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Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal.�e basic
approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window
function with 	xed resolution. �e selection of an appropriate window size is di
cult when no background information about
the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow
band-signal using spectrum sensing technique. For wide-band signals, where a 	xed time-frequency resolution is undesirable, the
approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. �is
results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple
but e�ective switching framework is provided between both STFT and CQT. �e proposed method also allows for the dynamic
construction of a 	lter bank according to user-de	ned parameters. �is helps in reducing redundant entries in the 	lter bank.
Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost
and achieves 87.71% of the appropriate window length selection.

1. Introduction

Time-frequency analysis is typically required to characterize
nonstationary phenomena such as speech [1, 2], biomedicine
[3, 4], vibration [5], and music [6] based signals. �e
frequency contents for the analysis can be revealed if a Fourier
transform is applied to these signals [7]. However, in doing so,
all time related informationwill be lost [8].�ede	ciencywas
	rst addressed in [9] where the Fourier transformwas applied
to analyze small sections of a signal at a time. Over time,
this technique became popularly known as the Short Time
Fourier Transform (STFT) [10, 11]. A signi	cant shortcoming
of the STFT is that it considers a 	xed time-frequency
resolution for all types of signals [12, 13]. �is approach is
not desirable for wide-band or ultrawide-band signals where
low spectrogram resolutions can be observed. Moreover,
the selection of an appropriate window size is vital for the
STFT [14]. �e window size should ideally ensure that the
input signal falling within it should remain stationary [15].

However, if the window is too small, then the frequency
domain cannot be localized [16].
�e low resolution can be improved by using the constant

Q transform (CQT) which is frequently used in auditory
applications [17]. Unlike the STFT, the CQT provides a
frequency resolution that depends on the geometrically
spaced center frequencies of an analysis window [18]. In
this paper, an adaptive method is proposed that provides an
e�ective framework of switching between STFT for narrow
band and CQT for wide-band signals, a�er analyzing the
input signal. No prior information about the input signal
is required in the proposed method. �e proposed method
is also capable of constructing a nonuniform 	lter bank
according to user-de	ned parameters. �is helps in the
removal of 	lter bank redundancies. �e results obtained
from the proposed approach not only show an improved
spectrogram visualization but also reduce the computation
cost and show 87.71% of the appropriate window length
selection.
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2. Short Time Fourier Transform and
Constant Q Transform

�e STFT is achieved by introducing a sliding window to the
nonstationary signal. �is window adds a new dimension of
time to the frequency response. In the discrete time-case, this
is represented as

� (�, �) = ∞∑
�=−∞

� (�)� (� − �) 	−���, (1)

where � and 
 are the time and frequency domain indices, �
is the input signal, � is the window function, and � is the
window interval centered around zero. �e STFT can also be
interpreted as a uniform 	lter bank [19]. �e output signal�(�, 
) is essentially the STFT (index �) obtained at the 
th
channel of the 	lter bank (Figure 1). �e window function
is assumed to be nonzero only in the window interval. As
an example, (1) is applied to two signals. �e 	rst signal is
a composite signal bearing frequencies of 40Hz and 100Hz.
�e second shows both the signals in isolation, occupying
one-half of the time window each. As can be seen from the
equivalent Fourier transform (Figure 2), the Fourier space
cannot distinguish between the two types of signals. On the
other hand, the distinction is clearly visible upon viewing the
spectrogram of the STFT (Figure 3).
�e time-frequency resolution of the spectrogram is

dependent upon the chosen window size. A larger size will
result in higher spectral, but lower temporal resolution,
whereas the opposite will result in a lower spectral, but
higher temporal resolution. �is relationship is described
as the Uncertainty Principle [20]. In this case, a variable
window size would be ideal as it will provide high spectral
resolution at low frequencies and high temporal resolution
at high frequencies. A good candidate for achieving this
is the constant Q transform (CQT) [21], where � is the
quality factor and its description appears shortly. Like the
STFT, the CQT can also be interpreted as a 	lter bank.
�e only di�erence is that, in the case of CQT, the 	lters
are geometrically spaced center frequencies such that the
bandwidth Bw� of the 
th 	lter is a multiple of the (
 − 1)th
	lter:

Bw� = (21/�)Bw�−1, (2)

where � is the number of octaves per 	lter. As such, the
bandwidth Bwmin of the lowest 	lter is given as

Bw� = (21/�)� Bwmin. (3)

�e quality factor � is represented as the ratio of the center
frequency �� to the bandwidth:

� = ��
Bw�

. (4)

Due to variations, the window length for the 
th 	lter is given
as

�[
] = ��
Bw�

. (5)
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Figure 1: Uniform 	lter bank (STFT) with 	xed time-frequency
resolution.

Finally, the CQT is given as

�	
 [
] = 1� [
]
�[�]−1∑
�=0

�[�, 
] � [�] 	−�2�
�/�[�], (6)

where �	
[
] is the 
 component of the constant � trans-
form, �[�] is the input signal, and �[�, 
] is the window
function of length�[
].�e	lter bank bearing geometrically
spaced center frequencies of the CQT is shown in Figure 4.

3. Related Work

Time-frequency analysis methods are widely used in acous-
tics [22, 23], mechanics [5], electronics [24, 25], telecom-
munications [26, 27], biomedicine [28], and other 	elds
involving processing of nonstationary information. Time-
Frequency representation techniques are broadly categorized
into parametric and nonparametric methods. Di�erent para-
metric and nonparametric approaches have been studied in
literature [29–35]. �is paper deals with the nonparametric
approach. An important and one of the most prevalent non-
parametric tools is the STFT [1, 36] which has been discussed
earlier in the introduction. �e STFT is not desirable when
dealingwithwide andultrawide-band signalswhich results in
spectrogram resolution issues due to the size of the window
[37, 38]. A number of techniques have addressed this issue.
Spectrum analysis/synthesis can be added to the STFT as a
feature [39]. Window size decisions can then be manually
made on the basis of sinusoidal features of the signal such as
peak amplitude, frequency, and phase trajectories. As such,
two consecutive sinusoids with frequency di�erence Δ� can
then be separated by setting the window size as

� = ����Δ� , (7)

where � is the window size (number of samples), �� is
the used window’s main lobe size, and �� is the sampling
frequency. If no prior information is available regarding
an input signal, then most of the existing methods follow
the adaptive STFT that selects a window length from a
pool of window sets [40–43]. �is approach involves a high
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Figure 2: (a) Time domain representation of 40Hz and 100Hz combined signal for 2 seconds; (b) Fourier transform of part (a); (c) time
domain representation of 40Hz signal for 	rst two seconds and 100Hz signal for next two seconds; (d) Fourier transform of part (c).

computation cost and the limited pool of window sets also
reduces the chances of getting an accurate window length.
Various adaptively varying STFT approaches are pro-

posed in [44] that reduce 	lter bank artefacts without
compromising on time-frequency resolution. One of the
approaches accounts for the time in which signal properties
such as power and spectral shape remain preserved over the
period, that is, a stationary region. Likewise, the opposite
would be the time in which signal properties change over
a period, that is, a transient region. Identifying a region
involves integration of signal energy inside a given bank.
�e window size is then selected on the basis of variation
of energies across critical banks. �e general principle is
increasing the time and frequency resolution for transient
and nontransient regions, respectively. Similarly, a variable
window length is determined by estimating the local instanta-
neous frequencies in every window slice over time in [45, 46].
Non-STFT based tools for time-frequency analysis also

appear in the body of literature. Amongst these, the CQT
[17, 47, 48] and the wavelet transform (WT) [49–52] are the
most common. From the outset, bothmethods seem to be the
same. However, the di�erence lies in the usage of the basis
function. If the basis function can be interpreted as a win-
dowed sinusoid, then both methods are essentially the same
[53].Wavelet transform can be categorized as discrete wavelet
transform (DTW), continuous wavelet transform (CTW),

andwavelet packet transform (WPT) [54].�e signi	cance of
wavelet transform depends upon the selection of appropriate
wavelet basis because inappropriate wavelet basis will directly
hamper the results ofWT.Many publications have been seen,
describing di�erent wavelet basis and advancement in WT
[55–60].

4. Proposed Method

Computationally, the CQT is expensive as compared to the
STFT. �e asymptotic complexity for the STFT is �(� log �)
following the pattern of the FFT, where � is the samples in the
input signal. On the other hand, the asymptotic complexity
of the CQT following (6) is �(� log � + �
 + 
), where
 is the number of components. For performance reasons,
therefore, it would be better to select the STFT over CQT for
visualization of the spectrum. However, the STFT is feasible
only for narrow band signals where the 	lter bank with
	xed window size is used. A simple but e�ective switching
framework is proposed that can alternate between both
tools a�er analyzing the input signal using spectrum sensing
techniques. A block diagram of the proposed framework is
shown in Figure 5.

�e 	rst step involves spectrum sensing that determines
the orientation of the signal on the spectrum using the
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Figure 3: (a) Time domain representation of 40Hz and 100Hz combined signal for 2 seconds; (b) magnitude STFT representation of part
(a); (c) time domain representation of 40Hz signal for 	rst two seconds and 100Hz signal for next two seconds; (d) magnitude STFT
representation of part (c).
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Figure 4: CQT 	lter bank with geometrically spaced window bins.

normalized power spectral density �̂. �e expectation � and
standard deviation � is extracted from �̂ as

� = �∑

�̂ ⋅ � , (8)

� = √ 1(� − 1)
�∑
=1
(�̂ − �)2, (9)

where �  is the amplitude of normalized Power Spectral
Density PSD �̂. �e expectation � returns the frequency
where PSD is concentrated. Together with �, both give
information about the distribution of the PSD.A signal would
be considered narrow band when � is smaller than a user-
de	ned threshold �. An optimum threshold can be selected

empirically such that smearing e�ect is minimized. A�er the
analysis of known narrow and wide-band signals, the value
of � is set to be 1500. �e signals having � less than 1500
are considered as narrow band signal and the appropriate
tool; that is, STFT is selected. As mentioned earlier, STFT is
computationally less expensive and the smearing e�ect is not
prominent in case of narrow band signals. Signals having �
greater than 1500 are considered wide-band signal. In such
scenario, the proposed method will adopt CQT tool. Unlike
the STFT, CQT will minimize the smearing e�ect for wide-
band signal and improve the visualization of spectrogram.
�e check will result in the selection of either the STFT or
the CQT method as

Tool = {{{
STFT, � ≤ �,
CQT, otherwise. (10)

Upon selection of STFT, the next step is to select an appro-
priate window size as [39], where two closest sinusoids can be
distinguished using (7). However, nonstationary signals may
involve a large number of sinusoids in close proximity. �is
results in a very small Δ� and consequently a large window.
�is makes the STFT very similar to the Fourier transform
and will hamper temporal resolution. In order to select an
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Figure 5: Block diagram of the proposed method.

appropriate window size a novel empirical model is proposed
that adaptively selects a window size by modifying (7) to

� = 3����� . (11)

Equation (11) will adopt an appropriate window size
which does not lose any temporal information a�er the
transform, where the size of the main lobe of the window ��
can be set to 2 for a rectangular, 4 for a Hamming/Hanning,
and 6 for a Blackman window. In this work, Hamming
window is used and the value of �� is set as 4.
�e proposed method is tested over di�erent inputs such

as a heartbeat (Figure 6), mridangam (Figure 7), multiple
sinusoids (Figure 8), radio (Figure 9), high-carrier (Fig-
ure 10), music (Figure 11), and a speech signal (Figure 12).
According to the proposed method, 	ve out of these seven
signals are labeled as narrow band while the remaining two,
music and speech, are labeled as wide-band signals. �e
proposedmodel adopts an appropriate window size for STFT
using (11). All the 	gures show how the adaptive window
selection improved the spectrogram visualization.�e results
from each signal type are given in Table 1.
A user-de	ned 	lter bank can be constructed using an

approximation of the signal bandwidth (0.4–10KHz) and its
orientation using [61] as

Bw� = {{{
!, 
 = 1,
"Bw�−1, 2 ≤ 
 ≤ �,

�� = �1 + �−1∑
�=1
Bw� + Bw� − Bw12 ,

(12)

where! is the arbitrary bandwidth,�1 is the center frequency
of the 1st 	lter, " is the logarithmic growth factor, and � is
the total number of 	lter banks. �is will not only reduce the
number of banks but will also cover the band where a signal
may lie. An example of a 	lter bank is shown in Figure 13
bearing signal bandwidth of 7.2 KHz ([0.2, 7.4]KHz), ! =0.2KHz, �1 = 0.3KHz, " = 1.4142, and � = 8. �e entire
process of our proposed method is listed in Algorithm 1.

5. Results and Discussion

A quantitative analysis of the proposed method is discussed
in this section. �e method selects an appropriate window
length � without prior information about the input signal.
Considering a composite signal bearing frequencies 100, 200,
400, and 500Hz, then the Hamming window length required
to provide the frequency resolution of 100Hz (Δ� = 200Hz −
100Hz) would be ����/Δ� = 4 × 44100/100 = 1764.
�is shows that the minimum window size required to

get 100Hz frequency resolution is 1764 samples [39]. By
increasing thewindow size the frequency resolution increases
but this will hamper the temporal resolution. �e window
length is set manually to 1764 samples in order to achieve
the frequency resolution of 100Hz. Background knowledge
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Table 1: Adaptive window selection from proposed method, where � is estimation, � is the standard deviation, � is the optimal threshold
(1500), and� is the window size.
Signal Type � � Decision �
Heartbeat (Figure 6) Low 90.99 135.49 STFT 5816

Mridangam (Figure 7) Intermediate 527.61 706.89 STFT 1003

Carriers (Figure 8) Intermediate 386.13 722.57 STFT 1371

Radio (Figure 9) Intermediate 2632.8 542.37 STFT 201

High carrier (Figure 10) High 10425 1117 STFT 51

Music (Figure 11) Mixed 2170 2160 CQT Variable

Speech (Figure 12) Mixed 810.15 1302 CQT Variable

Reqiure: Non-stationary input signal �, Optimum threshold �, Bandwidth of 1st 	lter !,
Center frequency of 1st 	lter �1, Logarithmic growth factor ", Number of 	lters �

(1) procedure

(2) PSD � fl periodogram(�)
(3) Normalized PSD �̂ fl �/sum(�)
(4) � fl Expectation of �̂ (Equation (8))
(5) � fl Standard Deviation of �̂ (Equation (9))
(6) if � ≤ � then ⊳ SIFT Selected
(7) Window Size� fl ⌈3����/�⌉
(8) Overlapping Region�� fl ⌈�/2⌉
(9) FFT Pointsfl 2⌈log2�⌉
(10) Run STFT with�,�� (Equation (1))
(11) else ⊳ CQT Selected
(12) Run CQT (Equation (6))
(13) (Optional) User De	ned Bins Bw� fl FILTERBANK(!, �1, ", �) (Equation (12))
(14) end if

(15) end procedure

(16) return Spectogram |�STFT|CQT|2
Algorithm 1: Complete algorithm.

about the input signal is required to set the appropriate win-
dow length. �e proposed method automatically calculates
an appropriate window length using (11) as:

Δ� = �3 = 386.133 ,
� = ⌈����Δ� ⌉ = 1371. (13)

Figure 8 shows how the proposed method adaptively
selects the window size and improve the spectrogram. Signals
that are almost invisible in default window size are explored
by proposed method. �e percentage of appropriate window
length selection is 1371/1764 × 100 = 77.72%. In nature
most of the signal are nonstationary and it is not possible to
have information about all types of signal. Hence, it is very
di
cult to set an appropriate window length. �e proposed
method is evaluated on a number of nonstationary signals.
Mridangam is an instrumentwhich produces complex sound.
�e mridangam has got some stable harmonics and the
minimum distance between two harmonics must be known

in order to select an appropriate window length. A�er the
analysis of mridangam signal, the 	rst harmonic is around
200Hz and the secondharmonics is around 400Hz.�emin-
imum distance between two consecutive partials is around
200Hz. So the appropriate window length is 882 samples.
�e adaptive window selected from the proposed method is
1003 samples. Hence, the percentage of appropriate window
selection is 87.93%. Figure 7 shows that the proposed method
improves the spectrogram by prominently displaying the
harmonics which is not visible in default window selection.
�e proposed method is fully automatic and requires no
prior information about the input signal. A�er the statistical
analysis of input signal, the proposed method selects an
appropriate window size using the empirical model proposed
in this paper.
�e heartbeat of normal human heart consists of *1 and*2 sounds. *1 results frommitral and tricuspid valve closure.

It is a duller, lower-frequency sound than *2 and occurs at the
beginning of ventricular systole.�e approximate frequencies
from di�erent literatures for *1 and *2 are 20–120Hz and 60–
250Hz, respectively. Hence, the appropriate window length
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Figure 6: (a) PSD of heart signal; (b) STFT with default window; (c) STFT with proposed method window selection.
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Figure 7: (a) PSD of mridangam signal; (b) STFT with default window; (c) STFT with proposed method window selection.

to provide 30Hz frequency resolution is 5880 samples. �e
window selected by the proposedmethod is 5816 samples.�e
percentage of appropriate window length is 98.91. Adaptive
window clearly shows *1 and *2 signals which is com-
pletely missed in the default window as shown in Figure 6.

A number of nonstationary signals are evaluated from pro-
posed method, which is summarized in Table 2.
�e appropriate window length is only possible when

complete information about the input signal is known. �is
is usually not possible for all types of input signal. Hence,
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Figure 8: (a) PSD of multiple sinusoidals; (b) STFT with default window; (c) STFT with proposed method window.

Table 2: Adaptive window selection from proposed method, where -� is the appropriate length and -� is the proposed length.
Signal Type -� -� % achieved

Heartbeat (Figure 6) Low 5880 5816 98.91

Mridangam (Figure 7) Intermediate 882 1003 87.93

Carriers (Figure 8) Intermediate 1764 1371 77.72

Radio (Figure 9) Intermediate 176 201 87.56

Carrier (Figure 10) High 44.1 51 86.47

the proposed method is able to select an appropriate window
size without any prior information about input signal and
achieved the overall 87.71% of appropriate window length
selection.
Note that the appropriate 	xed window length is selected

for narrow band signal. For wide-band signal it is not possible
to select an appropriate 	xed window length because long
window length improves the spectral resolution at the cost
of temporal resolution and vice versa. �e proposed method
is able to detect the wide-band signal and automatically
selects constant Q transform that provides high spectral
resolution at low frequency and high temporal resolution at
high frequency with geometrically spaced center frequencies.
�e existingmethods for wide-band signal select window

size from adaptive STFT using two main approaches. (1)
Select a window size from a pool of windows using di�erent
concentration measurements such as skewness, kurtosis, and
integrate energies [40–44]. (2) De	ne a benchmark : and
adjust it according to local characteristics of input signal
using some concentration measurements such as instan-
taneous frequency and integrated energies [45, 46]. �e
problemwith former approaches is that (i) they cannot obtain
the optimal window length quickly or even fail to converge to

the optimal window length and (ii) they are computationally
expensive.
In [44] the smearing of energy in spectrogram is reduced

by calculating STFT with 4 di�erent window sizes. �is
increases the computational time approximately 3 times as
compared to the proposed method. For all types of input
signals whether narrow or wide-band signals, 4 di�erent
window sizes are used to reduce the smearing e�ect. �e
proposed method intelligently selects STFT for narrow band
signal because for narrow band signal the 	xed window
length will not produce much smearing e�ects and improves
the e
ciency 4 times. When the input signal is wide-band
signal then smearing e�ect is prominent while using STFT. In
such a scenario, the proposed method selects CQT, which is
computational expensive compared to STFT but it provides
much better resolution and reduces the smearing e�ect.
Figures 11(d) and 12(d) show the improved time-frequency
resolution achieved by CQT.
�e problem with the later approaches is that they are

computationally expensive, which decides the window length
on local characteristics of input signal. In [46] variable
STFT is proposed, which adapts variable window length
a�er analyzing the local characteristics of input signal. �is
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Figure 9: (a) PSD of radio signal; (b) STFT with default window; (c) STFT with proposed method window selection.
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Figure 10: (a) PSD of high-carrier signals; (b) STFT with default window; (c) STFT with proposed method window selection.

is computationally expensive. �e processing time for 	xed
STFTof length 64 and 128 is 0.1716 s and 0.1560 s, respectively,
where the processing time of variable STFT is 0.5928 s
for the same data. �is demonstrates that the computing
cost of variable STFT or any adaptive STFT which decides

window length on local characteristics is much greater than
the STFT. Variable STFT and adaptive STFT provide better
resolution as compared to STFT but the proposed method
solved the resolution problem by adapting CQT for wide-
band signal. Hence, the proposed method not only is able
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Figure 11: (a) PSD of music signal (wide band); (b) STFT with default window; (c) STFT with proposed method window selection; (d)
magnitude of CQT (better time-frequency resolution achieved with CQT).

to improve the time-frequency resolution but also reduces
the computational cost. �e computing costs are compared
in Table 3.

6. Conclusion

In this paper, a general framework for e�ective multires-
olution signal analysis has been demonstrated. �e frame-
work avoids the undesirable side e�ect of the STFT such
as 	xed time-frequency resolution for all types of input
signals. A�er the analysis of input signal the method adapted
an appropriate tool, that is, STFT and CQT for narrow
and wide-band signal, respectively. �e proposed method

is capable of selecting an appropriate window length for
STFT and achieved an overall of 87.71% of appropriate
window length selection. �e proposed method also allows
a user to dynamically construct the 	lter bank according
to the parameters provided by the user, which helps in the
reduction of redundancy. �e results obtained from the pro-
posed method have improved spectrogram visualization and
computing cost and achieved 87.71% of appropriate window
length selection. �e proposed method is fully automatic
and required no prior information about the input signal.
�e results obtained from the proposed method directly
contributes in di�erent domains such as feature extraction,
for example, harmonic, pitch, attack, delay, and energy.�ese
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Figure 12: (a) PSD of speech signal (wide band); (b) STFT with default window; (c) STFT with proposed method window selection; (d)
magnitude of CQT (better time-frequency resolution achieved with CQT).
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Table 3: Adaptive short time fourier transform.

Schemes CPU time (seconds)

STFT
�x=128 0.1560

STFT
�x=64 0.1716

CQT 0.413

VSTFT/ASTFT 0.5928

Proposed method 0.2845

STFT: Short Time Fourier Transform; CQT: constant Q transform; VSTFT:
Variable Short Time Fourier Transform; ASTFT: Adoptive Short Time
Fourier Transform.

features can be used in di�erent applications such as speech
and speaker recognition, biomedical signal analysis, and
music instrument analysis. In future, the authors are planning
to automatically build a desirable nonuniform	lter bank a�er
analyzing the characteristics of input signal. �e 	lter bank
will not be limited to linear or geometrical spacing only. �e
aim is to reduce the computing cost.
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