extended optimal
torque control are elaborated.

A. MULTILAYER PERCEPTRON BASED SENSORLESS

OPTIMAL ROTOR SPEED ESTIMATION

In Region 2, the rotor speed of the wind turbine is bound
to attain an optimal tip speed ratio λopt , and the optimal
command ω∗

r is calculated by

ω∗
r = λopt υ̂e

/

R (14)

Figure 4 shows the structure of the MLP-based optimal
rotor speed estimator. As known to all, wind speed often

varies randomly and quickly, but the wind turbine is relatively
slow in response because of the inertia. Hence, a low pass
filter is indispensable, which is added to offer the smooth
optimal rotor speed reference to the wind turbine.

B. EXTENDED OPTIMAL TORQUE CONTROL

On the basis ofω∗
r , the value of the generator torque reference

is expressed as [41]

T ∗
g = Kopt (ω

∗
r )

2 (15)

where Kopt =
ρπR5Cpmax

2N (λopt )3
.

At the stable running operating point, the aerodynamic
torque of the drive train model (3) can be linearized, which is
given by [41], [42]

(Jr + Jg)
dδωr

dt
≈ δTa − NδTg (16)

In the optimal torque control, the generator torque refer-
ence can also be linearized at the stable running operating
point, which is given by [41], [42]

T ∗
g = Tg0 + δTg

= Kopt (ωr0 + δωr )
2

≈ Koptωr0
2 + 2Koptωr0δωr (17)

where ωr0 and Tg0 are the rotor speed and the generator
torque at the stable operating point, respectively. At the stable
operating point of optimal torque control, the value of δωr
is extremely small, and its square value is even smaller.
Therefore, the term with the square value is approximately
equal to 0, and the formula (17) holds. From (16) and (17),
the transfer function between the rotor speed and the aerody-
namic torque is given by [41]

G(s) =
δωr

δTa
=

1

(Jr + Jg)s+ 2NKoptωr0
(18)

To improve the transient performance of the optimal torque
control, the discrepancy between the generator torque and
the aerodynamic torque should be big, which results in the
rapid deceleration or acceleration of the wind turbine sys-
tem. Besides, the optimal torque controller must keep the
Cpmax at the steady state. By adding a proportional controller,
the performance of the optimal torque controller can meet the
control requirements aforementioned [41]. With the added
proportional control loop, the transfer function in (18) is
rewritten as [41]

G′(s) =
δωr

δTa
=

1
(Jr+Jg)
(1+Kp)

s+ 2NKoptωr0
(19)

where Kp is a proportional gain. And this proportional gain
affects the transient performance of the extended optimal
torque controller. From (19), the dynamic response becomes
faster, and the reason is that the inertias of Jr and Jg are
decreased by the proportional gain.
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FIGURE 5. Block diagram of the extended optimal torque controller.

In addition, from (2), the aerodynamic torque T ∗
a can

be calculated according to the estimated EWS, which is
expressed as

T ∗
a (= Ta) = kυ̂2e (20)

where k = ρπR3Cpmax
/

2Nλopt . The proposed extended
optimal torque control scheme is given by

Tg = Kopt (ω
∗
r )

2 − Kp[kυ̂
2
e − Kopt (ω

∗
r )

2] (21)

Nevertheless, the gain Kp should be carefully selected
because the practical wind turbine system has physical lim-
itations. In this paper, the gain Kp is selected as 0.9 by trial
and error.
This control algorithm has the ability of reducing the influ-

ences of the inertia moment [41]. Based on the well-known
optimal torque algorithm, the general controller consists of
two parts. The first part is the proposed EWS estimator, and
the second part is the EOTC. Therefore, the general structure
of the proposed extended optimal torque controller is given
by Figure 5.

C. IMPLEMENTATION OF THE EXTENDED OPTIMAL

TORQUE CONTROLLER

The implementation steps of the developed controller in
application are shown in Figure 6. Firstly, measuring the
generator torque, pitch angle, and rotor speed. Secondly,
estimating the aerodynamic torque by DOB based on the
measured generator torque and the rotor speed. The observer
parameters are calculated offline. Thirdly, the EWS is got by
theMLPmodel trained offline according to the information of
the aerodynamic torque, pitch angle, and rotor speed. Finally,
the optimal torque command is calculated to control the wind
turbine. The developed controller is actually a little more
complicated than OTC. However, the execution time of the
EWS-based wind turbine controller used in engineering is
merely related to the online running part, and the offline
calculating and training parts of the EWS estimator are not
included. Therefore, the developed controller does not affect
the real-time operation of the control system.

V. SIMULATION STUDY

The proposed method is tested on the industry-standard
Bladed design software [43] and the MATLAB software.

FIGURE 6. Flowchart of the extended optimal torque controller.

TABLE 1. Parameters of the concerned wind turbine.

Some simulation results about performance comparisons
with classical and novel method will be provided. Detailed
wind turbine model is available via Bladed to simulate the
operation of a 1.5 MW, three-blade, VSWT, which is man-
ufactured by the China Ming Yang Smart Energy, and the
specifications are stated in Table 1 [44]–[46].

A. VALIDATION OF THE DISTURBANCE OBSERVER

It is worth mentioning that the disturbance observer parame-
ter after tuning is set as F = 1700. The mean wind speed is
selected among 3-10.9 m/s because only Region 2 is consid-
ered. For simplicity, two representative simulation results are
selected, namely, 4 m/s and 8 m/s.

The relative estimation error εr is employed to evaluate the
DOB’s performance, which is given by [47]:

εr =
Ta(t) − T̂a(t)

Ta(t)
(22)

And then their statistical properties are used to assess
the performance of the DOB [20]. In addition, Table 2
summarizes the statistical comparisons between the DOB
and the UIDOB. As indicated in Table 2, the results of
E[|εr |] for UIDOB and DOB are 0.0030912 and 0.0010688
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TABLE 2. Comparisons for the two observers about statistical properties.

FIGURE 7. Estimation results of effective wind speed at 4 m/s mean wind
speed. (a) Comparisons between the baseline and the three estimators.
(b) Comparisons of three absolute estimation errors.

at 4 m/s, respectively. And the results are 0.0014502 and
0.0009194 at 8 m/s, respectively. Moreover, the results of σεr
are 0.0799289 and 0.0076334 at 4 m/s, respectively. And the
results are 0.0072383 and 0.0072170 at 8 m/s, respectively.
Therefore, all E[|εr |] and σεr results of the DOB less than the
ones of theUIDOB, show that the observation error of DOB is
smaller. In addition, the Correlation Coefficients (CC) results
of UIDOB and DOB are 0.9999263 and 0.9999487 at 4 m/s,
respectively. And the results are 0.9995417 and 0.9995424 at
8 m/s, respectively. That is, all CC results of DOB are closer
to 1.0 than the ones of the UIDOB. Obviously, the DOB
estimates more accurately. Besides, the structure of the DOB
is easier and simpler to implement, the reason is that there
is only one observer parameter to be tuned. However, two
parameters, namely proportional gain and integral gain, need
to be tuned for the UIDOB. Hence, the comprehensive per-
formance of the DOB is superior to that of the UIDOB.

B. VALIDATION OF THE EFFECTIVE WIND SPEED

ESTIMATOR

1) RESULTS OF THE EFFECTIVE WIND SPEED ESTIMATORS

The EWS is estimated by the MLP algorithm (Figure 3),
using themeasured pitch angle, themeasured rotor speed, and
the previous observed aerodynamic torque as inputs. And the
model is trained offline, with 8 neurons in the hidden layer.
The activation function of the hidden layer and the output
layer is gaussian function. The parameters of the MLP are
updated by using the error between the reference model and
the MLP output. The desired error is set as 1e-6.

Then, a comparison is carried out with the UIDOB-ELM
estimator [20] and the Kalman filter (KF) based estima-
tor [48] to verify the validity of the improved estimator.
It should be noticed that two representative estimation results
are shown in Figures 7-8, namely 4 m/s and 8 m/s.

FIGURE 8. Estimation results of effective wind speed at 8 m/s mean wind
speed. (a) Comparisons between the baseline and the three estimators.
(b) Comparisons of three absolute estimation errors.

TABLE 3. Comparisons for the two observers about statistical properties.

Figures 7-8(a) show the results of estimated EWS, and
Figures 7-8(b) show the results of the absolute EWS esti-
mation error. As shown in Figures 7-8(a), there are similar
trends among the three EWS estimators, so all estimators
work properly. However, difference remains clear, as shown
in Figures 7-8(b), the estimation errors of the DOB-MLP
estimator, the UIDOB-ELM estimator and the KF-based esti-
mator are kept within ±0.15 m/s, ±0.2 m/s, and ±0.5 m/s,
respectively. In other words, the absolute estimation errors
of the KF-based estimator are larger than those of the other
two estimators. The reason is that the KF-based estimator is
not suitable for nonlinear function approximation. Although,
the errors of the UIDOB-ELM estimator are much smaller
than those of the KF-based estimator, the UIDOB-ELM esti-
mator fails in precisely estimating the EWS for some peak
and valley points, especially at the start. Therefore, it is
obvious that the proposed DOB-MLP estimator works more
accurately in the whole operation process.

2) RESULTS OF STATISTICAL PROPERTIES

In order to evaluate the improved EWS estimator, the absolute
estimation error ε is selected, which is given by [20]:

ε = υe − υ̂e (23)

Besides, the statistical properties are used to evaluate per-
formance of the improved EWS estimator as well [20]. More-
over, Table 3 summarizes the statistical comparisons between
the UIDOB-ELM estimator and DOB-MLP estimator. And
Table 3 shows that all E[|ε|] and σε results of the proposed
estimator are less than the ones of the UIDOB-ELM estima-
tor, and all CC results are greater. Of course, it also means
that the DOB-MLP estimator outperforms the UIDOB-ELM
estimator.
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FIGURE 9. Estimation results of optimal rotor speed at 4 m/s mean wind
speed. (a) Comparisons between the optimal rotor speed of theoretical
value and the two estimators. (b) The two optimal rotor speed absolute
estimation errors.

FIGURE 10. Estimation results of optimal rotor speed at 8 m/s mean
wind speed. (a) Comparisons between the optimal rotor speed of
theoretical value and the two estimators. (b) The two optimal rotor speed
absolute estimation errors.

C. VALIDATION OF THE EXTENDED OPTIMAL TORQUE

CONTROLLER

1) RESULTS OF THE OPTIMAL ROTOR SPEED ESTIMATOR

Based on the EWS, the optimal rotor speed command ω∗
r

for maximum wind energy extraction is determined. Then
the simulation results for the optimal rotor theoretical value,
the ELM estimator, and the MLP estimator are presented
in Figures 9-10.
Figures 9-10(a) show that the estimated rotor speed tracks

its theoretical value well. The tracking errors of the MLP
estimator are almost kept within ±0.03 rad/s, and the main
tracking errors of the ELM estimator are kept within ±0.1
rad/s, as shown in Figures 9-10(b). It’s obvious that the
proposed MLP estimator is more superior with less tracking
error. It should be noted that there are large fluctuations in
the tracking results of the ELM estimator, that is, it fails in
tracking its theoretical value for some operation points, such
as peak and valley points, and the start points. Moreover,
the tracking results of the proposed MLP estimator are much
flatter.

2) RESULTS OF THE EXTENDED OPTIMAL TORQUE

CONTROLLER

Up to now, OTC is still the main control scheme to capture
the maximumwind energy in industrial application. To verify
the validity of EOTC, the comparison with the well-known
OTC is carried out. To evaluate the performance of maxi-
mum wind energy capture, the value of rotor speed absolute

FIGURE 11. The tracking results of OTC and EOTC at 4 m/s mean wind
speed. (a) Tracking of optimal tip speed ratio for OTC and EOTC.
(b) Tracking of maximum power coefficient for OTC and EOTC. (c) Tracking
of optimal rotor speed for OTC and EOTC. (d) Tracking error of optimal
rotor speed for OTC and EOTC.

tracking error εω is selected, which is given by

εω = ωr − ω∗
r (24)

For the sake of simplicity, the representative simulation
results of 4 m/s are selected. The mean absolute deviation
E[|εω|] for OTC and EOTC is 0.0484068 and 0.0377499,
respectively. The standard deviation of the tracking error σεω
for OTC and EOTC is 0.1757097 and 0.1739519, respec-
tively. What is more, the CC between the optimal rotor
command and the tracking value for OTC and EOTC are
0.9854477 and 0.9971686, respectively. Therefore, the track-
ing performance of EOTC is better than that of OTC.

The simulation results of the comparisons for OTC and
EOTC are shown in Figures 11-12, telling that EOTC gives
faster response than OTC.

Figure 11(a) shows the comparison of tracking the optimal
tip speed ratio between OTC and EOTC. Although both
values fluctuate around the reference value, EOTC works
better than OTC clearly. Then, the comparison of tracking
the maximum power coefficient between the two methods
is shown in Figure 11(b), and EOTC has better tracking
performance than OTC. In Figure 11(c), the comparison of
tracking the optimal rotor speed is presented as well. It is easy
to get the conclusion that the proposed EOTC is effective,
and the error margin is smaller as dedicated in Figure 11(d).
Figure 11(d) shows that the main tracking errors of EOTC are
kept within ±0.02 rad/s, and the main tracking errors of OTC
are kept within ±0.04 rad/s.

Figure 12(a) shows the electrical power comparison for
OTC and EOTC. Moreover, EOTC produces more elec-
trical power than OTC as indicated in Figure 12(b). And
the average values of electrical power gain for OTC and
EOTC are 9.878709 kW and 9.913138 kW, respectively.
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FIGURE 12. The comparisons of electrical power, generator torque and
speed at 4 m/s mean wind speed. (a) Electrical power comparison for OTC
and EOTC. (b) Electrical power gain comparison for OTC and EOTC.
(c) Generator torque comparison for OTC and EOTC. (d) Generator speed
comparison for OTC and EOTC.

Figure 12(c) shows the generator torque comparison for OTC
and EOTC. It is obvious that OTC produces flatter genera-
tor torque compared to EOTC. And the average values of
generator torque for OTC and EOTC are 1214.16898 Nm
and 1222.69419 Nm, respectively. Figure 12(d) shows the
generator speed comparison for OTC and EOTC. It is obvious
that EOTC responses faster than OTC. From Figure 12(a) and
(c), the fluctuations of EOTC are more obvious than OTC.
Simply speaking, this is mainly caused by the inner resonance
of the wind turbine drive train system.

VI. CONCLUSION AND FUTURE WORK

In this paper, a DOB-MLP based EWS estimator has been
proposed for the wind turbine. And then an optimal rotor
speed estimator based on EWS estimation has been put for-
ward. Multilayer perceptron is used to map the nonlinear
characteristics of wind turbine. That is, the EWS is estimated
from the nonlinear multilayer perceptron mapping, and then
the optimal rotor speed is determined from the estimated
EWS. At last, an extended optimal torque controller based
on the estimated EWS and optimal rotor speed is proposed.
Simulation tests have been conducted on the 1.5 MWwind

turbine, validating the improved EWS estimator, optimal
rotor speed estimator and extended optimal torque controller.
To evaluate the performance of the improved EWS estimator,
the simulation results have been comparedwithKF-based and
UIDOB-ELM estimators. And the estimation accuracy of the
improved estimator is within ±0.15 m/s, which is superior
to that of the UIDOB-ELM estimator within ±0.2 m/s, and
that of the KF-based estimator within ±0.5 m/s. That is,
the accuracy of the proposed method is improved by 2-7%
compared with the UIDOB-ELM estimator.

In addition, the simulation results have been compared
with the extreme learning machine estimator to evaluate the
performance of the optimal rotor speed estimator. The estima-
tion accuracy of the proposed multilayer perceptron optimal
rotor speed estimator within ±0.03 rad/s is superior to that
of the extreme learning machine estimator within ±0.1 rad/s.
Then the proposed extended optimal torque control is proved
to outperform the well-known optimal torque control, as the
error margin of tracking the optimal rotor speed for extended
optimal torque control is ±0.02 rad/s, which is 0.02 rad/s
smaller than that of optimal torque control. And the average
electrical power for extended optimal torque control improves
the energy production efficiency by 0.35%.

However, the precise tracking of the rotor speed and the
higher wind energy capture efficiency are at the expense of
the variations of the generator torque and electrical power.
Hence, avoiding inner resonance to resolve this conflict and
improving the performance of maximumwind energy extrac-
tion are the biggest challenges we are facing. In future work,
we shall consider avoiding inner resonance by reducing the
torsional vibration of the drive train. The modification of the
existing method to improve the energy production efficiency
will also be studied. In addition, the parameters estimation
could be an important direction, which will be also studied in
our future work.
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