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Abstract: The paper proposes a new approach to efficiently control a three-dimensional overhead
crane with 6 degrees of freedom (DoF). Most of the works proposing a control law for a gantry
crane assume that it has five output variables, including three positions of the trolley, bridge, and
pulley and two swing angles of the hoisting cable. In fact, the elasticity of the hoisting cable, which
causes oscillation in the cable direction, is not fully incorporated into the model yet. Therefore,
our work considers that six under-actuated outputs exist in a crane system. To design an efficient
controller for the 6 DoF crane, it first employs the hierarchical sliding mode control approach, which
not only guarantees stability but also minimizes the sway and oscillation of the overhead crane when
it transports a payload to a desired location. Moreover, the unknown and uncertain parameters of the
system caused by its actuator nonlinearity and external disturbances are adaptively estimated and
inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the
crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm
is theoretically proved by the use of the Lyapunov function. The proposed control approach was
implemented in a synthetic environment for the extensive evaluation, where the obtained results
demonstrate its effectiveness.

Keywords: 3D overhead crane; sliding mode control; fuzzy learning; 6 degrees of freedom

1. Introduction

Overhead crane systems have been playing a crucial role in many applications from
industries or factories to transportation [1–5]. One of the typical characteristics of an
overhead crane is that it is under-actuated: that is, in a crane system, the number of inputs
is always smaller than the number of outputs [6]. Having more outputs than inputs, an
overhead system is constrained by strong nonlinearities, internal and external uncertainties,
and coupling properties. Hence, efficiently controlling an under-actuated overhead crane
with fewer independent control signals than its 6 degrees of freedom is a fundamental but
still challenging problem.

Due to its fundamentality, researchers, engineers, and the practitioners who design the
control laws for under-actuated crane systems are always concerned with the robustness
in the system response due to its parameter uncertainties and actuator nonlinearities. To

Electronics 2022, 11, 713. https://doi.org/10.3390/electronics11050713 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050713
https://doi.org/10.3390/electronics11050713
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5390-5087
https://orcid.org/0000-0003-0270-6923
https://orcid.org/0000-0001-5360-886X
https://doi.org/10.3390/electronics11050713
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050713?type=check_update&version=2


Electronics 2022, 11, 713 2 of 27

address the concern, the sliding mode control (SMC) method has been favored for those
systems [7–10]. For instance, the authors in [11–13] proposed the robust SMC controllers for
a gantry crane, which allow the system with uncertain parameters and nonlinear actuators
to robustly work under external disturbances in a working environment. Fu et al., in the
work [14], designed an adaptive sliding mode tracking controller to effectively control a
dual boom crane. The proposed method was verified in a laboratory system. It is noted
that the challenge in designing a robust SMC scheme for an under-actuated crane system is
how to formulate sliding surfaces. In the work [15–17], the authors proposed to compute
an intermediate variable from the state errors before a second-level sliding surface is
formulated. In recent works [18,19], Yang et al. proposed the adaptive controllers for multi-
input multi-output (MIMO) under-actuated systems given some constraints. For instance,
by exploiting elaborately constructed finite-time convergent surfaces, a new control scheme
in [18] can asymptotically and stably control an MIMO system under plant uncertainties
and actuator deadzones. The unknown parameters of the system are trained through
a fuzzy system. In the paper [19], output and velocity constraints are simultaneously
considered in the control actions.

The hierarchical SMC (HSMC) approach has also been frequently utilized in defin-
ing the sliding surface for the SMC scheme in applications using under-actuated robotic
systems [12,13,20,21]. For instance, Wang et al. in their works [20] defined a first-level
sliding surface for each subsystem of a a second-order under-actuated system. Then,
they established the second-level sliding surface by simply adding the first-level sliding
surfaces together.

Nonetheless, when developing an HSMC strategy for an overhead crane system, we
have learned that if some parameters in the HSMC scheme are not properly chosen, it can
severely causes vibration in the control system. Choosing an improper parameter for the
HSMC controller is probably due to imprecision and imperfect information in the crane.
This is very likely in practice, since the under-actuated crane systems are constrained by
their highly complicated nonlinearities and uncertainties. So far, it is well-known that either
fuzzy logic [22] or neural network [23] has been frequently exploited in addressing issues
of inferring parameters for highly uncertain control systems. For instance, the fuzzy logic
has been extensively employed in controlling under-actuated systems [24,25]. By exploiting
the Takagi–Sugeno fuzzy model, the authors in [26] develop a closed-loop controller to
automatically control the operations of a crane with 2 degrees of freedom (DoF).

Regarding the configuration of the cranes, to the best of our knowledge, most of the
existing works consider a gantry system up to 5 DoF. For instance, in our previous work [1],
a two-dimensional (2D) crane with two output variables including the trolley position and
swing angle is considered. A three-dimensional (3D) overhead crane can have 5 DoF or
output variables comprising positions of the trolley, bridge, and pulley and swing angles
of the hoisting cable in x and y directions. In most of the considered crane systems, it is
assumed that the hoisting cable is rigid. However, in practice, the hoisting cable can be
elastic. That is, there exists oscillation of the hoisting cable in the cable direction, which
constitutes a 6th output variable or degree of freedom of the 3D crane. This 6h output
component is also required to be controlled, though it is under-actuated. It can now be seen
that there are up to 6 DoF in one 3D overhead crane, where there are three under-actuated
output variables including two swing angles and oscillation of the hoisting cable in x, y,
and the cable directions, respectively. A 3D overhead crane with 6 DoF is the object to be
controlled in this study.

Therefore, we take advantages of the HSMC approach, which guarantees robustness
in the control performance, to design a controller for a 3D overhead crane with 6 DoF. In
the control design, it is assumed that the parameters in the HSMC law are deterministic.
Nonetheless, in fact, due to the nonlinear and uncertain properties, determining those
parameters in the 6 DoF crane system is impractical. Moreover, if those parameters are
not properly chosen, it can lead to severe vibration in the control system. To this end, we
propose to exploit the fuzzy inference rule system to adaptively infer the parameters of
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the HSMC scheme over time. It is noted that the fuzzy logic can effectively estimate the
parameters of a system given its imprecision and imperfect information. More importantly,
the stability of the control performance in the 3D under-actuated crane obtained by the
proposed approach is theoretically proved by the Lyapunov theory. Then, we extensively
evaluated our algorithm in three typical scenarios in operating an overhead crane, where
the obtained results are highly promising.

The remainder of the paper is arranged as follows. A model of a 3D overhead crane
system with 6 DoF is introduced in Section 2. Section 3 presents how to design an HSMC
law for the 6 DoF crane systems, while Section 4 discusses how to adaptively learn its
parameters by the use of the fuzzy logic. The results of evaluating the proposed approach
are compared and summarized in Section 5 before conclusions are drawn in Section 6.
It is noted that in this work, matrices and vectors are expressed in square brackets [·] or
parentheses (·), while long expressions are encapsulated in braces {·}.

2. A Model of 3D Overhead Crane with 6 Degrees of Freedom

Let us consider a three-dimensional (3D) overhead crane [27]. It is assumed that the
trolley moves along the x direction while the bridge moves along the y direction. A pulley
embedded on the trolley, as can be seen in Figure 1, plays a role of pulling a payload up and
down along the z direction through a hoisting cable. Operationally, the trolley, bridge, and
pulley cooperatively allow the crane to transport an object from one location to another.

Figure 1. A digram of a 3D overhead crane model presented in the xyz plane.

Let x(t) and y(t) denote displacements of the trolley and bridge, respectively. We
define θ(t) as a rotation angle of the pulley. It is noted that under motions of the trolley,
bridge, and pulley, a payload hooked to the hoisting cable swings around its equilibrium
point. If we define O as the origin of a Cartesian coordinate, then the sway of the payload
in the planes Oxz and Oyz is denoted by ξx(t) and ξy(t), respectively. More importantly, in
this work, we consider the elasticity of the hoisting cable. In fact, in many crane systems,
the hoisting cable is not rigid but elastic. Therefore, we define γ(t) as the oscillation of the
hoisting cable in the cable direction due to the elasticity. It can be seen that the overhead
crane system has six variables, including x(t), y(t), θ(t), ξx(t), ξy(t), and γ(t), presenting
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its 6 degrees of freedom (DoF). While x(t), y(t), and θ(t) can be directly controlled by the
trolley, bridge, and pulley, there is no actuator having direct connection with ξx(t), ξy(t),
and γ(t). That is, ξx(t), ξy(t), and γ(t) are considered as under-actuated states of the crane.

We denote xd(t), yd(t), and θd(t) as desired references of the actuated states x(t), y(t),
and θ(t), respectively, while the under-actuated states ξx(t), ξy(t), and γ(t) are expected to
reach zero during the operation of the crane. Thus,

lim
t→+∞

|sup(x(t))| = xd(t) (1)

lim
t→+∞

|sup(ξx(t))| = 0

lim
t→+∞

|sup(y(t))| = yd(t)

lim
t→+∞

∣∣sup(ξy(t))
∣∣ = 0

lim
t→+∞

|sup(θ(t))| = θd(t)

lim
t→+∞

|sup(γ(t))| = 0

For the purpose of simplicity, we let

χ(t) =
[
x(t)y(t) θ(t) ξx(t)ξy(t)γ(t)

]T

denote a state vector of the 3D crane.
Apart from the hoisting cable, it is assumed that the other components in the crane

are rigid, which only depend on the holonomic internal kinematic constraints. The ratio of
the pulley is set to 1, while gravity g = 9.81 m/s2. The masses of the bridge, payload, and
trolley–pulley combination are defined by mb, mc, and mt, respectively. While the elastic
coefficient of the hoisting cable is defined by ρ, we denote J and r as the inertia and radius
of the pulley. Hence, the potential energy of the overhead crane is computed by

E(t) =
{
−mcgrcos

(
ξy(t)

)
sin(ξx(t)) + 1

2 ργ2 + mcg(γ(t) + ∆γ) cos(ξx(t))×
× cos

(
ξy(t)

)
+ mcgr(θ(t) + ξx(t))× cos(ξx(t)) cos

(
ξy(t)

) }
. (2)

Meanwhile, the energy loss caused by frictions is given as follows.

Φ(t) =
1
2

v(t)T Dv(t), (3)

where v(t) =
(
θ̇(t) γ̇(t) ẋ(t) ẏ(t)

)T and D =


ηm 0 0 0
0 ηr 0 0
0 0 ηt 0
0 0 0 ηb

 is a matrix of the

damping coefficients.
Moreover, the kinetic energy T(t) of the crane is a sum of the kinetic energy of the

pulley Tr(t), the kinetic energy of the bridge Tb(t), the kinetic energy of the trolley Tt(t),
and the kinetic energy of the load Tc(t).

T(t) = Tc(t) + Tt(t) + Tb(t) + Tr(t), (4)

where

Tr(t) =
1
2

J
(

d(θ(t))
dt

)2
, (5)

Tb(t) =
1
2

mb

(
d(y(t))

dt

)2
, (6)
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Tt(t) =
1
2

mt

[(
d
dt

x(t)
)2

+

(
d
dt

y(t)
)2
]

, (7)

Tc(t) =
1
2

mc

(
V2

cx + V2
cy + V2

cz

)
. (8)

It is noted that Vcx, Vcy, and Vcz are velocities of the payload in the x, y, and z directions,
respectively, where they can be calculated as follows.

Vcx(t) =



ẋ(t) + γ̇(t) sin(ξx(t))+
+r
(
θ̇(t) + ξ̇x(t)

)
sin(ξx(t))+

+(γ(t) + ∆γ)ξ̇x(t) cos(ξx(t))+
+(rξx(t))ξ̇x(t) cos(ξx(t))+
+rθ(t)ξ̇x(t) cos(ξx(t))−
−rξ̇x(t) sin(ξx(t))


. (9)

Vcy(t) =



ẏ(t) + γ̇(t) sin
(
ξy(t)

)
cos(ξx(t))+

+r
(
θ̇(t) + ξ̇x(t)

)
sin
(
ξy(t)

)
cos(ξx(t))+

+(γ(t) + ∆γ)ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−(γ(t) + ∆γ)ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

)
+

+rξx(t)ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
+

+rθ(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−rξx(t)ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

)
−

−rθ(t)ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

)


. (10)

Vcz(t) =



γ̇(t)cos
(
ξy(t)

)
cos(ξx(t))+

+r
(
θ̇(t) + ξ̇x(t)

)
cos
(
ξy(t)

)
cos(ξx(t))−

−(γ(t) + ∆γ)ξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−(γ(t) + ∆γ)ξ̇x(t) sin(ξx(t))cos
(
ξy(t)

)
−

−rξx(t)ξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−rθ(t)ξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−rξx(t)ξ̇x(t) sin(ξx(t))cos
(
ξy(t)

)
−

−rθ(t)ξ̇x(t) sin(ξx(t))cos
(
ξy(t)

)
−

−rξ̇x(t) cos
(
ξy(t)

)
cos(ξx(t))+

+rξ̇y(t) sin(ξx(t)) sin
(
ξy(t)

)



. (11)

By exploiting the Euler–Lagrange equation, the crane system can be presented in the
differential form as follows.

d
dt

∂L
(

χ, t
)

∂χ̇(t)

T

−

∂L
(

χ, t
)

∂χ(t)

T

= u(t)−

∂Φ
(

χ, t
)

∂χ̇(t)

T

, (12)

where
L = L

(
χ, t
)
= T

(
χ, t
)
− E

(
χ, t
)

(13)

is the Lagrange function.
χ̇(t) =

(
ẋ(t) ẏ(t) θ̇(t) ξ̇x(t) ξ̇y(t) γ̇(t)

)T is a vector of the first-order deriva-

tive of the system states. u(t) =
(
u1(t) u2(t) u3(t) 0 0 0

)T is a vector of the input
control signals. It is noticed that u1(t), u2(t), and u3(t) are the input signals to control the
trolley, bridge, and pulley, respectively. The Jacobian derivatives of the Lagrange function
can be computed by
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∂L
(

χ, t
)

∂χ(t)
=



∂L
∂x(t)

∂L
∂y(t)

∂L
∂θ(t)

∂L
∂ξx(t)

∂L
∂ξy(t)

∂L
∂γ(t)



T

,
∂L
(

χ, t
)

∂χ̇(t)
=



∂L
∂ẋ(t)

∂L
∂ẏ(t)

∂L
∂θ̇(t)

∂L
∂ξ̇x(t)

∂L
∂ξ̇y(t)

∂L
∂γ̇(t)



T

(14)

Therefore, the dynamic model of the 3D overhead crane with 6 DoF can be represented by

M
(

χ, t
)

χ̈ +
(

C
(

χ, χ̇, t
)
+ D

)
χ̇(t) + G

(
χ, t
)
= u(t), (15)

where χ̈(t) =
(
ẍ(t) ÿ(t) θ̈(t) ξ̈x(t) ξ̈y(t) γ̈(t)

)T is a vector of the second-order

derivatives of the system states. G
(

χ, t
)
=
(

0 0 g1 g2 g3 g4
)T is the gravita-

tional matrix. Calculation details of elements of M
(

χ, t
)

, C
(

χ, χ̇
)

and G
(

χ, t
)

can be
found in Appendix A.

3. Hierarchical Sliding Mode Controller for 3D Overhead Crane

In this section, we will present how to design a hierarchical sliding mode control
(HSMC) scheme for a 3D overhead crane with 6 DoF. It is noted that we exploit the dynamic
model of the crane as introduced in Section 2.

Let us split χ(t) into χ(t) =
(

χ1(t) χ2(t)
)T

, where χ1(t) =

x(t)
y(t)
θ(t)

 is the corre-

sponding vector of the actuated states, while χ2(t) =

ξx(t)
ξy(t)
γ(t)

 is the corresponding vector

of the under-actuated states, respectively.

u(t) = (τ(t) 0)T in which τ(t) =

u1(t)
u2(t)
u3(t)

 ∈ R3×1 We now define K
(

χ, t
)

=

M−1
(

χ, t
)

=

K1

(
χ, t
)

K3

(
χ, t
)

K2

(
χ, t
)

K4

(
χ, t
) with K1

(
χ, t
)

, K2

(
χ, t
)

, K3

(
χ, t
)

and K4

(
χ, t
)

∈ R3×3. And C
(

χ, χ̇, t
)

=

C1

(
χ, χ̇, t

)
C3

(
χ, χ̇, t

)
C2

(
χ, χ̇, t

)
C4

(
χ, χ̇, t

) with C1

(
χ, χ̇, t

)
, C2

(
χ, χ̇, t

)
,

C3

(
χ, χ̇, t

)
, and C4

(
χ, χ̇, t

)
∈ R3×3.

Moreover,

G
(

χ, t
)
=

G1

(
χ, t
)

G2

(
χ, t
),

where

G1

(
χ, t
)
=

 0
0
g1

, G2

(
χ, t
)
=

g2
g3
g4

.
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Therefore,
χ̈1(t) = f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ (16)

χ̈2(t) = f2

(
χ, χ̇, t

)
+ K2

(
χ, t
)

τ (17)

where

f1

(
χ, χ, t

)
= −



(K1

(
χ, t
)

G1

(
χ, t
)
+

+ K3

(
χ, t
)

G2

(
χ, t
)
)+

+ K1

(
χ, t
)

C1

(
χ, χ̇, t

)
χ̇1(t)+

+ K3

(
χ, t
)

C2

(
χ, χ̇, t

)
χ̇1(t)+

+ K1

(
χ, t
)

C3

(
χ, χ̇, t

)
χ̇2(t)+

+ K3

(
χ, t
)

C4

(
χ, χ̇, t

)
χ̇2(t)



, (18)

f2

(
χ, χ, t

)
= −



(K2

(
χ, t
)

G1

(
χ, t
)
+

+ K4

(
χ, t
)

G2

(
χ, t
)
)+

+ K2

(
χ, t
)

C1

(
χ, χ̇, t

)
χ̇1(t)+

+ K4

(
χ, t
)

C2

(
χ, χ̇, t

)
χ̇1(t)+

+ K2

(
χ, t
)

C3

(
χ, χ̇, t

)
χ̇2(t)+

+ K4

(
χ, t
)

C4

(
χ, χ̇, t

)
χ̇2(t)



. (19)

The model in (16) and (17) can be represented as a state model by

ẋ1(t) = x2(t), (20)

ẋ2(t) = f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ, (21)

ẋ3(t) = x4(t), (22)

ẋ4(t) = f2

(
χ, χ̇, t

)
+ K2

(
χ, t
)

τ, (23)

where x1 = χ1, x2 = χ̇1, x3 = χ2 and x4 = χ̇2. Let

e1(t) = x1(t)− x1d(t)
e3(t) = x3(t)− x3d(t)

denote errors between the output signals (x1(t), x3(t)) and the desired references (x1d(t),

x3d(t)). x1d(t) =

xd
yd
θd

 is a vector of the desired references of the actuated states while

x3d(t) =

0
0
0

 is a vector of the desired references of the under-actuated states. The errors

can now be specified by
ė1(t) = e2(t), (24)

ė2(t) = f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ − ẍ1d(t), (25)

ė3(t) = e4(t), (26)
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ė4(t) = f2

(
χ, χ̇, t

)
+ K2

(
χ, t
)

.τ (27)

In order to minimize the errors in (24)–(27), the control strategy is proposed as follows.

τ(t) =

τ1eq(t) + τ2eq(t)−
(

λ1K1

(
χ, t
)
+ λ2K2

(
χ, t
))−1

×


λ1K1

(
χ, t
)

τ2eq(t)+

+ λ2K2

(
χ, t
)

τ1eq(t)+

+ η3s(t) + η4sign(s(t))


 (28)

where λ1, λ2, α1, α2 ∈ R3×3 are the symmetric, positive-definite, and constant matrices,
while η3 and η4 are the symmetric and positive-definite matrices. The second-level sliding
surface is compiled by two first-level sliding surfaces from two subsystems as follows.

s(t) = λ1s1(t) + λ2s2(t),

where
s1(t) = α1e1(t) + e2(t). (29)

s2(t) = α2e3(t) + e4(t). (30)

Thus, two control signals for two subsystems are given by

τ1eq = −K1
−1
(

χ, t
)(

α1e2(t) + f1

(
χ, χ̇, t

)
− ẍ1d(t)

)
, (31)

τ2eq = −K2
−1
(

χ, t
)(

α2e4(t) + f2

(
χ, χ̇, t

))
. (32)

The stability of the proposed control law can be specified by the following lemma.

Lemma 1. The proposed control scheme (28) guarantees stability of the 3D overhead crane with 6
DoF, which leads to lim

t→+∞
ej(t) = 0, j = 1, . . . , 4.

Proof. Let us consider the first subsystem represented by

ẋ1(t) = x2(t), (33)

ẋ2(t) = f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ1, (34)

where its sliding surface is
s1(t) = α1e1(t) + e2(t). (35)

To obtain lim
t→+∞

s1(t) = 0, we consider the Lyapunov function candidate of s1(t) as

follows.
V1(s1(t)) =

1
2

sT
1 (t)s1(t). (36)

Taking the derivative of both sides of Equation (30) yields

V̇1(t) = sT
1 (t)ṡ1(t) = sT

1 (t)
(

α1e2(t) + f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ1 − ẍ1d(t)
)

The control signal for the first subsystem includes the equivalent control law τ1eq(t)
and the switch control scheme τ1sw(t). Hence,

V1(t) = sT
1 (t)


α1e2(t) + f1

(
χ, χ̇, t

)
+

+ K1

(
χ, t
)(

τ1eq + τ1sw

)
−

− ẍ1d(t)

.
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That is,

V1(t) = sT
1 (t)×


α1e2(t) + f1

(
χ, χ̇, t

)
+ K1

(
χ, t
)

τ1eq − ẍ1d(t)+

+ K1

(
χ, t
)

τ1sw + η1s1(t) + η2sign(s1(t))−

− η1s1(t)− η2sign(s1(t))

, (37)

where η1 and η2 are the symmetric and positive-definite matrices. IfK1

(
χ, t
)

τ1eq + α1e2(t) + f1

(
χ, χ̇, t

)
− ẍ1d(t) = 0,

K1

(
χ, t
)

τ1sw(t) + η1s1(t) + η2sign(s1(t)) = 0,
(38)

then one has
V̇1(t) = −sT

1 (t)η1s1(t)− sT
1 (t)η2sign(s1(t)) ≤ 0,

which guarantees stability of the first subsystem.
Likewise, the second subsystem

ė3(t) = e4(t), (39)

ė4(t) = f2

(
χ, χ̇, t

)
+ K2

(
χ, t
)

τ2, (40)

where its sliding surface is
s2(t) = α3e3(t) + e4(t), (41)

also holds
K2

(
χ, t
)

τ2eq + α2e4(t) + f2

(
χ, χ̇, t

)
= 0. (42)

Now, considering the whole crane system, given the condition lim
t→+∞

s(t) = 0 of the

second-level sliding surface
s(t) = λ1s1(t) + λ2s2(t), (43)

the Lyapunov function candidate can be presented by

V(s(t)) =
1
2

sT(t)s(t). (44)

In other words,

V̇(t) = sT(t)(λ1 ṡ1(t) + λ2 ṡ2(t)) = sT(t)


λ1


α1e2(t) + f1

(
χ, χ̇, t

)
+

+ K1

(
χ, t
)

τ − ẍ1d(t)+


+ λ2

(
α2e4(t) + f2

(
χ, χ̇, t

)
+ K2

(
χ, t
)

τ
)
. (45)
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If the control signal of the second subsystem is also presented by two components of
τ1eq(t) and τ1sw(t), then

V̇(t) = sT(t)



λ1



α1e2(t) + f1

(
χ, χ̇, t

)
−

− ẍ1d(t) + K1

(
χ, t
)

τ1eq(t)+

+ K1

(
χ, t
)
×

×
{

τ1sw(t) + τ2sw(t)+

+ τ2eq(t)

}


+

+ λ2



α2e4(t) + f2

(
χ, χ̇, t

)
+

+ K2

(
χ, t
)

τ2eq(t)+

+ K2

(
χ, t
)
×

×
{

τ1sw(t) + τ2sw(t)+

+ τ1eq(t)

}





.

Therefore, the control signal for the 3D overhead crane can be specified by

τ = τ1eq(t) + τ1sw(t) + τ2eq(t) + τ2sw(t). (46)

If one chooses 

(
λ1K1

(
χ, t
)
+ λ2K2

(
χ, t
))
×

× (τ1sw(t) + τ2sw(t))

+ λ1K1

(
χ, t
)

τ2eq(t)+

+ λ2K2

(
χ, t
)

τ1eq(t)+

+ η3s(t) + η4sign(s(t))


= 0,

which leads to

τ1sw(t) + τ2sw(t) =



−
(

λ1K1

(
χ, t
)
+ λ2K2

(
χ, t
))−1

×

×


λ1K1

(
χ, t
)

τ2eq(t)

+ λ2K2

(
χ, t
)

τ1eq(t)

+ η3s(t) + η4sign(s(t))




, (47)

then it has

τ1sw(t) + τ2sw(t) =



−
(

λ1K1

(
χ, t
)
+ λ2K2

(
χ, t
))−1

×

×


λ1K1

(
χ, t
)

τ2eq(t)+

+ λ2K2

(
χ, t
)

τ1eq(t)+

+ η3s(t) + η4sign(s(t))




.

In other words, substituting (47) into (46) completes the proof.

It is noted that in the proposed control law (28), the phenomenon of oscillation on
the sliding surface may appear due to the change in sign(s(t)). To mitigate the issue, it is
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proposed to utilize the function sat(s(t)) rather than sign(s(t)). The function sat(s(t)) is
specified by

sat(s(t)) =

sign(s(t)) if |s(t)| ≥ 1

s(t) if |s(t)| < 1.

4. Adaptive Fuzzy Learning Scheme

It can be seen in the analysis of Section 3 that if the parameters α1, α2, λ1, and λ2 of
the control strategy in (28) are fixed, it causes vibration in the sliding mode control system.
In order to address the issue, in this work, we propose to adaptively learn these parameters
over time by the use of a fuzzy system. To simplify the learning process, it is proposed to
learn α1 only. The other parameters are adapted through α1 accordingly as follows.

α2 = A2.α1, λ1 = A3.α1, λ2 = A4.α1,

where Ai is a predefined diagonal positive matrix. It is noted that varying Ai leads to a
change of the sliding surfaces. If Ai is properly chosen, the control system states move
on the sliding surfaces to converge to zero, which effectively minimizes the chattering
phenomena in the under-actuated crane systems.

We now investigate how to learn the matrix α1. Let us assume α1 has the following form.

α1 =

 a 0 0
0 b 0
0 0 c

,

where a, b, and c are the parameters that will be adaptively learned by using the fuzzy
inference rule system.

The parameters a, b, and c are learned through a fuzzy logic system given the in-
put language variables ex = x − xd and ėx, ey = y − yd and ėy, eθ = θ − θd and ėθ ,
respectively. It is noted that each input language variable consists of a three-triangular
fuzzy set

[
−1 0 1

]
. The continuous functions of the input language variables are

shown in Figure 2. By using the Sugeno model, the output variables are presented by[
−2 −1 0 1 2

]
, which corresponds to[

a1 a2 a3 a4 a5
]
=
[

0.2 0.4 0.6 0.4 0.2
]

for learning a,[
b1 b2 b3 b4 b5

]
=
[

0.1 0.3 0.5 0.1 0.1
]

for learning b,
and

[
c1 c2 c3 c4 c5

]
=
[

15 10 5 10 15
]

for learning c.
The fuzzy inference rule system is shown in Table 1. The table is designed based on

the error e and its derivative ė. Given the output variables, there are nine possible outputs
in Table 1. For instance, when e = 1 and ė = 1, the error in the control signal is positive
and increasing. That is, reducing and negating ė are required. This can be done by setting
the output of the fuzzy logic system to the variable −2. However, when e = 1 and ė = 0,
although the error in the control signal is positive, it is not increasing. In that case, only
reducing ė is required by setting the output of the fuzzy logic system to the variable −1. In
a perfect scenario when e = 0 and ė = 0, no control is required, and the output of the fuzzy
logic system is set to the variable 0.

Table 1. The inference fuzzy system for learning a, b, and c.

Parameter (a, b, c) ei
−1 0 1

ėi

−1 2 1 0
0 1 0 −1
1 0 −1 −2
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(a)

(b)

(c)

Figure 2. The fuzzy sets of the input language variables. (a) Learning a given ex and ėx. (b) Learning
b given ey and ėy. (c) Learning c given θ and θ̇.

Therefore, the structure of the hierarchical sliding mode control system for the 3D
overhead crane given the adaptive fuzzy learning scheme is now depicted in Figure 3.

Figure 3. Control structure of adaptive fuzzy system.

5. Results and Discussions

In order to demonstrate effectiveness of our proposed approach, the adaptive fuzzy
hierarchical sliding mode controller (FuzzyHSMC), in controlling the 3D overhead crane
with 6 DoF, we conducted the experiments in the synthetic simulation environment. The
obtained results are presented in this section. It is noticed that the control performance is
measured by how effectively the crane can move to a desired location given the proposed
control algorithm. In other words, it is expected that the positions of the trolley, bridge, and
pulley can reach the reference values while the swing angles of the hoisting cable around a
vertical line as well as the oscillation of the hoisting cable in the cable direction due to the
elasticity are minimized in a reasonable time frame.

It is noted that in the experiments, the overhead crane was expected to transport a
heavy payload of 500 kg. The parameters of the crane system are summarized in Table 2.
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The parameters of the controllers are also encapsulated in Table 3. For comparison pur-
poses, there were two controllers including HSMC, as presented in Section 3 and the
proposed FuzzyHSMC implemented in the experiments. It is noticed that the HSMC is a
deterministic control scheme where all the parameters of the controller are required to be
known. However, in practice, the control parameters are unknown and uncertain, which
makes the HSMC impractical. In our proposed control approach, the parameters of the
FuzzyHSMC are adaptively learned over time by the use of the inference fuzzy system, as
presented in Section 4. The learning scheme allows the proposed controller to well adapt to
the nonlinearity and uncertainty of the real-world crane systems.

Table 2. The parameters of the 3D overhead crane.

Parameter Value Unit

mb 2316.5 kg
mc 500 kg
mt 371.9 kg
J 180 kg·m2

r 0.31 m
g 9.81 m/s2

ρ 300,000 N/m
∆γ 0.01 m
ηb 350 N·m/s
ηt 310 N·m/s
ηm 170 N·m/s
ηr 260 N·m/s

Table 3. The parameters of the controllers.

Parameter Value

λ1 diag([0.6 0.5 4])
λ2 diag([1.2 1.5 1])
α1 diag([0.6 0.2 1.3])
α2 diag([2.4 0.7 0.8])
η3 diag([0.2 1.6 0.1])
η4 diag([4 1.6 0.6])
A2 diag([3 5 0.05])
A3 diag([1 0.5 0.1])
A4 diag([5 1.6 0.15])

To demonstrate that the proposed approach can efficiently control a 3D overhead crane
with 6 DoF in a variety of scenarios, we conducted three typical experiments. In the first,
the reference levels were set to be constant, while in the second, the desired positions of the
trolley, bridge, and pulley were changed during the crane’s operation. In the third scenario,
we considered the influence of external disturbances on the control quality of the crane
system and how the proposed control law could address the disturbance issues.

5.1. Constant Input

In the first scenario, it was expected for the overhead crane to transport the 500 kg
payload from an initial position [0 0 0 0 0 0] to a desired location where the final positions
for the trolley, bridge, and pulley are xd = 5 m, yd = 10 m, and θd = 5 rad, respectively.
The results obtained by two control algorithms, HSMC and FuzzyHSMC, on the control
performances of six controlled variables including x(t), y(t), θ(t), ξx(t), ξy(t), and γ(t) are
depicted in Figures 4 and 5. It can be seen that all the controlled variables could reach 95%
of the reference levels within approximately 6 s. More importantly, there is no overshoot in
the actuated states while the overshoots in the under-actuated states are relatively small.
Under our proposed approach, the overshoots of the sway angles are smaller than 0.1 and
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0.3 degrees for ξx(t) and ξy(t), respectively, while the oscillation of the hoisting cable is
less than 0.2 cm. Overall, while the results obtained by both the controllers in the actuated
states are comparable, the proposed control law FuzzyHSMC outperforms the HSMC in
the under-actuated components, as can be seen in Figure 5.

(a)

(b)

(c)

Figure 4. The actuated states given the constant input. (a) The trolley position x(t). (b) The bridge
position y(t). (c) The pulley angle θ(t).
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(a)

(b)

(c)

Figure 5. The under-actuated states given the constant input. (a) The sway of the payload in Oxz,
ξx(t). (b) The sway of the payload in Oyz, ξy(t). (c) The oscillation of the hoisting cable in the cable
direction, γ(t).

5.2. Step Input

In the second scenario, the desired positions of the trolley, bridge, and pulley were
first set to xd = 2 m, yd = 6 m, and θd = 2 rad, respectively. Nonetheless, at 10 s from
the beginning, the final position of the pulley was then set to θd = 6 rad. Likewise, at
15 s, the final position of the trolley was set to xd = 5 m, and at 20 s, the final position of
the bridge was set back to yd = 3 m. Although there were changes of the reference levels
during the operation of the crane, the control algorithms adapted very well in efficiently
controlling the motions of the trolley, bridge, and pulley, as demonstrated in Figure 6.
Moreover, the changes in the control inputs are also reflected in the responses of the under-
actuated components, as illustrated in Figure 7. For instance, although the sway angles
and oscillation of the hoisting cable were suppressed almost to zero after about 6 s, they re-
emerged at the time there were the changes in the control inputs. However, the maximum
amplitudes of these unexpected swings and oscillation are minor at about 0.1 degrees with
respect to ξx(t) and ξy(t) and 0.05 cm with respect to γ(t). Then, the under-actuated states
went down to zero again after a few seconds, as can be seen in Figure 7.
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(a)

(b)

(c)

Figure 6. The actuated states given the step input. (a) The trolley position x(t). (b) The bridge
position y(t). (c) The pulley angle θ(t).

(a)

Figure 7. Cont.
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(b)

(c)

Figure 7. The under-actuated states given the step input. (a) The sway of the payload in Oxz, ξx(t).
(b) The sway of the payload in Oyz, ξy(t). (c) The oscillation of the hoisting cable in the cable
direction, γ(t).

5.3. Noisy Input

In fact, there are always external disturbances influencing the operations of the real-
world crane systems. Hence, in the third experiment, we simulated the external distur-
bances in the form of pulses injecting into the crane at different times. For instance, at 10 s
from the beginning, a 2 s width pulse with an amplitude of−500 N·m considered as a noise
was injected into the pulley. In a similar fashion, at 15 and 25 s, two 5 s width pulses with
amplitudes of 1000 N and 2000 N were injected into the trolley and bridge, respectively.
The external disturbances are depicted in Figure 8.

It is noted that in this third experiment, the final positions of the trolley, bridge, and
pulley were also set to xd = 5 m, yd = 10 m, and θd = 5 rad. The obtained results presenting
the control performances are illustrated in Figures 9 and 10. Undoubtedly, it can be seen
that the external disturbances caused deterioration of the control performances at the time
the disturbances were injected into the crane. However, the controllers quickly steered both
the actuated and under-actuated states back to the desired positions. More importantly, as
can be seen in Figure 10, given our control technique, the influence caused by the external
disturbances on the under-actuated components is insignificant.

Given the results in all three scenarios, it can be seen that since the proposed control
algorithm FuzzyHSMC can adaptively learn its parameters over time, it outperforms the
deterministic control scheme HSMC.
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(a)

(b)

(c)

Figure 8. The external disturbances to the crane system. (a) The external disturbance on the trolley.
(b) The external disturbance on the bridge. (c) The external disturbance on the pulley.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. The actuated states under the external disturbances. (a) The trolley position x(t). (b) The
bridge position y(t). (c) The pulley angle θ(t).

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. The under-actuated states under the external disturbances. (a) The sway of the payload in
Oxz, ξx(t). (b) The sway of the payload in Oyz, ξy(t). (c) The oscillation of the hoisting cable in the
cable direction, γ(t).

6. Conclusions

A 3D overhead crane with 6 DoF has been considered in this paper, where the elas-
ticity of its hoisting cable is taken into account. Oscillation caused by the cable elasticity
constitutes the 6th under-actuated output in the crane system. In order to design a con-
troller to effectively control the 6 DoF overhead crane, the HSMC technique is exploited.
Moreover, the parameters of the HSMC scheme are proposed to be adaptively learned
by utilizing the fuzzy inference rule mechanism, where the proposed controller is then
called FuzzyHSMC. More importantly, the stability of the crane controlled by the proposed
algorithm is theoretically proved by the use of the Lyapunov function, which guarantees
the effectiveness of the proposed method. Then, the algorithm was extensively evaluated,
where the obtained results are highly promising.

One limitation of the work is that the proposed method has not been verified in a
physical system. In future work, we will implement the algorithm in an actual gantry crane.
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Appendix A

The coefficients of the matrix M(χ, t) are computed as follows.
m11 = mc + mt.
m21 = 0.
m12 = m21.
m31 = mcr sin(ξx(t)), m13 = m31.
m14 = mc(γ(t) + ∆γ + r(θ(t) + ξx(t)))cos(ξx(t)).
m14 = m41.
m51 = m15 = 0.
m61 = m16 = mc sin(ξx(t)).
m22 = mc + mb + mt.
m32 = m23 = mcr cos(ξx(t)) sin

(
ξy(t)

)
.
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m42 = m24 =


mcrcos(ξx(t)) sin

(
ξy(t)

)
−

−mcγ(t) sin(ξx(t)) sin
(
ξy(t)

)
−

−mcrθ(t) sin(ξx(t)) sin
(
ξy(t)

)
−

−mc∆γ sin(ξx(t)) sin
(
ξy(t)

)
−

−mcrξx(t) sin(ξx(t)) sin
(
ξy(t)

)

.

m52 = m25 = mc

{
γ(t) + ∆γ+
+r(θ(t) + ξx(t))

}
cos(ξx(t)) cos

(
ξy(t)

)
.

m62 = m26 = mccos(ξx(t)) sin
(
ξy(t)

)
.

m33 =


J + mcr2cos2(ξx(t))cos2(ξy(t)

)
+

+mcr2cos2(ξx(t))sin2(ξy(t)
)
+

+mcr2sin2(ξx(t))

.

m43 = m34 =


mcr(γ(t) + ∆γ + r(θ(t) + ξx(t)))×
cos(ξx(t)) sin(ξx(t))
−mcr(γ(t) + ∆γ + r(θ(t) + ξx(t)))×
cos2(ξx(t))sin2(ξx(t))
−mcr2cos2(ξx(t))sin2(ξy(t)

)

.

m53 = m35 = 1
4 mcr2 sin(2ξx(t)) sin

(
2ξy(t)

)
.

m63 = m36 = mcr.

m44 = mc



−r(γ(t) + ∆γ + r(θ(t) + ξx(t)))×
sin2(ξy(t)

)
sin(2ξx(t))+

+(γ(t) + ∆γ + r(θ(t) + ξx(t)))
2×

×cos2(ξx(t))+
+(γ(t) + ∆γ + r(θ(t) + ξx(t)))

2×
×sin2(ξx(t))cos2(ξy(t)

)
+

+r2sin2(ξy(t)
)
cos2(ξx(t))+

+(γ(t) + ∆γ + r(θ(t) + ξx(t)))
2×

×sin2(ξy(t)
)
sin2(ξx(t))


.

m54 = mc



r(γ(t) + ∆γ + r(θ(t) + ξx(t)))×
×sin2(ξy(t)

)
sin(2ξx(t))+

+(γ(t) + ∆γ + r(θ(t) + ξx(t)))
2×

×cos2(ξx(t))+
+(γ(t) + ∆γ + r(θ(t) + ξx(t)))

2×
×sin2(ξx(t))cos2(ξy(t)

)
+

+(γ(t) + ∆γ + r(θ(t) + ξx(t)))
2×

×sin2(ξy(t)
)
sin2(ξx(t))+

+r2sin2(ξy(t)
)
cos2(ξx(t))


.

m45 = m54.

m64 = m46 = mc ×



rθ(t)sin2(ξy(t)
)
cos(ξx(t)) sin(ξx(t))+

+rξx(t)sin2(ξy(t)
)
cos(ξx(t)) sin(ξx(t))+

+γ(t)sin2(ξy(t)
)
cos(ξx(t)) sin(ξx(t))+

+∆γsin2(ξy(t)
)
cos(ξx(t)) sin(ξx(t))+

+rsin2(ξy(t)
)
cos2(ξx(t))−

−r(θ(t) + ξx(t))sin2(ξy(t)
)
cos(ξx(t))×

× sin(ξx(t))−
−γ(t)sin2(ξy(t)

)
cos(ξx(t)) sin(ξx(t))−

−∆γsin2(ξy(t)
)
cos(ξx(t)) sin(ξx(t))


.
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m55 = mc ×



γ2(t)cos2(ξx(t)) + r2θ2(t)cos2(ξx(t))+
+γ2(t)cos2(ξx(t)) + r2ξ2

x(t)cos2(ξx(t))+
+2γ(t)∆γcos2(ξx(t))+
+2rγ(t)θ(t)cos2(ξx(t))+
+2rγ(t)ξx(t)cos2(ξx(t))+
+2∆γrθ(t)cos2(ξx(t))+
+2r2ξx(t)θ(t)cos2(ξx(t))+
+2∆γrξx(t)cos2(ξx(t))+
+r2sin2(ξx(t))sin2(ξy(t)

)
−

−rγ(t)sin2(ξy(t)
)

sin(2ξx(t))−
−r(∆γ + rθ(t) + rξx(t))sin2(ξy(t)

)
×

× sin(2ξx(t))



.

m65 = m56 = mcr cos(ξx(t)) cos
(
ξy(t)

)
sin(ξx(t)) sin

(
ξy(t)

)
.

m66 = mc.
Likewise, the coefficients of matrix C(χ, χ̇, t) are calculated by

c11 = c21 = c31 = c41 = c51 = c61 = 0.
c12 = c22 = c32 = c42 = c52 = c62 = 0.
c13 = 2mcrξ̇x(t) cos(ξx(t)).

c14 = mc


rξ̇x(t) cos(ξx(t))−
−γ(t)ξ̇x(t) sin(ξx(t))−
−∆γξ̇x(t) sin(ξx(t))−
−rθ(t)ξ̇x(t) sin(ξx(t))−
−rξx(t)ξ̇x(t) sin(ξx(t))

.

c15 = 0, c16 = 2mc ξ̇x(t) cos(ξx(t)).

c23 = 2mcr
{

ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

) }
.

c24 = mc



2rξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−rξx(t)ξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−γ(t)ξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−rθ(t)ξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−∆γξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
−

−2rξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

)


.

c25 = −mc



2ξ̇x(t) sin(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + ∆γ)+
+2rξ̇x(t) sin(ξx(t)) cos

(
ξy(t)

)
×

×(ξx(t) + θ(t)) + ξ̇y(t) cos(ξx(t))×
× sin

(
ξy(t)

)
(γ(t) + ∆γ)+

+rξ̇y(t) cos(ξx(t))×
× sin

(
ξy(t)

)
((ξx(t) + θ(t)))


.

c26 = 2mc

{
ξ̇y(t) cos(ξx(t)) cos

(
ξy(t)

)
−

−ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

) }
.

c33 = 0.
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c34 = mcr



−
(
ξ̇x(t)cos2(ξx(t))cos2(ξy(t)

))
×

×(γ(t) + ∆γ)−
−r
(
ξ̇x(t)cos2(ξx(t))cos2(ξy(t)

))
×

×(ξx(t) + θ(t))−
−rξ̇x(t) sin(ξx(t))cos(ξx(t))×
×cos2(ξy(t)

)
+ 2rcos2(ξx(t))×

× sin
(
ξy(t)

)
ξ̇y(t) cos

(
ξy(t)

)
−

−2rξ̇x(t) cos(ξx(t))sin2(ξy(t)
)
×

× sin(ξx(t)) + ξ̇x(t)cos2(ξx(t))×
×sin2(ξy(t)

)
(γ(t) + ∆γ)+

+rξ̇x(t)cos2(ξx(t))sin2(ξy(t)
)
×

×(ξx(t) + θ(t))+
+rξ̇x(t) cos(ξx(t)) sin(ξx(t))−
−ξ̇x(t)sin2(ξx(t))(γ(t) + rθ(t))−
−ξ̇x(t)sin2(ξx(t))(∆γ + rξx(t))+
+ 1

2 ξ̇y(t) sin(2ξx(t)) sin
(
2ξy(t)

)
×

×(γ(t) + ∆γ) + 1
2 rξ̇y(t)×

× sin(2ξx(t)) sin
(
2ξy(t)

)
(ξx(t) + θ(t))



.

c35 = mcr



rξ̇y(t) sin(ξx(t)) cos(ξx(t))×
×cos2(ξy(t)

)
− ξ̇y(t)cos2(ξx(t))×

×cos2(ξy(t)
)
(γ(t) + ∆γ)−

−rξ̇y(t)cos2(ξx(t))cos2(ξy(t)
)
×

×(ξx(t) + θ(t))− 1
2 ξ̇x(t) sin(2ξx(t))×

× sin
(
2ξy(t)

)
(γ(t) + ∆γ)−

− 1
2 rξ̇x(t) sin(2ξx(t)) sin

(
2ξy(t)

)
×

×(ξx(t) + θ(t))−
−ξ̇y(t)cos2(ξx(t))sin2×
×
(
ξy(t)

)
(γ(t) + ∆γ)−

−rξ̇y(t)cos2(ξx(t))sin2(ξy(t)
)
ξx(t)−

−rξ̇y(t)cos2(ξx(t))sin2(ξy(t)
)
θ(t)



.

c36 = 0.

c43 = 2mcr


ξ̇x(t)(γ(t) + ∆γ + rξx(t) + rθ(t))+
+rξ̇y(t)cos2(ξx(t)) cos

(
ξy(t)

)
×

× sin
(
ξy(t)

)
− rξ̇x(t) cos(ξx(t))×

×sin(ξx(t)) sin2(ξy(t)
)

.
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c44 = mc ×



−


sin(ξx(t)) sin

(
ξy(t)

)
(γ(t) + ∆γ)+

+r sin(ξx(t)) sin
(
ξy(t)

)
×

×(ξx(t) + θ(t))−
−r cos(ξx(t)) sin

(
ξy(t)

)
×

×



2rξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−2rξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

)
−

−ξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
×

×(γ(t) + ∆γ)−
−rξ̇x(t) cos(ξx(t)) sin

(
ξy(t)

)
×

×(ξx(t) + θ(t))


+

+ cos(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + ∆γ + rξx(t) + rθ(t))×

×



ξ̇x(t) cos(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + ∆γ)+
+rξ̇x(t) cos(ξx(t)) cos

(
ξy(t)

)
×

×(ξx(t) + θ(t))−
−2ξ̇y(t) sin(ξx(t)) sin

(
ξy(t)

)
×

×(γ(t) + ∆γ)−
−2rξ̇y(t) sin(ξx(t)) sin

(
ξy(t)

)
×

×(ξx(t) + θ(t))−
−rξ̇x(t) sin(ξx(t)) cos

(
ξy(t)

)


+

+


rξ̇x(t)cos2(ξx(t))
−ξ̇x(t) sin(ξx(t))(γ(t) + rξx(t))
−ξ̇x(t) sin(ξx(t))(∆γ + rθ(t))

×
×
{

γ(t) + rξx(t)
+∆γ + rθ(t)

}



.

c45 = mc ×




sin(ξx(t)) sin

(
ξy(t)

)
(γ(t) + ∆γ)+

+r sin(ξx(t)) sin
(
ξy(t)

)
θ(t)+

+r sin(ξx(t)) sin
(
ξy(t)

)
ξx(t)−

−r cos(ξx(t)) sin
(
ξy(t)

)
×

×
{

2ξ̇x(t) sin(ξx(t)) cos
(
ξy(t)

)
+

+ξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

) }
×

×
{

γ(t) + rξx(t)+
+∆γ + rθ(t)

}
−

−


rξ̇y(t) sin(ξx(t)) cos

(
ξy(t)

)
−

−ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + rξx(t))−
−ξ̇y(t) cos(ξx(t)) cos

(
ξy(t)

)
×

×(∆γ + rθ(t))

×
× sin(ξx(t)) cos

(
ξy(t)

)
×

×(γ(t) + ∆γ + rξx(t) + rθ(t))



.

c46 = 2mc


ξ̇x(t)(γ(t) + ∆γ + rξx(t) + rθ(t))+
+rξ̇y(t)cos2(ξx(t)) cos

(
ξy(t)

)
×

× sin
(
ξy(t)

)
− rξ̇x(t) cos(ξx(t))×

×sin(ξx(t)) sin2(ξy(t)
)

.

c53 = 2mcr


ξ̇y(t)cos2(ξx(t))×
×(γ(t) + ∆γ + rξx(t) + rθ(t))−
−rξ̇x(t)sin2(ξx(t)) cos

(
ξy(t)

)
×

× sin
(
ξy(t)

)
− rξ̇y(t) cos(ξx(t))×

× sin(ξx(t)) sin2(ξy(t)
)

.
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c54 = mc ×



cos(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + ∆γ + rξx(t) + rθ(t))×

×



2r
{

ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−ξ̇x(t) sin(ξx(t)) sin
(
ξy(t)

) }
−ξ̇x(t) cos(ξx(t)) sin

(
ξy(t)

)
×

×(γ(t) + ∆γ)−
−rξ̇x(t) cos(ξx(t)) sin

(
ξy(t)

)
ξx(t)−

−rξ̇x(t) cos(ξx(t)) sin
(
ξy(t)

)
θ(t)


−

−


r sin(ξx(t)) sin

(
ξy(t)

)
−

− cos(ξx(t)) sin
(
ξy(t)

)
(γ(t) + ∆γ)−

−r cos(ξx(t)) sin
(
ξy(t)

)
ξx(t)−

−r cos(ξx(t)) sin
(
ξy(t)

)
θ(t)

×

×



ξ̇x(t) cos(ξx(t)) cos
(
ξy(t)

)
×

×(γ(t) + rξx(t)) + ξ̇x(t) cos(ξx(t))×
× cos

(
ξy(t)

)
(∆γ + rθ(t))− 2ξ̇y(t)×

× sin(ξx(t)) sin
(
ξy(t)

)
×

×(γ(t) + rξx(t))− 2ξ̇y(t) sin(ξx(t))×
× sin

(
ξy(t)

)
(∆γ + rθ(t))+

+rξ̇x(t) sin(ξx(t)) cos
(
ξy(t)

)





.

c55 = mc ×




rξ̇y(t) sin(ξx(t)) cos

(
ξy(t)

)
−

−ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
γ(t)−

−rξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
ξx(t)−

−rξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
θ(t)−

−ξ̇y(t) cos(ξx(t)) cos
(
ξy(t)

)
∆γ

×

×


r sin(ξx(t)) sin

(
ξy(t)

)
−

− cos(ξx(t)) sin
(
ξy(t)

)
×

×(γ(t) + rξx(t))−
− cos(ξx(t)) sin

(
ξy(t)

)
×

×(∆γ + rθ(t))

−
− cos(ξx(t)) cos

(
ξy(t)

){ γ(t) + ∆γ
+rξx(t) + rθ(t)

}2

×

×
{

2ξ̇x(t) sin(ξx(t)) cos
(
ξy(t)

)
+

+ξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

) }



.

c56 = 2mc ×


ξ̇y(t)cos2(ξx(t))×
×(γ(t) + ∆γ + rξx(t) + rθ(t))−
−rξ̇x(t)sin2(ξx(t)) cos

(
ξy(t)

)
sin
(
ξy(t)

)
−

−rξ̇y(t) cos(ξx(t)) sin(ξx(t)) sin2(ξy(t)
)

.

c63 = 0, c66 = 0.



Electronics 2022, 11, 713 26 of 27

c64 = mc ×



r sin(ξx(t))ξ̇x(t) cos(ξx(t))−
−sin2(ξx(t))ξ̇x(t)(γ(t) + rξx(t))−
−sin2(ξx(t))ξ̇x(t)(∆γ + rθ(t))−

−


cos(ξx(t)) cos

(
ξy(t)

)
×

×(γ(t) + rξx(t))+
+ cos(ξx(t)) cos

(
ξy(t)

)
×

×(∆γ + rθ(t))

×
×
{

ξ̇x(t) cos(ξx(t)) cos
(
ξy(t)

)
−

−2ξ̇y(t) sin(ξx(t)) sin
(
ξy(t)

) }−
−rξ̇x(t) cos(ξx(t)) sin(ξx(t))cos2(ξy(t)

)
+

+2rξ̇y(t)cos2(ξx(t)) cos
(
ξy(t)

)
sin
(
ξy(t)

)
−

−2rξ̇x(t) cos(ξx(t)) sin(ξx(t))sin2(ξy(t)
)
−

−ξ̇x(t)cos2(ξx(t))sin2(ξy(t)
)
×

×(γ(t) + rξx(t))−
−ξ̇x(t)cos2(ξx(t))sin2(ξy(t)

)
(∆γ + rθ(t))



.

c65 = mc ×



− 1
2 ξ̇x(t) sin(2ξx(t)) sin

(
2ξy(t)

)
γ(t)−

− 1
2 rξ̇x(t) sin(2ξx(t)) sin

(
2ξy(t)

)
ξx(t)−

− 1
2 rξ̇x(t) sin(2ξx(t)) sin

(
2ξy(t)

)
θ(t)−

−ξ̇y(t)cos2(ξx(t))sin2(ξy(t)
)
×

×(γ(t) + rξx(t))−
−ξ̇y(t)cos2(ξx(t))sin2(ξy(t)

)
(∆γ + rθ(t))+

+rξ̇y(t) cos(ξx(t)) sin
(
ξy(t)

)
cos2(ξy(t)

)
−

−ξ̇y(t)cos2(ξx(t))cos2(ξy(t)
)
(γ(t) + ∆γ)−

−rξ̇y(t)cos2(ξx(t))cos2(ξy(t)
)
ξx(t)−

−rξ̇y(t)cos2(ξx(t))cos2(ξy(t)
)
θ(t)−

− 1
2 ξ̇x(t) sin(2ξx(t)) sin

(
2ξy(t)

)
∆γ



.

And, the coefficients of vector G(χ, t) are computed by
g1 = mcgr cos(ξx(t)) cos

(
ξy(t)

)
.

g2 = −


mcgγ(t) sin(ξx(t))cos

(
ξy(t)

)
+

+mcg∆γ sin(ξx(t))cos
(
ξy(t)

)
+

+mcgrθ(t) sin(ξx(t))cos
(
ξy(t)

)
+

+mcgrξx(t) sin(ξx(t))cos
(
ξy(t)

)
.

g3 = −


mcgγ(t) sin

(
ξy(t)

)
cos(ξx(t))+

+mcg∆γ sin
(
ξy(t)

)
cos(ξx(t))+

+mcgrθ(t) sin
(
ξy(t)

)
cos(ξx(t))+

+mcgrξx(t) sin
(
ξy(t)

)
cos(ξx(t))−

−mcgr sin(ξx(t)) sin
(
ξy(t)

)

.

g4 = mcg cos(ξx(t)) cos
(
ξy(t)

)
+ ρ∆γ.

References
1. Van Nguyen, T.; Le, H.X.; Tran, H.V.; Nguyen, D.A.; Nguyen, M.N.; Nguyen, L. An Efficient Approach for SIMO Systems using

Adaptive Fuzzy Hierarchical Sliding Mode Control. In Proceedings of the 2021 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 85–90. [CrossRef]

2. Li, Y.; Xi, X.; Xie, J.; Liu, C. Study and Implementation of a Cooperative Hoisting for Two Crawler Cranes. J. Intell. Robot. Syst.
2016, 83, 165–178. [CrossRef]

3. Xing, X.; Liu, J. Vibration and Position Control of Overhead Crane with Three-Dimensional Variable Length Cable Subject to
Input Amplitude and Rate Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 4127–4138. [CrossRef]

4. Campeau-Lecours, A.; Foucault, S.; Laliberté, T.; Mayer-St-Onge, B.; Gosselin, C. A Cable-Suspended Intelligent Crane Assist
Device for the Intuitive Manipulation of Large Payloads. IEEE/ASME Trans. Mechatron. 2016, 21, 2073–2084. [CrossRef]

5. Rigatos, G.; Siano, P.; Abbaszadeh, M. Nonlinear H-infinity control for 4-DOF underactuated overhead cranes. Trans. Inst. Meas.
Control 2018, 40, 2364–2377. [CrossRef]

6. Mahapatra, S.; Subudhi, B. Design and experimental realization of a backstepping nonlinear H∞ control for an autonomous
underwater vehicle using a nonlinear matrix inequality approach. Trans. Inst. Meas. Control 2018, 40, 3390–3403. [CrossRef]

http://doi.org/10.1109/ICARSC52212.2021.9429793
http://dx.doi.org/10.1007/s10846-015-0296-x
http://dx.doi.org/10.1109/TSMC.2019.2930815
http://dx.doi.org/10.1109/TMECH.2016.2531626
http://dx.doi.org/10.1177/0142331217703702
http://dx.doi.org/10.1177/0142331217721315


Electronics 2022, 11, 713 27 of 27

7. Le, H.X.; Nguyen, L.; Thiyagarajan, K. A Dynamic Surface Controller based on Adaptive Neural Network for Dual Arm Robots.
In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13
November 2020; pp. 555–560.

8. Nguyen, T.V.; Thai, N.H.; Pham, H.T.; Phan, T.A.; Nguyen, L.; Le, H.X.; Nguyen, H.D. Adaptive Neural Network-Based
Backstepping Sliding Mode Control Approach for Dual-Arm Robots. J. Control Autom. Electr. Syst. 2019, 30, 512–521. [CrossRef]

9. Vu, Q.V.; Dinh, T.A.; Nguyen, T.V.; Tran, H.V.; Le, H.X.; Pham, H.V.; Kim, T.D.; Nguyen, L. An Adaptive Hierarchical Sliding
Mode Controller for Autonomous Underwater Vehicles. Electronics 2021, 10, 2316. [CrossRef]

10. Pham, D.T.; Nguyen, T.V.; Le, H.X.; Nguyen, L.; Thai, N.H.; Phan, T.A.; Pham, H.T.; Duong, A.H.; Bui, L.T. Adaptive neural
network based dynamic surface control for uncertain dual arm robots. Int. J. Dyn. Control 2020, 8, 824–834. [CrossRef]

11. Hoang, U.T.T.; Le, H.X.; Thai, N.H.; Pham, H.V.; Nguyen, L. Consistency of Control Performance in 3D Overhead Cranes under
Payload Mass Uncertainty. Electronics 2020, 9, 657. [CrossRef]

12. Le, V.A.; Le, H.X.; Nguyen, L.; Phan, M.X. An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural
Networks for 3D Overhead Cranes. Int. J. Autom. Comput. 2019, 16, 614–627. [CrossRef]

13. Le, H.X.; Le, A.V.; Nguyen, L. Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes.
Cyber-Phys. Syst. 2019, 5, 191–208. [CrossRef]

14. Fu, Y.; Sun, N.; Yang, T.; Qiu, Z.; Fang, Y. Adaptive Coupling Anti-Swing Tracking Control of Underactuated Dual Boom Crane
Systems. IEEE Trans. Syst. Man Cybern. Syst. 2021, 3, 1–13. [CrossRef]

15. Xu, W.; Zheng, X.; Liu, Y.; Zhang, M.; Luo, Y. Adaptive dynamic sliding mode control for overhead cranes. In Proceedings of the
2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 3287–3292.

16. Li, Y.; Zhou, S.; Zhu, H. A backstepping controller design for underactuated crane system. In Proceedings of the 2018 Chinese
Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 2895–2899. [CrossRef]

17. Tsai, C.C.; Wu, H.L.; Chuang, K.H. Backstepping aggregated sliding-mode motion control for automatic 3D overhead cranes. In
Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan,
11–14 July 2012; pp. 849–854. [CrossRef]

18. Yang, T.; Sun, N.; Fang, Y. Adaptive Fuzzy Control for a Class of MIMO Underactuated Systems with Plant Uncertainties and
Actuator Deadzones: Design and Experiments. IEEE Trans. Cybern. 2021, 1–14. [CrossRef] [PubMed]

19. Yang, T.; Sun, N.; Fang, Y. Neuroadaptive Control for Complicated Underactuated Systems with Simultaneous Output and
Velocity Constraints Exerted on Both Actuated and Unactuated States. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11. [CrossRef]
[PubMed]

20. Wang, W.; Yi, J.; Zhao, D.; Liu, D. Design of a stable sliding-mode controller for a class of second-order underactuated systems.
IEE Proc.-Control Theory Appl. 2004, 151, 683–690. [CrossRef]

21. Mahjoub, S.; Mnif, F.; Derbel, N. Second-order sliding mode approaches for the control of a class of underactuated systems. Int. J.
Autom. Comput. 2015, 12, 134–141. [CrossRef]

22. Zadeh, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [CrossRef]
23. Yang, T.; Chen, H.; Sun, N.; Fang, Y. Adaptive Neural Network Output Feedback Control of Uncertain Underactuated Systems

with Actuated and Unactuated State Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2021, 1–17. [CrossRef]
24. Yue, M.; An, C.; Du, Y.; Sun, J. Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum

vehicle based on a data-driven trajectory planner. Fuzzy Sets Syst. 2016, 290, 158–177. [CrossRef]
25. Al-saedi, M.I. Enhancing the Feedforward –Feedback Controller for Nonlinear Overhead Crane Using Fuzzy logic controller.

IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012074. [CrossRef]
26. Zdesar, A.; Cerman, O.; Dovzan, D.; Husek, P.; Skrjanc, I. Fuzzy Control of a Helio-Crane. J. Intell. Robot. Syst. 2013, 72, 497–515.

[CrossRef]
27. Shi, H.; Li, G.; Bai, X.; Huang, J. Research on Nonlinear Control Method of Underactuated Gantry Crane Based on Machine

Vision Positioning. Symmetry 2019, 11, 987. [CrossRef]

http://dx.doi.org/10.1007/s40313-019-00472-z
http://dx.doi.org/10.3390/electronics10182316
http://dx.doi.org/10.1007/s40435-019-00600-2
http://dx.doi.org/10.3390/electronics9040657
http://dx.doi.org/10.1007/s11633-019-1174-y
http://dx.doi.org/10.1080/23335777.2019.1607908
http://dx.doi.org/10.1109/TSMC.2021.3102244
http://dx.doi.org/10.1109/CCDC.2018.8407619
http://dx.doi.org/10.1109/AIM.2012.6265973
http://dx.doi.org/10.1109/TCYB.2021.3050475
http://www.ncbi.nlm.nih.gov/pubmed/33531326
http://dx.doi.org/10.1109/TNNLS.2021.3115960
http://www.ncbi.nlm.nih.gov/pubmed/34623279
http://dx.doi.org/10.1049/ip-cta:20040902
http://dx.doi.org/10.1007/s11633-015-0880-3
http://dx.doi.org/10.1016/j.ins.2008.02.012
http://dx.doi.org/10.1109/TSMC.2021.3131843
http://dx.doi.org/10.1016/j.fss.2015.08.013
http://dx.doi.org/10.1088/1757-899X/745/1/012074
http://dx.doi.org/10.1007/s10846-012-9796-0
http://dx.doi.org/10.3390/sym11080987

	Introduction
	A Model of 3D Overhead Crane with 6 Degrees of Freedom
	Hierarchical Sliding Mode Controller for 3D Overhead Crane
	Adaptive Fuzzy Learning Scheme
	Results and Discussions
	Constant Input
	Step Input
	Noisy Input

	Conclusions
	
	References

