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Abstract:    To improve lubrication effect and seal performance, complicated geometrical hydrodynamic grooves or patterns are 
often processed on end faces of liquid lubricated mechanical seals. These structures can lead to difficulties in precisely estimating
the seal performance. In this study, an efficient adaptive finite element method (FEM) algorithm with mass conservation was 
presented, in which a streamline upwind/Petrov-Galerkin (SUPG) weighted residual FEM and a fast iteration algorithm were 
applied to solve the lubrication equations (Reynolds equation). A mesh adaptation technique was utilized to refine the computation 
domain based on a residual posterior error estimator. Validation, applicability, and efficiency were verified by comparison among 
different algorithms and by case studies on seals’ faces with different groove structures. The study investigated the influence of the
order of shape function and the mesh number on the leakage balance. Mesh refinement occurred mainly in cavitation zones when 
cavitation happened, otherwise it occurred in regions with a high pressure gradient. Numerical experiments verified that the 
proposed algorithm is a fast, effective, and accurate method to simulate lubrication problems in the engineering field apart from 
end face seals. 
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1  Introduction

Liquid lubricated end face seals are mainly used 
to prevent a high pressure medium from escaping out 
of the machine. It includes a couple of stators and 
rotors respectively sitting on the house and axial of 
the rotary machinery. Between end faces of the cou-
ples, there exists liquid lubrication film to avoid the 
direct contact and severe wear. The end faces are 
often etched or machined with complicated geomet-
rical hydrodynamic grooves to improve the lubrica-
tion state, decrease temperature rise and minimize
leakage. These groove structures (Fig. 1) include 
spiral groove, circular groove, rectangle groove, and 

even surface textures. According to mechanical seals, 
the flow rate or leakage rate is a more important 
performance parameter than journal bearings or thrust 
bearings. However, it is difficult to precisely evaluate 
the leakage rate of mechanical seals because of the
existence of complex hydrodynamic grooves and the 
cavitation effect resulting from Poiseuille flow and 
Couette flow of the lubrication film.

According to the classical lubrication theory, the 
leakage rate is proportional to the film pressure gra-
dient distribution along the normal direction of the 
leak boundary. Therefore, it is important to derive the 
exact film pressure distribution and pressure gradient 
from the lubrication governing equation—Reynolds 
equation. There are three major factors leading to 
difficulties in achieving a solution, i.e., (1) cavitation 
effect with mass conservation which implies prior
uncertainties on the division of cavitation and full
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film zones, (2) convention dominated problems from 
elliptic-hyperbolic type equations which leads to 
unstable solutions under the high Peclet number
(Zienkiewicz and Taylor, 2000), and (3) complicated 
hydrodynamic groove structures where the film 
thickness is discontinuous and high pressure differ-
ences between faces which cause more complex 
pressure distribution than bearings.

Nowadays, plenty of mathematical models and 
numerical algorithms have been proposed since Jak-
obsson and Floberg (1957) and Olsson (1965) pre-
sented the JFO cavitation theory. It is now the only 
boundary condition preserving mass conservation of 
fluid films. The finite difference method (FDM) 
(Payvar and Salant, 1992), finite volume method 
(FVM), finite element method (FEM), boundary el-
ement method (BEM) (Yu and Keith, 1995), and 
space-time conservation element and solution ele-
ment method (CE/SE) (Cioc and Keith, 2003; Cioc et 
al., 2003) were used to solve the linear or nonlinear 
equation group deduced from the Reynolds equation. 
It is widely accepted that Elrod and Adams (1975) 
and Elrod (1981) initialized the successful numerical 
algorithm. A universal equation was proposed to de-
scribe the lubrication film by assuming that the film 
was compressible in non-cavitation zone and liquid/
gas mixture exists in the cavitation zone, which was 
called the -g model. The FDM was chosen to solve 
the governing equation by central and upwind dif-
ference styles (Vijayaraghavan and Keith, 1990a; 
1990c). To improve the computational efficiency, 
Brewe (1986) introduced a multi-grid technology into 
the Elrod algorithm and analyzed the performance of 
the bearings. Pavyer and Salant (1992) presented an 
FVM algorithm where convection items of the 

equation were handled by a back difference method 
and an alternating direction iterative (ADI) technique 
was applied to speed the computational convergence. 
Because the above -g model gives an unrealistic 
fluid film fraction (larger than 1) in the full film re-
gion for the numerical reasons from the choice of 
proper bulk modulus, a p- model is frequently used 
in various studies, where the JFO cavitation boundary
is converted into a complementarity condition. Ac-
cording to the model, Ausas et al. (2007; 2009) pre-
sented an effective relaxation scheme to update the 
solution of satisfying complementarity conditions. 
Due to the capability of FEM to create a complex 
boundary, it was first introduced into the prediction of 
cavitation regions with the JFO theory by Kumar and 
Booker (1991; 1994) and Boedo and Booker (1995),
who used Murty (1988)’s algorithm to distinguish the 
film rupture and reformation boundaries. Bonneau et 
al. (1995) and Optasanu and Bonneau (2000) used 
this technique to analyze dynamically loaded bear-
ings. Bayada et al. (1990; 1998; 2006) and Durany et 
al. (1997; 2006) treated the cavitation as a free 
boundary problem and gave a series of detailed veri-
fications. They used characteristic-Galerkin FEM and 
a duality iteration method to stabilize the solution. 
Giacopini et al. (2010) applied a linear complemen-
tary problem (LCP) method to deal with the com-
plementarity condition and validated the algorithm on 
the textured bearings and squeeze film dampers in a
1D model. Hajjam and Bonneau (2004; 2007) and 
Fatu et al. (2005) proposed a modified p- FEM al-
gorithm where a high order shape function in a
non-cavitation zone and a low order shape function in 
a cavitation zone were used to simulate the lip seal 
and dynamically loaded journal bearings. Schweizer 
(2009) rewrote the Reynolds equation and JFO cavi-
tation boundary to an arbitrary Lagrangian-Eulerian 
(ALE) problem and the FEM formulation was pre-
sented to solve some numerical examples. Due to the 
prior uncertainty and irregularity of film rupture and 
reformation boundaries, an adaptive mesh-refinement 
technique is frequently used to improve the compu-
tational accuracy. Vijayaraghavan and Keith (1990b)
applied a grid transformation and adaption technique 
in the cavitated journal bearings. Case studies verified 
a better accuracy and lower time-consumption. 
Moreover, Nilsson and Hansbo (2007) applied an 
adaptive FEM for hydrodynamic lubrication. A 

Fig. 1 Schematics of groove pattern on seal face
(a) Laser surface texture; (b) Spiral groove; (c) Laserface; (d)
Partially distributed laser surface texture
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posteriori error estimator and adaptive algorithms 
were discussed in detail with a pity of a non-mass-
conserving formulation used.

In this paper, an effective mass-conserving finite 
element algorithm is provided for predicting the seal 
performance of liquid lubricated end faces etched 
with complex hydrodynamic grooves. A stream-
upwind/Petrov-Galerkin (SUPG) weighted residual 
method was implemented to the compressible Reyn-
olds equations and an FEM formulation was deduced. 
A fast and stable block iteration algorithm in (Shi and 
Salant, 1999; Shi and Paranjpe, 2002) was applied to 
deal with the JFO boundary condition. Film pressure 
and density distribution were solved simultaneously
conforming to the complementarity condition. Then a 
classical residual posterior error was estimated, ac-
cording to which the computation domain meshes 
were refined and the FEM formation was solved it-
eratively. Case studies were conducted to validate the 
effectiveness and efficiency of the algorithm for some 
conventional liquid face seals. Mass conservation 
characteristics and seal performance were compared 
by different orders of FEM shape functions and mesh 
adaptation techniques.

2 Mass-conserving finite element model and 
mesh adaptation algorithm

2.1  Governing equations

According to the lubrication film between two 
end faces, by applying the conventional hypothesis of 
lubrication theory, where the flow is assumed to be 
laminar and isothermal and the inertial force is ne-
glected, the film pressure p can be solved from the 
compressible Reynolds equation in the orthogonal 
coordinates form

3 3

12 12
1 ( ) 1 ( ) ,
2 2x y

h p h p
x x y y

h hU U
x y

       (1)

where h is the seal clearance or film thickness be-
tween two faces, and represents the dynamic vis-
cosity of lubricants. U=(Ux, Uy) describes the velocity 

of the rotor face in the x-y coordinates. When cavita-
tion happened, fluid film can be subdivided into two 
regions, full film zone and cavitation zone. The 
common boundaries of the two zones are called film 
rupture boundary and reformation boundary accord-
ing to whether fluid starts to cavitate or reforms. In 
the full film zone, the lubricants are viewed as in-
compressibility, so the density is constant (equal to 
the density of fluid film L) and the pressure p is 
larger than the cavitation pressure pc (in this study, we 
suppose pc=0). In the cavitation zone, a liquid/gas 
mixture exists, so < L and p=pc. Then Eq. (1) can be 
rewritten as follows, which is an elliptic equation in 
the full film zone and a hyperbolic equation in the 
cavitation zone:
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with a boundary condition on film rupture and 
reformation boundaries in the form of

3
L
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where Un is the velocity along the normal direction n.
Boundary condition Eq. (3) preserves the mass 

conservation across the film rupture and reformation 
boundaries. If the film reformation boundary em-
ploys the same formula as the film rupture boundary, 
then the boundary is called a “Reynolds cavitation 
boundary”. For computational convenience, a new 
variable = / L, named as the film fraction, is in-
troduced, then Eq. (2) can be written in the following 
form in both the full film zone and cavitation zone
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with complementary condition (CC) in the form

1, 0, in full film zone,
0 1, 0, in cavation zone.

p
p

(5)

Eq. (4) with Eq. (5) is called the p- cavitation 
model, which is an elliptic-hyperbolic equation sim-
ilar to the transonic potential flow (Vijayaraghavan et 
al., 1991). This equation is also a convection-
diffusion-reaction equation. The p- model can be 
converted to an LCP and solved by Murty (1988)’s
algorithm or some suitable pivoting algorithm like in 
(Giacopini et al., 2010).

Once the film pressure p is solved, the seal per-
formance parameter such as the open force Fo and 
leakage rate Q can be easily calculated by

3

o i(o)d , d ,
12
h pF p Q l

n
(6)

where is the computational domain, that is the fluid 
film region, and l is the leakage boundary of the end 
faces. The subscriptions i and o represent the inner 
boundary and outer boundary of the seal faces.

2.2 Finite element variational formulation

To compute Eq. (4) with Eq. (5) by the FEM, 
triangular mesh is used to discrete the whole domain. 
The groove boundary conforms to the mesh edge, by 
which the different film thickness can be strictly en-
dowed to the groove zones and non-groove zones. A
Galerkin method is chosen to handle the elliptic part 
of Eq. (4) and the SUPG stabilized method is per-
formed to manage the hyperbolic part by adding a
numerical diffusion term (artificial viscosity) along 
the streamline direction (Evans, 1997; Zienkiewicz 
and Taylor, 2000). So the following integral weak 
form of Eq. (4) can be obtained by the way of inte-
gration by parts (Hajjam and Bonneau, 2004; 2007),
in addition of Eq. (5) on the transition boundaries 
between the full film and cavitation zone
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where w is a differentiable function defined in domain 
and SUPG is the stabilization parameter which has 

the following form (Evans, 1997; Zienkiewicz and 
Taylor, 2000)

SUPG T
2 2
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x y
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where hT is the characteristic length of each element 
in the direction of velocity U(Ux, Uy). That means 

SUPG varies on each element.
Let w=N, p=piNi, and = iNi, where N is linear or 

quadratic depending on the order of the shape func-
tion. The weak variational form of Eq. (7) is written
as

0,p
ij j ij jK p K                              (8)

where K is the stiffness matrix which can be deter-
mined by

3

SUPG 2

d
12

1 d
2

1
4

d .

j jp i i
ij

j j
ij i x y

i i
x y

j j
x y

N NN NhK
x x y y

N N
K hN U U

x y

N N
h U U

x y
N N

U U
x y

(9)

To solve Eq. (8) with Eq. (5), it is convenient to 
introduce another universal variable here. The form
is
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(1 ) ,Fp F                     (10)

where F is the zone indicator, which is 1 in the full 
film zone and 0 in the cavitation zone. That is to say, 

is equal to pressure p in the full film zone and to 
film fraction in the cavitation zone. Substituting 
Eq. (10) into Eq. (8), we can obtain:

,ij j ij jA K F                              (11)

where

( ),p
ij ij ij ij ij ijA K C K I C              (12)

where I is an identity matrix, and C is a matrix where 
all entities are zeros except the diagonal entities filled 
with zone indicator Fi.

An iteration procedure is performed to obtain the 
pressure and density distribution. Before iteration, 
matrixes Kp and K are computed with the Gauss 
integration method from Eq. (9) by assembling all the 
element stiffness matrixes. Then the lubrication re-
gion is initially assumed to be in full film zone, that 
means F=1. Matrix A is calculated according to 
Eq. (12). Eq. (11) is solved by the generalized mini-
mal residual method (GMRES) iteration technique 
and the derived variable is checked whether Eq. (5) 
is satisfied. If Fj=1 and j<0, then let Fj=0; if Fj=0 
and j>0, then let Fj=1. If conforms to F, the 
convergent solution is gained; if not, the iteration 
procedure should be continued. The following case 
studies shows that 6–12 iterations should be con-
ducted before convergent solutions are obtained. Note 
that different from Hajjam (2007)’s algorithm, the 
global stiffness matrix K of the present algorithm is 
computed only once during computation, so the al-
gorithm is very fast and effective.

2.3  Adaptive mesh-refinement technique

Because the cavitation zone and non-cavitation 
zone are not distinguished until a stable solution is 
computed, the initial little uniform FEM meshes re-
sults in large computational errors. A remedy is the 
adaptive mesh-refinement technique, where the 
meshes are refined according to the residual posteriori 
error of the unknown variable . The following no-
tation similar to that in (Hajjam and Bonneau, 2004; 

2007) is defined to avoid the jump of across the 
film rupture and reformation boundaries:

,          full film zone,
1 ,     cavitation zone.
p

D                     (13)

Then the local residual a posteriori error can be 
evaluated for every element by 
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where T and L respectively are the set of elements and 
edges, T is the longest radius of T, l is the length of 
element edge l, and [ D/ n] is the jump of function 
D/ n across the edge. According to Eq. (14), both 

the posteriori error of pressure in the full film zone 
and film fraction in the cavitation zone can be sim-
ultaneously solved. Meanwhile, the film rupture and 
reformation boundary position error can be estimated 
although unknown variable is discontinuous.

Once is computed, we can use it to adapt and 
update the meshes. The new mesh size k+1 is given by 

1
1 2

,
min( ,max( , / ))

k
k

k kc c
             (15)

where is used to control the triangular meshes sizes. 

k is the mean of in all element meshes. c1 and c2

are used to control the size of refinement or coarse-
ness region. Here, c1=3 and c2=1/3 are chosen to 
avoid a generation of too thin or too dense meshes. 
From Eq. (15) we can deduce that the larger the local 
residual a posteriori error is the smaller the mesh 
size is, i.e., the meshes where the local error is large 
are refined.
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3 Validations and case studies

3.1  Validations

To validate the present algorithm, a comparison 
was conducted according to a classic journal bearing 
in (Elrod, 1981) and a seal face with one dimple in 
(Qiu and Khonsari, 2009), which are shown in Fig. 2 
and Fig. 3, respectively. We can see that the present 
algorithm gives similar pressure distributions for the 
journal bearing and face seal, indicating that the pre-
sent algorithm is valid. 

To further verify the efficiency of the algorithm, 
a comparison was made among different models and 
algorithms for a seal face etched with only one dimple 
(its radius is 1.5 mm). These algorithms are the pre-
sent algorithm (JFO-FEM), finite difference method 
with JFO cavitation theory (JFO-FDM) from (Ausas 
et al., 2007; 2009) and FEM with Reynolds cavitation
boundary condition (REYNOLDS-FEM). According 
to REYNOLDS-FEM, Uzawa’s algorithm (Ito and 

Kunisch, 2003) was applied to assure pressure satis-
fying the Reynolds boundary condition. Table 1 lists 
the value of the face geometrical parameters and op-
erating parameters. Fig. 4 shows the pressure and film 
fraction distribution obtained from the above algo-
rithms, respectively. We can see that JFO-FEM gives 
a similar pressure and density distribution to those 
from JFO-FDM. The cavitation zone (Figs. 4d and 4e) 
and maximum film pressure (Figs. 4a and 4b) show an 
excellent agreement between the two algorithms. 
Fig. 4c shows the pressure distribution from 
REYNOLDS-FEM. The maximum film pressure is 
larger than that in Figs. 4a and 4b from the JFO 
models. Furthermore, a larger cavitation zone in Fig.
4c is also found. All these results illustrate that the 
Reynolds cavitation boundary condition cannot pro-
vide accurate seal performance predictions.

Fig. 4f gives a comparison among the above 
three algorithms on a cost time for computation t and 
the seal performance parameter, including open force 
Fo and flow rates, Qi and Qo. Flow rate and open force 
show an excellent agreement between JFO-FEM and 
JFO-FDM. Due to JFO model’s mass conservation, 
flow rate (leakage rate) Qi is approximately equal to 
Qo. This demonstrates the accuracy of the present 
model and algorithm. Although more meshes were 
used for the current algorithm (30044 triangular 
meshes) than JFO-FDM (25 ×91 structured meshes), 
it performed in a very high efficiency which is almost
180 times higher than the later. The REYNOLDS-
FEM algorithm also had a very high computation 
efficiency (the computation time is 6.92 s according 
to 30044 triangular meshes) as JFO-FEM does,
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Fig. 2 Numerical results validation 

Fig. 3 Pressure distribution comparison with one dimple by the present algorithm (a) and Qiu and Khonsari (2009) (b)
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and it overestimates the open force Fo by 13.8% and 
yields an unequal leakage rate between Qi and Qo with 
a bias of 11.6%. All numerical results in Fig. 4 show 
that the current algorithm has a high efficiency and 
precision.

To examine the applicability of the current al-
gorithm, in the following sections, some case studies 
were conducted on the seal performance prediction of 
the conventional mechanical seals such as laser tex-
tured surface (LST), spiral groove surface (SGS), 
laserface surface (LFS), etc. These end face structures
are shown in Fig. 1. The seal face geometrical pa-
rameters and operating conditions listed in Table 1 are 
used to evaluate the film pressure distribution and seal 
performance.

3.2  Case study 1: LST mechanical seal

Etsion and Michael (1994), Etsion and Burstein 
(1996), and Etsion et al. (1999) invented LST

mechanical seals (LST-MS), of which the surface is 
etched with regularly distributed micro-dimples. The 
dimples act as numerous micro-bearings between seal 
faces by which the seal performance and resistance to 
wear are greatly improved. In (Etsion and Michael, 
1994)’s mathematical model, the Reynolds cavitation 
boundary condition is always applied, which 

Table 1 Seal face geometrical parameters and operating 
condition

Parameter Value
Inner radius of end face, ri (mm) 24
Outer radius of end face, ro (mm) 34
Inner pressure, pi (MPa) 0.1
Outer pressure, po (MPa) 0.3
Seal faces gap, hi ( m) 2
Groove or dimple depth, hg ( m) 1.5
Viscosity of lubricants, Pa·s 1×10 3

Rotation speed, r/min 1500

Fig. 4 Numerical results comparisons
Pressure distribution of JFO-FEM (a), JFO-FDM (b), and REYNOLDS-FEM (c), film fraction from JFO-FEM (d) and JFO-FDM
(e), and seal performance parameters comparison (f)

(a) (b) (c)

(d) (e)

(f)

p (MPa) p (MPa) p (MPa)

JFO-FDM REYNOLDS-FEM JFO-FEM
0

5

10

400

500

600 Qo (ml/h)
Qi (ml/h)
Fo (N)
 t (s)

S
ea

l p
er

fo
rm

an
ce



Meng et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014 15(3):172-184 179

overestimates the open force and is a non-mass
-conservative as mentioned above. Here, our JFO-
FEM algorithm was used to recalculate the seal per-
formance and pressure distribution. 

Fig. 5 shows the results from solving for 
LST-MS. Fig. 5a is the final FEM meshes after a few 
adaptations. We can see that the mesh refinement 
zones are clearly recognized in the cavitation region, 
which means larger local errors occur here. From 
Eq. (2) we know that governing equation describing 
the non-cavitation region is elliptic and that describ-
ing the cavitation region is hyperbolic. Meanwhile, 
the same order shape function of FEM elements are 
used in the lubrication region, so computation accu-
racy in the cavitation region is lower than in the full 
film region. Fig. 5b illustrates the film pressure dis-
tribution. It can be seen that the local maximum 
pressure exists at the convergent step of every dimple, 
while the cavitation occurs at the divergent step. 
Moreover, the global maximum pressure appears at 
the high pressure side. Fig. 5c shows the density dis-
tribution of LST-MS, where =1 means the zone be-
longs to the full film zone and <1 determines the 
cavitation zones. The cavitation zone area of every 

dimple increases along the radial direction from the 
outer side to inner side. This indicates that low pres-
sure can easily lead to occurrence of a cavitation. To
further improve the dynamic effect of micro-dimples, 
a partially distributed LST-MS (PLST-MS) is intro-
duced by Etsion and Michael (1994). Figs. 5d–5f
show the computation results of PLST-MS with 4×4
micro-dimples. Mesh refinement zones are also lo-
cated in the cavitation region just as in LST-MS. The 
apparent ‘accumulation effect’ can be seen in Fig. 5e. 
The local maximum pressure of every dimple in-
creases from the inner side to outer side and along the
film flow circumference direction. Local minimum 
density (Fig. 5f) shows the same rules as the maxi-
mum pressure does. Comparisons were made on the 
seal performance with different mesh numbers, orders 
of FEM shape function N, and mesh adaptation. 
Simulation results of LST and PLST are listed in 
Table 2. We can see that the mesh number, order of N
and mesh adaptation have little influence on the open 
force Fo, while the leakage rate is greatly influenced 
by these factors. The higher order shape function and 
larger mesh number give a more accurate evaluation 
of the balance between Qi and Qo, defined as 

Fig. 5  Mesh of LST-MS (a) and PLST-MS (d) with refinement, pressure distribution of LST-MS (b) and PLST-MS (e),
and density distribution of LST-MS (c) and PLST-MS (f)

(a) (b) (c)

(f)(e)
(d)
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2|(Qo Qi)/(Qo Qi)|. JFO-FEM with a mesh adaptation 
technique with the first order of N gives about the same 
accuracy of the leakage rate as JFO-FEM without an 
adaptation technique with the second order of N. These 
results demonstrate that the proposed mesh adaptation 
JFO-FEM algorithm has high applicability and accu-
racy for analyzing seal performance and optimizing 
micro-dimples’ distribution of LST-MS.

3.3  Case study 2: spiral groove end face seals (SGS)

In this section, another case study was conducted 
according to spiral groove end face seals (SGS) where 
spiral grooves were etched to improve their hydro-
dynamic effect. Fig. 6 illustrates the computation 
region meshes with and without mesh adaptation and 
the final pressure distribution. We can see that the 
mesh refinement mainly happens at the steps and 
sharp corners of the spiral grooves where the high 
pressure gradient occurs. The hydrodynamic effect of 
spiral grooves leads to a high pressure distribution at 
the sharp corner and a low one at the entrance of the 
grooves. Under the current geometric structure and 
operating conditions used, no cavitation zone is pre-
dicted. Table 3 lists the influence of the mesh number, 
order of shape function N, and mesh adaptation on the 
computation accuracy of the SGS’ seal performance. 
Same as in LST-MS, a large mesh number, high order 
of N, and mesh adaptation technique give rise to high
accuracy on the balance between Qi and Qo, while 
having little impact on the open force Fo. Compared 
with LST, SGS shows a more excellent hydrodynamic
and severe leakage rate. This case study demonstrates
that the current JFO-FEM algorithm and mesh

adaptation technique are applicable and effective in 
precisely estimating seal performance of end face 
seals with no cavitation occurrence.

Table 2 Influence of mesh, order of N, and adaptive technique on seal performance of LST-MS and PLST-MS

End
face Algorithm Mesh number Order of N Fo (N) Qo (ml/h) Qi (ml/h) 2 o i

o i

Q Q
Q Q

LST
JFO-FEM

without adaptation

2694
1 385.910 12.897 10.828 17.44%
2 385.195 10.219 9.986 2.30%

5544
1 386.781 10.729 10.437 2.76%
2 384.774 10.578 9.817 7.46%

JFO-FEM with adaptation 15165 1 390.453 10.587 10.144 4.28%

PLST
JFO-FEM

without adaptation

7112
1 401.779 13.375 10.131 27.60%
2 400.987 9.761 9.995 2.37%

8978
1 402.588 9.990 10.148 1.57%
2 402.355 10.156 10.090 0.65%

JFO-FEM with adaptation 10643 1 404.770 10.299 10.147 1.49%

Fig. 6 Spiral groove end face seals
(a) Initial mesh; (b) Mesh after refinement; (c) Pressure
distribution

(c)

(b)

(a)

1.87

1.41

0.95

0.49

0.03

p (MPa)
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3.4  Case study 3: laserface end face seals (LFSs)

To further verify the high efficiency of the cur-
rent algorithm, a more complex hydrodynamic com-
bination grooves end face seals called laserface seals 
(LFSs) were investigated, including rectangular 
grooves and crescent-shaped grooves spaced alter-
nately with each other (Fig. 1). The rectangular 
grooves, called inlet grooves, introduce the fluid into 
the seal face clearance. Crescent-shaped grooves, 
called return grooves, force the fluid to the outer pe-
riphery of the seal. The fluid film thickness is de-
scribed by 

i

22

i 2 2

i g

,  non-groove zone,

( )
1 ,   return groove zone,

,  inlet groove zone,

y

h

y lxh h c
a b

h h

where a and b are parameters determining the shape 
of the return groove, ly denotes the position of the 
groove and c represents the return groove deepness.

Fig. 7 shows film pressure and density distribu-
tion of the periodic face structure obtained from 
JFO-FEM with mesh adaptation and JFO-FDM. Due 
to the hydrodynamic effect of the grooves, two pres-
sure peaks are shown respectively in the inlet groove 
and return groove. At the same time, two cavitation 
zones are shown. This type of pressure profile shows 
the existence of high pressure gradients on the outer 
side of the seal face, which reduces the accuracy of the 
leakage rate Qo. Thus, fine meshes or mesh adaptation 
techniques are recommended to be utilized here. 
Similar pressure and density distribution are shown in 
Figs. 7a and 7b except for existence of local spikes 
around the return groove cavitation zone in Fig. 7b
and extra biased predicting cavitation zone in Fig. 7d, 
which are the results from JFO-FDM. These errors

Table 3 Influence of mesh, order of N, and adaptive technique on seal performance of SGS

Algorithm Mesh number Order of N Fo (N) Qo (ml/h) Qi (ml/h) 2 o i

o i

Q Q
Q Q

JFO-FEM
without adaptation

6596
1 1389.95 101.823 92.841 9.23%
2 1390.26 97.215 93.252 4.16%

16571
1 1389.01 100.338 92.820 7.78%
2 1388.47 97.422 93.078 4.46%

JFO-FEM with adaptation 16269 1 1386.93 96.337 92.774 3.77%

Fig. 7 Laserface end face seals
Pressure distribution with JFO-FEM (a) and JFO-FDM (b),
and density distribution with JFO-FEM (c) and JFO-FDM (d)

(a)

(d)

(c)

(b)
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are primarily induced by the inconsistencies between 
the structured mesh of JFO-FDM and the complicated 
groove boundaries. To remove these mesh errors,
unstructured meshes should be generated, whose edge 
is strictly consistent with the groove boundaries just 
as those used in the current JFO-FEM algorithm.

Table 4 shows the influence of different algo-
rithms, mesh numbers and order of N on the predicted 
seal performance. JFO-FEM with mesh adaptation 
techniques provides a most accurate leakage rate 
prediction. Numerical experiments show that 
JFO-FDM provides a high open force and high time 
consumption for computation. This case study 
demonstrates that the current algorithm is greatly free 
in dealing with end face seals with complicated 
groove patterns.

4 Conclusions

In this paper, an effective adaptive FEM algo-
rithm with mass conservation is presented to analyze 
the seal performance of end face liquid seals with 
complicated hydrodynamic groove patterns. The 
classical p- cavitation model was used to describe 
the lubrication problem between end faces. The 
SUPG stabilization technique was brought into the 
FEM procedure to deal with the elliptic-hyperbolic 
equation. An effective numerical iterative algorithm 
was applied to handle the complementary relationship
between pressure and density. The mesh adaptation 
technique was introduced into the algorithm to pre-
cisely predict the seal performance based on the re-
sidual posterior error estimation. Numerical result
comparisons were conducted among the present al-
gorithm, JFO-FDM, and REYNOLDS-FEM to ana-
lyze seal performance of end face seals with

different groove patterns. Numerical experiments 
demonstrate that the adaptive technology gives ac-
curate results with low order shape function. The 
SUPG technology stabilizes the numerical results and 
provides the smooth pressure and film fraction dis-
tribution. The refinement of mesh mainly occurs in 
the cavitation zone and large pressure gradient zones. 
The proposed algorithm is especially capable to sim-
ulate lubrication problems with complicated surface 
patterns.

References
Ausas, R.F., Ragot, P., Leiva, J., et al., 2007. The impact of the 

cavitation model in the analysis of microtextured lubri-
cated journal bearings. ASME Journal of Tribology,
129(4):868-875. [doi:10.1115/1.2768088]

Ausas, R.F., Jai, M., Buscaglia, G.C., 2009. A mass-conserving 
algorithm for dynamical lubrication problems with cavi-
tation. ASME Journal of Tribology, 131(3):031702.
[doi:10.1115/1.3142903]

Bayada, G., Chambat, M., Alaoui, M.E., 1990. Variational 
formulations and finite element algorithms for cavitation 
problems. ASME Journal of Tribology, 112(2):398-403.
[doi:10.1115/1.2920270]

Bayada, G., Chambat, M., Vazquez, C., 1998. Characteristics 
method for the formulation and computation of a free 
boundary cavitation problem. Journal of Computational 
and Applied Mathematics, 98(2):191-212. [doi:10.1016/
S0377-0427(98)00126-5]

Bayada, G., Martin, S., Vazquez, C., 2006. Micro-roughness 
effects in (elasto)hydrodynamic lubrication including a 
mass-flow preserving cavitation model. Tribology Inter-
national, 39:1707-1718. [doi:10.1016/j.triboint.2006.03.
003]

Boedo, S., Booker, J. F., 1995. Cavitation in normal separation 
of square and circular plates. ASME Journal of Tribology,
117:403-409. [doi:10.1115/1.2831266]

Bonneau, D., Guines, D., Frene, J., et al., 1995. EHD analysis, 
including structural inertia effects and a mass-conserving 
cavitation model. ASME Journal of Tribology, 117(3):
540-547. [doi:10.1115/1.2831288]

Table 4 Influence of mesh, order of N and adaptive technique on seal performance of LFS

Algorithm Mesh number Order of N Fo (N) Qo (ml/h) Qi (ml/h) 2 o i

o i

Q Q
Q Q

JFO-FEM without adaptation
8785

1 409.322 8.945 9.960 10.74%
2 408.265 11.857 9.835 18.64%

16764
1 414.471 11.695 10.201 13.65%
2 413.451 10.734 10.092 6.17%

JFO-FEM with adaptation 12723 1 420.995 11.117 10.505 5.66%
JFO-FDM 15 ×200 446.407 13.328 11.650 13.44%



Meng et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014 15(3):172-184 183

Brewe, D.E., 1986. Theoretical modeling of the vapor cavita-
tion in dynamically loaded journal bearings. ASME 
Journal of Lubrication Technology, 108(4):628-638.
[doi:10.1115/1.3261288]

Cioc, S., Keith, T.G.Jr., 2003. Application of the CE/SE 
method to two-dimensional flow in fluid film bearings. 
International Journal of Numerical Methods for Heat & 
Fluid Flow, 13(2):216-243. [doi:10.1108/09615530310
459351]

Cioc, S., Florin, F., Keith, T.G.Jr., 2003. Application of the 
CE/SE method to wave journal bearings. STLE Tribology 
Transactions, 46(2):179-186. [doi:10.1080/1040200030
8982614]

Durany, J., Garcia, G., Vasquez, C., 1997. An elasto-
hydrodynamic coupled problem between a piezoviscous 
Reynolds equation and a hinged plate model. Modélisa-
tion Mathématique et Analyse Numérique, 31(4):495-516
(in French).

Durany, J., Pereira, J., Varas, F., 2006. A cell-vertex finite 
volume method for thermohydrodynamic problems in 
lubrication theory. Computer Methods in Applied Me-
chanics and Engineering, 195(44-47):5949-5961. [doi:10.
1016/j.cma.2005.09.016]

Elrod, H.G., 1981. A cavitation algorithm. Journal of Lubri-
cation Technology, 103(3):350-354. [doi:10.1115/1.
3251669]

Elrod, H.G., Adams, M.L., 1975. A computer program for 
cavitation and starvation problems. Proceedings of 1st 
Leeds-Lyon Symposium on Tribology, New York, p.37-
42.

Etsion, I., Michael, O., 1994. Enhancing sealing and dynamic 
performance with partially porous mechanical face seals. 
Tribology Transactions, 37(4):701-710. [doi:10.1080/
10402009408983349]

Etsion, I., Burstein, L., 1996. A model for mechanical seals 
with regular micro-surface structure. Tribology Transac-
tions, 39(3):677-683. [doi:10.1080/1040200960898
3582]

Etsion, I., Kligerman, Y., Halperin, G., 1999. Analytical and 
experimental investigation of laser-textured mechanical 
seal faces. Tribology Transactions, 42(3):511-516.
[doi:10.1080/10402009908982248]

Evans, L.C., 1997. Partial Differential Equations. American 
Mathematical Society, Berkeley, USA, p.398-431.

Fatu, A., Hajjam, M., Bonneau, D., 2005. An EHD model to 
predict the interdependent behavior of two dynamically 
loaded hybrid journal bearings. ASME Journal of Tri-
bology, 127(2):416-424. [doi:10.1115/1.1866162]

Giacopini, M., Fowell, M.T., Dini, D., 2010. A mass-
conserving complementarity formulation to study lubri-
cant films in the presence of cavitation. ASME Journal of 
Tribology, 132:041702. [doi:10.1115/1.4002215]

Hajjam, M., Bonneau, D., 2004. Elastohydrodynamic analysis 
of lip seals with microundulations. Proceedings of the 
Institution of Mechanical Engineers, Part J: Journal of 

Engineering Tribology, 218(1):13-21. [doi:10.1016/j.
triboint.2007.01.018]

Hajjam, M., Bonneau, D., 2007. A transient finite element 
cavitation algorithm with application to radial lip seals. 
Tribology International, 40:1258-1269. [doi:10.1016/
j.triboint.2007.01.018]

Ito, K., Kunisch, K., 2003. Semi-smooth Newton methods for 
variational inequalities of the first kind. ESAIM: Math-
ematical Modelling and Numerical Analysis, 37(1): 41-62.
[doi:10.1051/m2an:2003021]

Jakobsson, B., Floberg, L., 1957. The finite journal bearings 
considering vaporization. Transactions of Chalmers 
University of Technology, 190:1-116.

Kumar, A., Booker, J.F., 1991. A finite element cavitation 
algorithm. ASME Journal of Tribology, 113(2):276-286.
[doi:10.1115/1.2920617]

Kumar, A., Booker, J.F., 1994. A mass and energy conserving 
finite element lubrication algorithm. ASME Journal of 
Tribology, 116(4):667-671. [doi:10.1115/1.2927314]

Murty, K.G., 1988. Linear Complementarity, Linear and Non-
linear Programming. Heldermann Verlag, Berlin, Ger-
many, p. 361-377.

Nilsson, B., Hansbo, P., 2007. Adaptive finite element methods 
for hydrodynamic lubrication with cavitation. Interna-
tional Journal for Numerical Methods in Engineering,
72(13):1584-1604. [doi:10.1002/nme.2051]

Olsson, K.O., 1965. Cavitation in dynamically loaded bearing. 
Transactions of Chalmers University of Technology,
308:1-59.

Optasanu, V., Bonneau, D., 2000. Finite element mass-
conserving cavitation algorithm in pure squeeze motion. 
validation/application to a connecting-rod small end 
bearing. ASME Journal of Tribology, 122:162-169.
[doi:10.1115/1.555339]

Payvar, P., Salant, R.F., 1992. Computational method for cav-
itation in a wavy mechanical seal. ASME Journal of Tri-
bology, 114(1):199-204. [doi:10.1115/1.2920861]

Qiu, Y., Khonsari, M.M., 2009. On the prediction of cavitation 
in dimples using a mass-conservative algorithm. ASME 
Journal of Tribology, 131(4):041702. [doi:10.1115/1.
3176994]

Schweizer, B., 2009. Numerical approach for solving Reyn-
olds equation with JFO boundary conditions incorporat-
ing ALE techniques. ASME Journal of Tribology, 131(1):
011702. [doi:10.1115/1.2991170]

Shi, F., Salant, R.F., 1999. A mixed soft elastohydrodynamic 
lubrication model with interasperity cavitation and sur-
face shear deformation. ASME Journal of Tribology,
122(1):308-316. [doi:10.1115/1.555358]

Shi, F., Paranjpe, R., 2002. An implicit finite element cavita-
tion algorithm. CMES, 3:507-515. [doi:10.3970/cmes.
2002.003.507]

Vijayaraghavan, D., Keith, T.G., 1990a. An efficient, robust, 
and time accurate numerical scheme applied to a cavita-
tion algorithm. ASME Journal of Tribology, 112(1):44-51.



Meng et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014 15(3):172-184184

[doi:10.1115/1.2920229]
Vijayaraghavan, D., Keith, T.G., 1990b. Grid transformation 

and adaption techniques applied in the analysis of cavi-
tated journal bearings. ASME Journal of Tribology,
112(1):52-59. [doi:10.1115/1.2920230]

Vijayaraghavan, D., Keith, T.G., 1990c. Analysis of a finite 
grooved misaligned journal bearing considering cavita-
tion and starvation effects. ASME Journal of Tribology,
112(1):60-67. [doi:10.1115/1.2920231]

Vijayaraghavan, D., Keith, T.G., Brewe, D.E., 1991. Extension 

of transonic flow computational concepts in the analysis 
of cavitated bearings. ASME Journal of Tribology, 113(3):
539-546. [doi:10.1115/1.2920657]

Yu, Q., Keith, T.G., 1995. Prediction of cavitation in journal 
bearings using a boundary element method. ASME 
Journal of Tribology, 117:411-421. [doi:10.1115/1.
2831269]

Zienkiewicz, O.C., Taylor, R.L., 2000. The Finite Element 
Method. Nutterworth-Heinemann, Oxford, England,
p.15-23.

An efficient adaptive finite element method algorithm with mass conservation for analysis of 
liquid face seal

SUPG

SUPG


