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Abstract
Some animal species are hard to see but easy to hear. Standard visual methods for estimat-

ing population density for such species are often ineffective or inefficient, but methods

based on passive acoustics show more promise. We develop spatially explicit capture-

recapture (SECR) methods for territorial vocalising species, in which humans act as an

acoustic detector array. We use SECR and estimated bearing data from a single-occasion

acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of

calling groups. The properties of the estimator are assessed using a simulation study, in

which a variety of survey designs are also investigated. We then present a new form of the

SECR likelihood for multi-occasion data which accounts for the stochastic availability of ani-

mals. In the context of gibbon surveys this allows model-based estimation of the proportion

of groups that produce territorial vocalisations on a given day, thereby enabling the density

of groups, instead of the density of calling groups, to be estimated. We illustrate the perfor-

mance of this new estimator by simulation. We show that it is possible to estimate density

reliably from human acoustic detections of visually cryptic species using SECRmethods.

For gibbon surveys we also show that incorporating observers’ estimates of bearings to

detected groups substantially improves estimator performance. Using the new form of the

SECR likelihood we demonstrate that estimates of availability, in addition to population den-

sity and detection function parameters, can be obtained from multi-occasion data, and that

the detection function parameters are not confounded with the availability parameter. This

acoustic SECRmethod provides a means of obtaining reliable density estimates for territo-

rial vocalising species. It is also efficient in terms of data requirements since since it only

requires routine survey data. We anticipate that the low-tech field requirements will make

this method an attractive option in many situations where populations can be surveyed

acoustically by humans.
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Introduction
Spatially explicit capture-recapture (SECR) methods are becoming increasingly popular for
estimating population densities of cryptic species. The main advantage of these techniques is
their ability to implicitly estimate the effective sampling area of a capture-recapture experiment
by taking account of the spatial information contained in the locations of the detectors [1–3].
Unlike conventional capture-recapture techniques, SECR methods are therefore able to pro-
vide direct estimates not only of abundance, but also population density. Furthermore, by
modelling the relationship between detection probability and the distance between animal and
detector, SECR methods are able to model heterogeneity in capture probabilities due to animal
location, which causes biased inference if left unmodelled [2].

Standard SECR models have been used to estimate population density for a variety of spe-
cies, including horned lizards from visual trapping studies [3], minke whales using bottom-
mounted hydrophones [4] and tigers from camera traps arrays [5, 6]. [7] also used an extended
SECR model to estimate bird density from recordings of their vocalisations and supplementary
data on the location of each detection in the form of received signal strength. They showed that
use of this supplementary data can improve inference. [8] generalised this approach and
showed that the incorporation of various types of additional information on animal location
can improve inference from SECR methods. This generalised framework has since been applied
to estimate frog abundance using recapture data and signal time-of-arrival data from a fixed
microphone array [9].

Population surveys of gibbons (Family Hylobatidae) are an ideal example of the potential
benefit of using an SECR approach. The majority of gibbon species are either Endangered or
Critically Endangered [10] and accurate estimates of population density are therefore vital to
the success of conservation efforts [11]. Distance sampling, a popular tool for visual surveys of
wildlife [12], is generally inappropriate for gibbons since visual detections tend to be rare, due
to low densities and cryptic behaviour, and therefore a considerable amount of survey effort is
needed in order to yield sufficiently large sample sizes, particularly for the most threatened spe-
cies. As gibbon species form fairly stable family groups and make loud territorial calls that can
be heard over large distances [11], most previous attempts to estimate the density of gibbon
populations have been based on acoustic surveys (e.g. [13–15]).

The design of acoustic surveys for gibbons has traditionally followed guidance provided by
[13]. A common approach uses replicate arrays of 3–4 listening posts positioned in suitable hab-
itat, from which calling groups are detected and where the posts in each array are close enough
to allow the groups to be detected frommultiple posts. The time of the calls and the estimated
bearings to the calling groups are recorded and the estimated locations of detected groups are
mapped via triangulation using the estimated bearings. Density estimates are then obtained by
dividing the number of detected groups by an estimate of the area covered by the survey. Gibbon
surveys must also account for the fact that groups do not vocalise every day; indeed calling fre-
quency may change between groups, species, seasons and weather conditions (e.g. [14, 16–18]).
To derive estimates of group density therefore, either the calling probability must be estimated
and the density of calling groups adjusted accordingly, or surveys must be carried out over mul-
tiple days until all groups present in the area are assumed to have been detected.

A major difficulty with this approach lies in estimating the size of the covered area (see [11]
for a detailed discussion of this topic). Previous surveys have typically estimated the covered
area for each array by defining a circular listening zone around each listening post and then cal-
culating the union of these zones. One way of determining the radius of the listening zones is
to use an estimate of the maximum distance over which gibbon calls can be heard, with a com-
mon choice being 1500m [19]. However, this procedure is likely to be prone to error;
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underestimation of the maximum listening distance for example, will result in an underesti-
mate of the covered area and an overestimate of density. If this uncertainty is not taken into
account, then standard error estimates will be negatively biased and the precision of density
estimates will be overestimated. Furthermore, use of a maximum hearing distance in this way
implicitly assumes that detection probability is equal to one for all distances less than or equal
to the listening zone radius, which may be an unrealistic assumption.

A second approach to choosing the listening zone radius is to use a pre-determined distance
within which all groups are assumed to have been detected. Density is then estimated using the
number of detected groups whose locations have been mapped within the delineated zone.
However, there are three main drawbacks with this approach. Firstly, discarding the informa-
tion contained in the detections mapped outside the listening zone will decrease the precision
of the density estimate. Secondly, it is sensitive to errors associated with the bearing estimates,
which translate into uncertainty in terms of the mapped locations. This may result in groups
within the zone being excluded and groups outside being included, two processes that cannot
be assumed to cancel out. Thirdly, in practice there is still likely to be imperfect detection
within the delineated zone, which will introduce an additional source of bias.

Recognising the issue of imperfect detection, [15] employed an alternative technique to esti-
mate the listening radius, applying distance sampling methods to estimated distances to
detected groups to obtain an estimate of the effective radius [12]. This represents an improve-
ment on previous methods, since it relaxes the unrealistic assumptions regarding the relation-
ship between detection probability and distance by allowing the detection function parameters
to be estimated from the survey data. However, this approach still has some significant draw-
backs. Firstly, no consideration is given to the effect of error in the distance estimation process,
which in the case of acoustic surveys may be large. Secondly, the approach uses an overly sim-
plistic concept of the effective sampling area. This can be thought of as being equivalent to the
covered area from a survey with a step detection function (i.e. where detection probability is
equal to 1 within a certain radius and 0 beyond) in which the expected number of detected
groups is the same as that from the actual survey. The approach used by [15] is valid for iso-
lated posts, but not for arrays of multiple, overlapping posts. The effective sampling area for
the latter case is more appropriately derived by using the estimated detection function to con-
struct a detection surface over the listening post array—which gives the probability of a calling
group at a given location being detected by at least one listening post—and calculating the vol-
ume contained by the surface.

SECR provides a natural alternative for analysing data of this type and addresses many of
the disadvantages of traditional estimation methods. Importantly, by accounting for imperfect
detection through the use of a detection function and using the spatial information contained
in the capture histories, it dispenses with the need for precise mapping of group locations and
explicit delineation of the covered area. The ability to incorporate supplementary information
on detection also allows error in the bearing estimation process to be accounted for via the
inclusion of a bearing error model. In addition, being likelihood based, it produces reliable,
model-based estimates of uncertainty for all model parameters and allows objective model
selection criteria, such as AIC [20], to be used for model selection.

Here we apply an SECR model using estimated bearings in addition to spatial capture data
to a set of single-occasion acoustic survey data from a population of gibbons in order to esti-
mate calling group density. We then conduct a simulation study to evaluate the performance of
the estimator. In the interest of informing future monitoring schemes we investigate a set of
alternative listening post array designs by simulation.

We then present an extension of the SECR likelihood for multi-occasion data that deals
with the fact that gibbon groups do not vocalise every day. We model this situation in general
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terms as a stochastic process in which animals are available for detection on each sampling
occasion with probability ρ (which must be estimated from the data) using a binary random
effect to represent availability. The modification provides an integrated, model-based solution
for estimating the effective sampling area and daily calling probability simultaneously. It there-
fore allows the density of groups to be estimated, which is a more meaningful quantity than the
density of calling groups. It requires recapture data across a minimum of two occasions—
something that is achievable for gibbons by comparing the inferred locations of detected
groups across consecutive survey days (via bi-angulation or triangulation of the estimated bear-
ings) [13, 14]. We illustrate the new method via a simulation study and discuss its potential
applications.

Materials and Methods
All fieldwork associated with this research was approved and conducted in cooperation with
the Forestry Administration of the Royal Government of Cambodia, the relevant government
agency who controls and owns the permanent forest estate in which the survey was conducted.
No animals ethics approvals were required as the research did not require contact with the
study animals. No animals were sampled or collected during this work and no experimental
manipulation applied.

SECR likelihood using estimated bearings
We use a special case of the general SECR likelihood framework presented by [8] which
includes supplementary bearings data. Generic notation is used throughout this section. In the
case of gibbon surveys however, the term ‘animal’ can be replaced with ‘calling group’, and
‘detector’ can be replaced with ‘listening post’.

A general form for the SECR likelihood, including supplementary bearings data and assum-
ing a uniform distribution of animals, can be written as follows,

Lð�; θ; gÞ ¼ Poðn; lð�; θÞÞ
Z
R2

fXOYðX;Ω;Y j n;�; θ; gÞ dX; ð1Þ

where ϕ, θ and γ are model parameters representing the unknown animal density, detection
function parameters and bearing error parameters respectively, n is the number of detected
animals, X is their (unobserved) locations, O is their capture histories and Y is the estimated
bearing to each detection. The likelihood is composed of two parts: (i) a Poisson sub-model for
the number of detections, and (ii) a probability density of locations, capture histories and esti-
mated bearings given the sample size, integrated over all possible animal locations. We intro-
duce these in turn.

In the Poisson sub-model, the observed sample size, n, is a Poisson random variable with
expectation,

lð�; θÞ ¼
Z
R2

�p:ðx; θÞdx ¼ �

Z
R2

p:ðx; θÞdx; ð2Þ

where p.(x; θ) is the probability that an animal at location x is detected by at least one detector.
The function p.(x; θ) is often referred to as the ‘detection surface’.

The specific formulation of the detection surface depends on the type of detectors being
used. Listening posts represent an example of proximity detectors in SECR terminology which,
unlike physical traps, are able to detect animals without detaining them and therefore enable
recapture data to be obtained from a single survey occasion. For proximity detectors, assuming
independence of detections across detectors (conditional on animal location), the detection

An Efficient Acoustic Density Estimation Method with Human Detectors

PLOS ONE | DOI:10.1371/journal.pone.0155066 May 19, 2016 4 / 16



surface can be expressed as follows,

p:ðx; θÞ ¼ 1�
YK
k¼1

1� pkðx; θÞ½ �; ð3Þ

where pk(x; θ) is the detection function, giving the probability of detection at detector k as a
function of animal location x and the parameter vector θ. In this analysis we consider two com-
mon choices of detection function,

the half normal : pkðx; θÞ ¼ y0 exp � dkðxÞ2
2y21

� �
; ð4Þ

and the hazard rate : pkðx; θÞ ¼ y0 1� exp � dkðxÞ
y1

� ��y2
" #( )

; ð5Þ

where the distance between the animal and detector k is represented as a function, dk, of animal
location x, and where the parameters θ0, θ1 and θ2 determine the intercept, scale and shape of
the detection function respectively.

The second sub-model in the likelihood in Eq (1) is defined in terms of the joint density of
locations, capture histories and estimated bearings of detected animals. Since the animal loca-
tions are unobserved, they are integrated out of the model—in other words, the locations are
treated as random effects. The integrand in this sub-model can be defined as a product of three
components:

fXOYðX;Ω;Y j n;�; θ; gÞ ¼
Yn
i¼1

fXðxi;�; θÞPðωi j xi; θÞfYðyi j ωi; xi; gÞ ð6Þ

where fX (xi; ϕ, θ) is the probability density function (pdf) of the location of detected animal i,
P(ωi j xi; θ) is the probability mass function (pmf) of the capture history data for animal i, and
fY (yi j ωi, xi; γ) is the pdf of the estimated bearings for animal i.

The pdf for the location of animal i can be defined as a scaled form of the detection surface,
such that the volume is equal to 1,

fXðxi;�; θÞ ¼
�p:ðxi; θÞ
lð�; θÞ : ð7Þ

An expression for P(ωi j xi; θ), the probability of the capture history for animal i, conditional
on detection, is obtained through an application of Bayes’ theorem,

Pðωi j xi; θÞ ¼
QK

k¼1 Bernðoik; pkðxi; θÞÞ
p:ðxi; θÞ

; ð8Þ

where the unconditional probability for ωik, the binary indicator for the capture history of ani-
mal i at detector k, is modelled using a Bernoulli distribution with parameter pk(xi; θ).

Finally, the sub-model for the bearing data can be expressed as a circular pdf, fY (yik; γ),
which gives the probability density of the estimated bearing for animal i at detector k as a func-
tion of the parameter vector γ,

fYðyi j ωi; xi; gÞ ¼
YK
k¼1

fYðyik; gÞ½ �oik ; ð9Þ

where the probability density for the bearing data for animal i at detector k is 1 if the capture
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history, ωik, is zero (i.e. if the animal was not detected). We consider two options for the circu-
lar distribution,

the von Mises : fYðy; gÞ ¼
expðg cosðy � bkðxÞÞ

2pI0ðgÞ
; ð10Þ

and the wrapped Cauchy : fYðy; gÞ ¼
1

2p
sinhðgÞ

coshðgÞ � cosðy � bkðxÞÞ
; ð11Þ

where the expected (i.e. average) bearing estimate between the animal in question and detector
k is represented as a function, bk, of animal location x and scale parameter γ (and where I0 is
the modified Bessel function of order zero).

Given a set of data on capture histories of detected animals (O) and estimated bearings to
each detection (Y), parameter estimates for density (ϕ), detection function (θ) and bearing
error (γ) can be obtained by maximising the log of the likelihood in Eq (1). In practice the
required integrations in Eqs (1) and (2) are typically evaluated numerically using a grid of
points (see [21] for an example of this approach).

Case study: Estimating gibbon population density
Acoustic SECR data and bearing data were collected by surveyors at listening posts on a popu-
lation of northern yellow-cheeked gibbon Nomascus annamensis [22], in the Veun Sai-Siem
Pang Conservation Area in northeastern Cambodia between 1st Feb and 30th March 2010.
Like all gibbons, northern yellow-cheeked gibbon are strongly territorial with mated pair and
offspring (2–5 animals per group on average) defending their territories against other groups,
with little overlap. Territory size has not been extensively studied in the taxon, however based
on closely related gibbon species it is expected to be upwards of 30 ha. Previous studies have
estimated that yellow-cheeked gibbons can be heard from a maximum of of 1.5km in condi-
tions similar to the survey region [23–25].

A total of 13 replicate survey locations were sampled, which were spaced at least 4km apart
in order to avoid groups being detected at more than one survey location. Each survey location
consisted of a 1 by 3 linear array of listening posts spaced 500m apart to allow calls to be
detected at more than one listening post within an array (see Fig 1 and S1 Appendix for listen-
ing post locations). Each location was surveyed on a single day during the survey period, with
data being collected during a 4-hour observation period between 5.30am and 9:30am. Ten
observers participated in the survey, each of whom underwent four days of training in gibbon
survey methods at the site prior to the start of the survey (even though many had significant
existing experience). Observers at each listening post recorded the timing of calls and an esti-
mated compass bearing to each detected group. Recaptures—i.e. detections for the same group
at more than one listening post—were determined post hoc by the field team using the esti-
mated bearings and detection times. Where bearings from detections at multiple posts crossed,
and start and finish times of vocalisations were similar, these detections were assumed to repre-
sent the same group.

Detections of solo males were ignored for the purposes of the analysis since it is difficult to
determine whether they represent roaming individuals or members of a group [14]. Following
their removal, the survey data consisted of 123 separate detections of 77 calling groups, 36 of
which were detected at more than one listening post.

Four candidate SECR models were constructed with different combinations of the detection
function and bearing error sub-models described above. All models used the following assump-
tions: (i) detections were made independently; (ii) the shape of the detection function was the
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same for all listening posts; (iii) calling groups at zero distance from a listening post were
detected with certainty (i.e. θ0 = 1 in Eqs (4) and (5)); (iii) bearing estimation was unbiased for
all listening posts (i.e. the expected bearing b(x) was equal to the true bearing); and (iv) the pre-
cision of bearing estimates was the same at all listening posts.

All models were fitted using the statistical software environment R [26]. A function to evalu-
ate the marginal SECR log-likelihood, using a numerical method to approximate the integra-
tion step, was optimised using the nlm function (which implements a Newton-type algorithm)
to obtain maximum likelihood parameter estimates. Data from each array was treated as inde-
pendent and the full likelihood was therefore represented as a product of Eq (1). Confidence
intervals for parameter estimates for the preferred model were derived using a parametric boot-
strap with 999 re-samples. (See S1 Appendix for further details of the model fitting and model
selection procedures.)

Simulation 1: Comparing survey designs
A simulation study was carried out to assess the performance of the gibbon density estimator
with a variety of survey designs. Performance was assessed in terms of the bias and variance of
the estimator.

Separate simulations were conducted for each of the following listening post arrangements:
(i) 1 by 3 linear (as used in the original survey); (ii) equilateral triangle; (iii) 1 by 4 linear; and
(iv) 2 by 2 square. Each arrangement was assessed separately for three different listening post
spacing distances: 500m (as used in the original survey), 750m and 1000m.

Each simulation was performed by carrying out 5000 iterations of the following steps, using
the fitted parameters of the preferred model from the case study analysis as the underlying
truth: (i) generate true locations for an artificial population within a sufficiently large buffer

Fig 1. Listening post locations. Each of the 13 detector arrays for the case study survey consisted of a linear
arrangement of three listening posts spaced 500m apart.

doi:10.1371/journal.pone.0155066.g001
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zone around the listening posts (i.e. large enough to contain all plausible locations for the
detected groups); (ii) generate a single-occasion capture history and a corresponding set of
bearing estimates from the population; (iii) fit the preferred model to these data to obtain
parameter estimates, using the true parameter values to initialise the fitting procedure and the
same integration grid as in the case study analysis.

To investigate the utility of the estimated bearing data, the simulations were also repeated a
second time in which the simulated data were analysed using standard SECR estimation—i.e.
using the capture history data only and ignoring the bearing data.

SECR likelihood with stochastic availability
We extend the SECR likelihood to accommodate stochastic availability of animals for detection
on each sampling occasion. The likelihood is generalisable to any situation in which recaptures
are available across occasions and is applicable to SECR methods in general, with or without
supplementary data on location. We again use notation in generic form, but note that in the
case of gibbons the probability of being available for detection can be interpreted as the proba-
bility of calling.

We introduce the partially unobserved random vector α, which is a vector of indicator vari-
ables αis that take the value 1 if animal i was available for detection on occasion s and 0 other-
wise. If animal i is detected on occasion s then αis must be equal to 1 and its value is therefore
observed. However, if animal i is not detected on occasion s then two possible events could
have occurred—either animal i was not available, or animal i was available but was not
detected—in which case the value of αis is unknown. We also introduce the parameter ρ which
represents the probability that a given animal is available on a given occasion, i.e. P(αis = 1) = ρ.
As a consequence of this modification, the density parameter ϕ is reinterpreted as the density
of animals, instead of the density of available animals. Note also that by having a single param-
eter we implicitly assume that the probability of being available is constant across animals and
occasions.

To construct the extended form of the SECR likelihood we first redefine the detection func-
tion as giving the probability of an animal being detected on occasion s, given it’s location x
and given that the animal is available for detection on that occasion, i.e. pks(x; θ j αis = 1).

Next we obtain the following expression for the detection surface by summing over α,
which is defined as a Bernoulli random effect with parameter ρ (see S2 Appendix for deriva-
tion),

p:ðxi; θ; rÞ ¼ 1�
YS
s¼1

ð1� rÞ þ r
YK
k¼1

1� pksðxi; θ j ais ¼ 1Þ½ �
( )

: ð12Þ

Details on the derivation of Eq (12) are provided in S2 Appendix. Using this expression we
obtain a modified form for λ, the Poisson rate parameter,

lð�; θ; rÞ ¼ �

Z
R2

p:ðx; θ; rÞdx: ð13Þ

The conditional probability of the capture history data also needs to be reformulated by
summing over the random vector α. This leads to the following expression (see S2 Appendix
for derivation),

Pðωi j xi; θ; rÞ ¼
QS

s¼1ð1� rÞð1� oi:sÞ þ r
QK

k¼1 Bernðoiks; pksðxi; θ j ais ¼ 1ÞÞ
p:ðxi; θ; rÞ

; ð14Þ
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where ωi.s is an indicator that takes values 1 if animal i was heard by at least one detector on
occasion s and 0 otherwise.

Note that the likelihood presented in the previous section is a special case of this likelihood,
since if the probability of being available is known in advance to be equal to 1, then Eqs (12),
(13) and (14) simplify to the multi-occasion versions of Eqs (3), (2) and (8). Since the estima-
tion of ρ is not dependent on the presence of supplementary information on the locations, this
modification is also applicable to standard SECR models.

Simulation 2: Stochastic availability
To investigate the performance of the estimator with stochastic availability a second simulation
study was performed. Since previous research has suggested that the proportion of gibbons
groups in a population that call on a given day is in the region of 50% (e.g. [15, 18, 27]) a value
of 0.5 was used as the true value of the availability parameter ρ.

The stochastic availability model likelihood was fitted to 5000 simulated datasets using a
similar procedure to the first simulation study. In this case a single survey design was used: a 1
by 4 linear array of listening posts with 1000m spacing, a design which performed well in the
first simulation study. Because the calling probability was 0.5, the true density of groups was
chosen to be double the density of calling groups used in the first simulation in order to gener-
ate the same mean sample size (given that the availability parameter was set to 0.5). The half
normal detection function with the same scale parameter as the first simulation study was
used, but in this case the intercept (θ0) was set at 0.75 and estimated in each iteration, in order
to demonstrate the general applicability of the likelihood and the absence of identifiability
issues between θ0 and ρ. The same bearing model and integration grid was used as in the first
simulation study and the true parameter values were used to initialise the fitting procedure.

A three-occasion capture history was generated from each simulated dataset. This was
achieved by first simulating a three-occasion capture history from the population assuming
that all groups in the population called on each occasion. Then to simulate stochastic availabil-
ity, each occasion-specific capture history for each group (i.e. each ωis) was set to zero for all lis-
tening posts with probability 1 − ρ. The positions of gibbon groups were also kept constant
between survey occasions. Whilst this is unlikely to be a realistic assumption in practice, it
enabled bias and variance properties of the parameter estimates to be more easily determined.

Results

Case study analysis
The model with the lowest AIC score had a half normal detection function and the von Mises
distribution for the bearing estimates. A summary of parameter estimates for this model is
given in Table 1 and Fig 2 illustrates the fitted sub-models and parametric bootstrap intervals.

Table 1. Results of the case study analysis. Parameter estimates and parametric bootstrap intervals for
the preferred model. Density units are the number of calling groups km−2 and the units of the detection func-
tion scale parameter θ1 are in metres.

Parameter Estimate Lower 95 Upper 95

Density of calling groups (ϕ) 0.3197 0.1916 0.4925

Detection function scale (θ1) 1247 1009 1563

Bearing error scale (γ1) 72.44 42.66 132.60

doi:10.1371/journal.pone.0155066.t001
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The estimated density was approximately 0.32 calling groups km−2 and the detection func-
tion scale parameter was approximately 1250m, which is consistent with prior expert knowl-
edge. The average effective sampling area for each 1 by 3 array of listening posts was therefore
estimated to be 18.5 km2, with a 95% CI of (12.0, 30.9).

To put our density estimate into context, we also applied two alternative methods for com-
parison: the traditional ‘maximum listening distance’ technique, and the ‘effective detection
radius’ technique of [15]. Using the traditional approach, with a maximum listening distance
of 1500m, the estimated effective sampling area was calculated to be 10.05 km2 per array,
which resulted in a density estimate of 0.59 calling groups km−2. Applying the approach of
[15], using the fitted detection function from Fig 2 to calculate the effective radius (which was
estimated to be approximately 1760m) lead to an estimated effective sampling area of 13.25
km2 per array and a density estimate of 0.45 calling groups km−2.

Fig 2. Results of the case study analysis. Fitted detection function (a), bearing error distribution (b) and
detection surface for the first array (c) for the preferred model. Dotted lines in plots (a) and (b) show 95%
parametric bootstrap confidence intervals. Axis units in plot (c) are in metres.

doi:10.1371/journal.pone.0155066.g002
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Simulation 1 results: Comparing survey designs
Results from the first simulation study are summarised in Table 2. The main conclusions from
this study are:

1. SECR with bearings outperformed standard SECR for all designs. Estimator variance (mea-
sured in terms of the estimated root mean squared error) and estimator bias were both con-
sistently higher for standard SECR. Observed bias ranged from 0.9% to 2.8% for SECR with
bearings and 2.9% to 76.8% for standard SECR. The distributions for density estimates for
standard SECR were also considerably more diffuse.

2. Increasing the listening post spacing reduced the variance for all designs. Increasing the lis-
tening post spacing also reduced the bias for all designs when using standard SECR; how-
ever there was no discernible effect of post spacing on bias for SECR with bearings.

3. Linear arrays yielded lower variance than non-linear arrays of the same size. For example, 1
by 3 arrays showed lower variance than triangular arrays at all post spacings. Linear arrays
also yielded lower bias than non-linear arrays of equivalent size for standard SECR; however
the effect of array shape on bias for SECR with bearings was unclear.

4. Larger arrays yielded lower bias and variance than smaller arrays at all post spacings, with 1
by 4 arrays outperforming 1 by 3 arrays, and 2 by 2 arrays outperforming triangular arrays.

Given the performance of the alternative survey designs when using SECR with bearings,
these results suggest that the design used in the survey is slightly suboptimal. Overall, the best
listening post arrangement of those investigated appears to be the 1 by 4 array with a post spac-
ing of 1000m. However, even at 500m spacing the 1 by 4 array outperformed both the 1 by 3
and triangular arrays at 1000m spacing, suggesting that increasing array size might lead to a
greater improvement in performance than increasing the post spacing within each array.

Simulation 2 results: Stochastic availability
Results from the simulation study with stochastic availability are summarised in Table 3. The
main conclusions from this study are:

1. The observed bias for all model parameters was low—i.e. less than 1%.

2. Estimation of the detection function intercept θ0 was not confounded with the availability
parameter ρ—i.e. there were no issues with parameter identifiability.

Table 2. Results of the first simulation study. Percentage bias and root mean squared error (in brackets) are given for density estimates.

Model Array 0.5 km 0.75 km 1 km

SECR + Bearings 3 by 1 2.78 (0.080) 1.92 (0.065) 1.99 (0.062)

Triangular 1.82 (0.089) 1.97 (0.074) 1.75 (0.067)

4 by 1 0.96 (0.057) 1.12 (0.049) 0.91 (0.046)

2 by 2 1.08 (0.067) 1.00 (0.056) 1.15 (0.050)

SECR 3 by 1 19.73 (0.273) 6.21 (0.167) 4.19 (0.121)

Triangular 76.73 (0.523) 23.14 (0.294) 10.27 (0.204)

4 by 1 4.42 (0.151) 3.39 (0.096) 2.89 (0.074)

2 by 2 30.29 (0.326) 10.54 (0.199) 3.26 (0.132)

doi:10.1371/journal.pone.0155066.t002
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Discussion

Case study analysis
Our density estimate of 0.32 calling groups km−2 was considerably lower, and our estimate of
18.5 km2 for the effective sampling area considerably higher, than that of both of the alternative
techniques which were applied for comparison. The SECR results therefore imply that, at least
for this study population and the survey design used, the maximum listening distance and
effective listening radius techniques may both be prone to positive bias due to underestimation
of the effective sampling area. The degree of bias in this case was most severe for the maximum
listening distance method, although in general we would expect the size and direction of bias
associated with this technique to depend on the true detection function and the number and
spacing of listening posts within each array. For the the effective listening radius method we
would expect the degree of bias to be worse for larger arrays, smaller listening post spacings,
non-linear arrays and wider detection functions. There is also likely to be an additional source
of error associated with the estimated distances which are required by the effective radius
method in order to fit a detection function (in our comparison we used the estimated detection
function obtained from the SECR analysis).

Drawing comparisons between our density estimate and the results of previous surveys of
Nomascus gibbons is problematic as the genus has suffered significant population declines
across its range with population densities being largely determined by local threat levels [28].
However the Veun Sai-Siem Pang Conservation Area, where this study was conducted, is con-
sidered to have close to natural densities with little evidence of recent historical hunting. In this
case the most relevant population for comparison, due to its broadly similar habitat, low threat
levels and close phylogenetic relationship to N. annamensis, is that of N. gabriellae in Seima
Protection Forest, Mondulkiri Province, Cambodia. [18] estimated the density of this popula-
tion to be approximately 0.40 calling groups km−2, using 24 single-post arrays and a listening
distance of 1500m, which is broadly consistent with our estimate of 0.32 calling groups km−2.
However, without information on the shape of the detection function, the degree and direction
of possible bias for the N. gabriellae estimate is difficult to determine.

Simulation study to compare survey designs
The results of the first simulation study suggest that the survey design used in the case study
may lead to a 2–3% positive bias when estimating calling group density using SECR with bear-
ings. Our results suggest that relatively modest alterations to this design are likely to improve
precision and reduce bias. However, whether or not these alterations are worth the efficiency
gains in practice will depend on the additional costs involved, e.g. in terms of staff resources
and transit time required to reach the listening posts.

Table 3. Results of the second simulation study. Bias, root mean squared error (RMSE) and coefficient of
variation (CV) are shown for all model parameters. Each simulation used three sampling occasions and 13
replicates of a 1 by 4 array, with 1000m spacing between listening posts in each array.

Parameter Bias (%) RMSE CV (%)

Density of groups (ϕ) 0.93 0.08 11.94

Detection function intercept (θ0) 0.16 0.05 6.88

Detection function scale (θ1) 0.05 0.06 4.63

Bearings scale (γ) -0.26 9.64 13.41

Calling probability (ρ) 0.06 0.05 9.46

doi:10.1371/journal.pone.0155066.t003
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In general, the optimal spacing of detectors is likely to depend on the detection function
scale parameter. Detectors need to be far enough apart that detection probability falls off very
substantially over their range (otherwise there is insufficient information in detections about
the detection function form). They also need to be close enough together to generate a suffi-
cient number of recaptures on different detectors. The optimal arrangement of listening posts
may therefore depend on factors such as the vocalisation propagation distance of the study spe-
cies and the characteristics of the habitat being surveyed; for example, if the range of the detec-
tion function is relatively narrow then closer spacings may be preferred. However, for a
detection function scale parameter of 1250m, our results suggest that increasing the listening
posts spacing from 500m to either 750m or 1000m would be likely to improve estimator
precision.

Sub-optimal listening post spacing also provides a possible explanation for why the linear
arrays tended to outperform non-linear arrays of the same size; since linear arrays had larger
maximum distances between posts they would therefore have contained more information on
the form of the detection function.

Simulation study with stochastic availability
In addition to choosing an appropriate array design we also recommend the use of the multi-
occasion SECR model with stochastic availability for future population assessment of gibbon
species. Providing groups can be identified across days, this approach allows estimation of
group density via simultaneous estimation of the proportion of groups calling on a given day.
This is a better approach than estimating calling probability externally to the acoustic survey,
since individual, temporal and spatial variation may render such estimates unsuitable.

The simulation with stochastic availability also shows that the detection function intercept,
θ0, can be estimated at the same time as calling probability. The ability to estimate θ0 is likely to
be useful for multi-occasion surveys of gibbons. For a multi-occasion SECR model we assume
that groups have a fixed home range centre, as opposed to fixed physical locations. This dis-
tinction is important for gibbon groups since they are unlikely to occupy the same physical
location within their home ranges on each occasion. For a multi-occasion survey the detection
function is therefore a combination of the probability of detecting a group, given a group’s
physical location, and the movement of groups between occasions. In this case θ0 represents
the detection probability of a calling group whose home range centre is at zero distance from
the listening post, and is unlikely to equal 1.

Extensions and applications
A useful extension to the approach outlined here would be to include covariates (although
these were not available for our data). For example, heterogeneity in calling probability could
be incorporated via a inverse logit transform of a linear combination of covariates such as site,
season and weather conditions. Similar modelling approaches could be used to estimate detec-
tion function and bearing error scale parameters separately for each observer in order to
account for differences in expertise. Estimated distances could also be incorporated in addition
to estimated bearings—for example using a gamma or log-normal distribution—since these
data can quite easily be collected in the field. However, the potential improvement this addi-
tional information might confer in terms of the precision of the density estimate will depend
on the precision of the estimated distances.

Remote acoustic recording devices, which have been used in previous population assess-
ments of primates [29] and SECR studies of non-primate species (e.g. [7, 9]), may be a potential
alternative method of data collection that could eliminate the effects of any observer bias.
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Provided recaptures can be accurately identified, supplementary data on group location such
as signal strength and time-of-arrival could then be used within the modified SECR framework
in place of estimated bearings and distances.

The chance of capture from acoustic surveys is generally high for gibbons, given a suffi-
ciently long observation period within each sampling occasion and provided that the survey
avoids rainy periods and is not in areas with high hunting pressure (both of which will suppress
vocalisation frequency). However, in cases where small sample size is due to low recapture
rates this may be compensated by optimising the survey design (e.g. using closer listening post
spacings) and in cases where the underlying population density is low this may require the use
of additional listening posts per array or additional arrays. Whilst it is not standard practice for
surveys of gibbon species, the use of playbacks to induce vocalisations may also be an option
worth considering in cases when the survey design cannot be optimised to yield an adequate
sample size.

We also note that the methods outlined above provide estimates of density for the covered
area only. Extrapolation to the wider survey area would need to account for the additional
component of variance due to inter-array variation in the encounter rate. However, methods
for incorporating this additional component of variance will depend on the survey design (e.g.
in terms of the number and placement of the arrays) are yet to be developed in the context of
SECR models.

In addition to gibbons, population assessments for a variety of vocally territorial primate
species have also been conducted by mapping estimated locations via triangulation of calls,
with examples including Dian’s tarsier Tarsius dianae [30], indri Indri indri [31], black howler
monkey Alouatta pigra [32] and Andean titi monkey Callicebus oenanthe [33]. Similar survey
techniques to those described here have also been used for vocalising non-primate species such
as coyote Canis latrans [34]. We anticipate that the SECR methods outlined above will provide
a viable means of obtaining reliable density estimates for such species.

Supporting Information
S1 Appendix. Supplementary details on the case study analysis. This includes listening post
UTM coordinates, starting values used for the fitting procedure, the rationale for the choice of
integration grid and AIC values for all candidate models.
(PDF)

S2 Appendix. Derivation of components for SECR likelihood with stochastic availability.
Derivation of Eqs 12 and 14.
(PDF)
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