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Abstract
The numerical approximation of boundary value problems by means

of a probabilistic representations often has the drawback that the Monte
Carlo estimate of the solution is substantially biased due to the presence of
the domain boundary. We introduce a scheme, which we have called the
leading-term Monte Carlo regression, which seeks to remove that bias by
replacing a ’cloud’ of Monte Carlo estimates –carried out at different dis-
cretization levels– for the usual single Monte Carlo estimate. The practical
result of our scheme is an acceleration of the Monte Carlo method. Theoret-
ical analysis of the proposed scheme, confirmed by numerical experiments,
shows that the achieved speedup can be well over 100.

Keywords: Monte Carlo method, Romberg extrapolation, bounded diffu-
sion, Feynman-Kac formula, first exit time, parallel computing.

1 Introduction

For a bounded domain Ω ⊂ Rd of dimension d ≥ 2, we consider the evaluation
of expected values of the form

E[φ(Xτ) ] := E
[

g(Xτ)e
∫ τ

0 c(Xs)ds +

∫ τ

0
f (Xs)e

∫ s
0 c(Xq)dqds

]
, (1)

where g : ∂Ω 7→ R, f : Ω 7→ R, and c : Ω 7→ (−∞, 0] are functions regular
enough, and Xτ ∈ ∂Ω is the solution of the following stochastic differential
equation (SDE):

dXt(t > 0) =

b(Xt)dt + σ(Xt)dWt, 0 < t < τ,
0, t ≥ τ,

Xt(t = 0) = x0.

(2)
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In (2), x0 ∈ Ω\∂Ω, b : Rd
7→ Rd is called the drift, σ : Rd

7→ Rd×d is called
the diffusion matrix, and Wt is a standard Wiener process in Rd. Then, Xt is
a continuous diffusion which starts at point x0 at t = 0 and stops upon hitting
the boundary for the first time at t = τ := inf{s : Xs ∈ ∂Ω}. The quantities τ
and Xτ are called first-exit time and first-exit point, respectively. Expectations
like (1) arise in the probabilistic representation of boundary value problems
(BVPs). For instance, the solution u : Ω ⊂ Rd

7→ R of the linear elliptic partial
differential equation (PDE) with Dirichlet boundary conditions (BCs)

d∑
i=1

d∑
j=1

ai j
∂2u
∂xi∂x j

+

d∑
k=1

bk
∂u
∂xk

+ cu + f = 0,

u(x ∈ ∂Ω) = g,

(3)

with σσT/2 = [ai j] and c ≤ 0, can be expressed as (1) via Dynkin’s formula
(assuming the appropriate regularity conditions). There exist similar represen-
tations for the parabolic case (the well-known Feynman-Kac formula) and for
other BCs [5]. Although much of the work in this paper could be extended to
them, we will restrict our analysis to the pair (1) and (3).

In practice, the expected value (1) is usually estimated with a Monte Carlo
(MC) method:

E[φ(Xτ) ] ≈
1
N

N∑
j=1

φh(X j
τh

), (4)

which involves N >> 1 independent realizations of a discrete approximation
to (2), and (φh, τh) are the discrete counterparts to (φ, τ). Such discrete approx-
imation (which can be thought of as the polygonal trajectory of a ’particle’) is
performed by numerically integrating (2) with a numerical scheme Ξh (such
as the Euler-Maruyama method), and a time step h > 0 (which we will as-
sume constant). Neglecting the correlations in any digital random numbers
generator, the total error of the MC approximation (4) to (1) can be bounded as
[1]

εMC(N, h) :=
∣∣∣∣E[φ(Xτ) ] −

1
N

N∑
j=1

φh(X j
τh

)
∣∣∣∣ ≤ εN(N, h) + εh(h). (5)

In (5), εN is the statistical error, which results from the substitution of the
expected value in (1) by the arithmetic mean. According to the central limit
theorem [15], as h � 0 and N � ∞, εN tends to be normally distributed, and to

be smaller than q = 1, 2, and 3 times
√

Var
(
φh(Xτh )

)
/N with probability (con-

fidence intervals Γq) 68.3%, 95.5%, and 99.7%, respectively. However, at finite
time steps h > 0, εMC does not vanish as N � ∞, i.e. the discretization of (2)
turns (4) into a biased estimator of (1). But, importantly, the fact that the do-
main is bounded induces larger errors in the numerical computation of (2) than
would be the case for a PDE or a SDE in an unbounded domain. They stem
from the ambiguity in determining the first intersection of a discrete stochastic
trajectory with the boundary, and may lead to poor approximations of τ (by
τh) and Xτ (by Xτh ). We refer to the latter as the first-exit error, and call εh the bias.
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We now examine more closely the structure of the bias. In absence of bound-
aries, εh is the weak error of the discretization scheme used, and is typically
O(hr), r ≥ 1. An important case is that of the Euler-Maruyama method, for
which εh = O(h) [11]. This was further refined by Talay and Tubaro, who
showed that the second term was O(h2) [18]. The availability of the second term
in the error expansion enabled them to combine two discretizations of the SDE
with different values of h to yield a second-order-accurate integrator. On the
other hand, the presence of boundaries renders those results invalid, due to the
larger contribution in εh posed by the first-exit error. The simplest way to mod-
ify the Euler-Maruyama scheme to deal with boundary absorption (as needed
in (2)) is to stop the discrete trajectory X0 = x0,X1,X2, . . . between the last iterate
inside Ω\∂Ω (say the kth), and the first one outside. Then kh ≤ τh ≤ (k + 1)h,
and Xτh for that particular trajectory must be somehow interpolated between
Xk and Xk+1; for instance by taking the projection of the latter onto ∂Ω. This pro-
cedure leads to εh = O(

√
h), which is much worse than for free diffusions. This

convergence rate was proved rigorously by Gobet and Menozzi for parabolic
BVPs in [7] and for elliptic BVPs in [8]. Still, no error expansion in powers of
h is available. In the last two decades, a number of improved schemes have
been devised that have a smaller bias than that of Euler-Maruyama, generally
at the cost of a computationally more involved time-stepping. Higher error
rates than O(

√
h) have been experimentally observed in the schemes proposed

in [13, 10, 3, 8], while O(h) bias has been rigorously proved–under the cor-
responding technical assumptions–for the schemes in [17, 14]. However, the
lack of an error expansion for them (or at least, the two lowest powers of h)
precludes the possibility of Romberg extrapolation such as in the Talay-Tubaro
method. And anyways, we stress that the Talay-Tubaro method pertains the
expected values, rather than Monte Carlo simulations inevitably contaminated
with statistical noise.

Even in the much better situation when εh = O(h), the interplay between the
statistical error and the bias in (5) may lead to very time-consuming simulations.
The reason is that, for a set accuracy A (the largest tolerable total error for a
given confidence interval Γq), both h and N must be set small and large enough,
respectively, so that

εN, εh ≤ A. (6)

Thus, not only does a better (i.e. smaller) accuracy target involve more trajecto-
ries overall, but also each of them will take longer due to the finer discretization.
Seeking to accelerate the simulations, we propose in this paper a novel method
of approximating (1). The idea is to exploit the fact that the leading power
in εh is theoretically known for many triplets SDE (2)/ integrator Ξh/ bounded
domain Ω, in order to extrapolate to h = 0, where the MC approximation is
unbiased. More specifically, we propose to carry out a ’cloud’ of n ≥ 2 indepen-
dent, but relatively ’noisy’, MC simulations at n equispaced values of h, and to
fit the coefficient of the leading term of εh from them - by means of a regression.
(The reason why we have chosen equispaced time steps is that this leads to
analytical formulas which facilitate the theoretical study). We have called this
algorithm the leading-term Monte Carlo regression (LTMCR).

Figure (1) sketches the main features of LTMCR. The cloud used for fitting
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Figure 1: Intuitive idea of the leading-term Monte Carlo regression (LTMCR).

purposes consists of the four MC simulations depicted on the right. They have
an ever smaller bias as their h approaches 0; on the other hand, their error bars
(statistical errors) are comparatively large, and rather independent of h. The
solid curve plotting εh passes through each of the error bars with a probability
Γq. (Notice that this curve is not known, and only plotted for the sake of
illustration.) In the hypothetical problem in Figure (1), the leading term is
linear, and the linear behaviour dominates for 0 < h - h̄. The LTMCR yields an
approximation to (1) given by uR. The geometric interpretation of the LTMCR
solution is thus the intersection of the curve fitting the data with the vertical
axis. We stress the fact that the leading term of εh (in this case, one) is assumed
known from the integrator Ξh used to produce the cloud data. The error

εR := u − uR (7)

is a stochastic variable whose precise distribution will be discussed in Section 2.
Notwithstanding the details, it is expected that εR will decrease as the error bars
become narrower, n increases, and the cloud of individual MC simulations is
clustered towards 0. However, for the LTMCR to be useful, the sole characteri-
zation of the error is inadequate. Clearly, it must also be faster than the single,
competing MC simulation, which yields the same accuracy A under the same
confidence interval Γq. We will call that single MC simulation the reference
simulation (the leftmost one on Figure (1)). Defining the computational cost
of the reference simulation and of the LTMCR as Cref and CR, respectively, the
potential of the LTMCR boils down to the speedup (8) being greater than one.

S =
Cref

CR

∣∣∣∣
A,Γq

(8)
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The multilevel method by Giles [6] is another method which also uses vari-
able time steps in order to accelerate MC simulations. Unlike the LTMCR it
does so by reducing the variance, rather than by extrapolation. It was initially
designed for unbounded diffusions, although has recently been extended to
bounded Brownian motion [9]. The LTMCR differs from Talay-Tubaro extrap-
olation in the fact that the LTMCR includes the statistical error and requires
just the leading term of the bias expansion. In all three methods, a threshold
time step below which the respective asymptotic error expansions are valid
(the parameter h̄ in the LTMCR) is assumed a priori.

The remainder of the paper is organized as follows. In Section 2, for simplic-
ity, the case when εh = O(h) is considered first. Under some technical assump-
tions, the distribution of the error of the LTMCR is analyzed and characterized
according to confidence intervals, as well as its cost. The optimal speedup is
then derived by solving a constrained minimization problem. In Section 3,
those results are carried over to the general (nonlinear) case, εh = O(hr). Section
4 validates the previous analytical results on two numerical experiments, which
use a different integrator Ξh each. Some final remarks are given in Section 5.

2 Linear bias

We first analyze the case in which the bias is asymptotically a linear function
of the time step:

εh = βh, if 0 < h ≤ h̄, (9)

for some h̄ > 0. This can happen, for instance, in the integrators Ξh by Milstein
[14]. We consider n uniformly spaced time steps {hi}

n
i=1, such that 0 < h1 < h2 <

. . . < hn ≤ h̄. Let us call the fixed point at which we want to approximate the
solution x0. For each value hi we compute u0 = u(x0) of (3) via the estimator
(1) with N >> 1. On this ’cloud’ of data we perform a regression analysis
according to the model:

uMC(N, hi) ∼ u0 + εh(hi) + εN(N, hi) = α + βhi + δi, (10)

where a ∼ b means that a is drawn from distribution b. The ’noise’ δi, (i =
1, . . . ,n) is the statistical error of each MC simulation. According to the central
limit theorem it is asymptotically normally distributed:

δi ∼
N→∞

N(0, σ2
i ). (11)

It is also h-dependent because

σ2
i := Var

(
φhi (Xτh )

)
/N. (12)

In practice, for each timestep hi, we defined the value of σ2
i as the empiri-

cal variance of the MC mean estimator divided by the number of trajectories
used in the simulation, being the variance computed using the sampling data.
Moreover, as long as the n MC simulations in the cloud are independent,

cov(δi, δ j) = 0 if i , j. (13)
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Defining the weights
wi = 1/σ2

i (14)

the coefficients (α, β) of the fit (10) can be approximated by the estimators
(α̂w, β̂w) obtained using a classical weighted linear least squares technique [4]
to minimize

∑n
i=1 σ

−2
i

(
uMC(hi,N) − α − βhi

)2. We thus have

(α̂w, β̂w)T = (XTWX)−1XTWU (15)

where

X =

(
1 1 . . . 1
h1 h2 . . . hn

)T

, (16)

W =


w1 0 . . . 0
0 w2 . . . 0
... 0

. . .
...

0 0 . . . wn

 , (17)

U =
(

uMC(N, h1),uMC(N, h2), . . . , uMC(N, hn)
)T
. (18)

Under conditions (11) and (13), the estimators of a linear regression are normally
distributed. Since the weighted estimators (α̂w, β̂w) are an affine combination
of those ones, then they are normally distributed too; in particular, the error
u0 − α̂w is

u0 − α̂w ∼ N
(

0,Var(α̂w)
)
, (19)

where

Var(α̂w) =
1∑
wi

+
(h̄w)2∑

wi(hi − h̄w)2
(20)

and h̄w =
∑

wihi/
∑

wi is the weighted mean of the {hi}. (See [15], chapter 10.)
Therefore, the error of the regression can be expressed in terms of the same
confidence intervals Γq as a plain MC simulation by simply taking q standard
deviations as error bar for it, where q is the quantile of a normal distribution.
For Γq let us define the error of the LTMCR approximation as

εR := q
√

Var(α̂w). (21)

Note that, contrary to a plain MC simulation, this error is purely probabilistic
and unbiased. Let us define

vmax := max
h1≤h≤h̄

Var
(
φh(Xτh )

)
≈ max

1≤i≤n
Var

(
φhi (Xτh )

)
(22)

and let α̂max be the estimator of α if every point of the sample had the largest
variance σ2

max = vmax/N. Proposition 1 shows that the variance of the estimator
α̂w is bounded above. Since we are not aware of the existence of this result in
the literature, we give also a proof of it.

Proposition 1. Let α̂w and α̂max be the estimators for the exact solution, obtained
respectively from the weighted regression and the regression with the largest variance
σ2

max for all the n points. It holds:

Var(α̂w) ≤ Var(α̂max). (23)
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Proof. First, we show that the variance is decreasing with respect to the weights.
Let us define w := (w1, . . . ,wn) and P = P(w) :=

∑n
i=1 wi. Then by definition

Ph̄w =

n∑
i=1

wihi (24)

and by (20)

Var(α̂w) =
1
P

+
(h̄w)2∑n

i=1 wi(hi − h̄w)2
=

∑n
i=1 wih2

i

P
∑n

i=1 wi(hi − h̄w)2
, (25)

where we have used the fact that
n∑

i=1

wi(hi − h̄w)2 =

n∑
i=1

wih2
i − P

(
h̄w

)2
. (26)

Taking logarithms and computing the partial derivatives with respect to w j, for
every j = 1, . . . ,n,

∂
∂w j

log
(
Var(α̂w)

)
= −

∂
∂w j

log(P)+
∂
∂w j

log
( n∑

i=1

wih2
i

)
−
∂
∂w j

log
( n∑

i=1

wi(hi−h̄w)2
)
.

(27)

The three terms can be evaluated to yield

∂
∂w j

log(P) =
1
P
, (28)

∂
∂w j

log
( n∑

i=1

wih2
i

)
=

h2
j∑n

i=1 wih2
i

, (29)

∂
∂w j

log
( n∑

i=1

wi(hi − h̄w)2
)

=
(h j − h̄w)2∑n

i=1 wi(hi − h̄w)2
, (30)

where we have used
∑n

i=1 wi(hi − h̄w) = 0. Substituting these expressions into
(27) and summing them, we have a fraction whose denominator is the product
of positive factors. The numeratorN is

N = −
∑

wih2
i

∑
wi(hi − h̄w)2 + h2

j P
∑

wi(hi − h̄w)2
− P(h j − h̄w)2 ∑

wih2
i

= −
(∑

wih2
i − Ph jh̄w

)2
.

(31)

This means that the logarithm of the variance is a non-increasing function of
the weights, which takes the maximum value in wmin. By the monotonicity of
the logarithm and the positivity of the variance, the function Var(α̂w) behaves
in the same way. Therefore, Var(α̂w) ≤ Var(α̂wmin ) = Var(α̂max), since wmin =
1/σ2

max. �

Remark 1. The proof considers the variance as a function of the weights and
not of the time steps {hi} - meaning that (23) also holds if we substitute {hi}with
different variables {ξi}, as we need in the general case (see Section 3).
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Now, by (23), the definition of σ2
max, Var(α̂max) = vmax

[
1
n + h̄2∑

(hi−h̄)2

]
and the fact

that the points in the sample are equispaced, we can derive an upper bound
related to the Gaussian quantile q for εR

εR ≤ εmax := q

√
vmax

N

√
1
n

+ 3l2
n − 1

n(n + 1)
, (32)

where
L := hn − h1, l := (hn + h1)/L (33)

are positive constants.

2.1 Cost of the regression.

Having characterized the error of the LTMCR (for the linear bias case), we
estimate its computational cost, CR. Since the cost of the regression analysis is
negligible, CR is equal to the aggregate cost of all the MC simulations involved.
The computational cost of (4) is

CMC ∝ Nk̄, (34)

where k̄ is the average number of steps before hitting the boundary ∂Ω from
x0. Let us assume that asymptotically

k̄ ∝ 1/h, (35)

which is the most common situation (see for instance [14], chapter 5). Then,

CMC(N, h) = ρN/h, (36)

with ρ ∈ R+, which for a given BVP depends on the integrator Ξh. Using
hi = h1 + (hn − h1)(i − 1)/(n − 1), the cost of the LTMCR is

CR =

n∑
i=1

CMC(N, hi(n)) = ρ
n∑

i=1

N
hi(n)

= ρ
N
h1

n∑
i=1

(
1 +

i − 1
n − 1

L
h1

)−1
. (37)

We now seek to optimize the cloud parameters for a given accuracy A, i.e.
the constrained minimum (N∗,n∗) of CR subject to the restriction εR ≤ A:

(N∗,n∗) = arg min
εmax(N,n) ≤ A

n ≥ 2
N ≥ Nmin



CR(N,n). (38)

Nmin is the minimum number of simulations per point so that the statistical
error is small enough (discussed later on).

2.2 Approximations leading to an analytic solution.

In order to solve the constrained minimization problem (38), we will approxi-
mate sums like (37) with integrals:

n∑
i=1

ξt
i = h−r

1

n∑
i=1

[
1 +

i − 1
n − 1

L
h1

]−r
≈ 1 +

∫ y=n

y=1

[
1 +

y − 1
n − 1

L
h1

]−r
dy. (39)
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Then,

CR(N,n) = ρ
N
h1

n∑
i=1

(
1 +

i − 1
n − 1

L
h1

)−1
≈ ρ

N
h1

[
1 +

h1(n − 1)
L

log
(
1 +

L
h1

)]
. (40)

We may rewrite the approximated cost CR

CR(N,n) ≈ aN
(
1 + b(n − 1)

)
, with a > 0, 0 < b < 1, (41)

where

a :=
ρ

h1
, (42)

b :=
h1

L
log

(
1 +

L
h1

)
. (43)

Regarding the error function (32), we just need to check its behavior when n
becomes large; by assuming n large enough so that n−1

n+1 ≈ 1, we have

εmax(N,n) ≈
c
√

nN
, (44)

with
c := q

√
vmax(1 + 3l2). (45)

2.3 Theoretical feasibility and speedup.

With the purpose of finding an analytical solution of problem (38), when n
is large enough we can replace εR(N,n) and CR(N,n) by the approximations
(44) and (41), which are differentiable with respect to n and N. Notice that
the constants a, b, c ∈ R+ in (44) and (41) are strictly positive, and b < 1. The
solution (N∗,n∗) of (38) is such that satisfies the Karush-Kuhn-Tucker (KKT)
conditions, solvability of which is also a sufficient condition for the existence
of the minimum (38) (see [16], chapter 12). Computing the partial derivatives,
they are 

CR
N − µ

εmax
2N − δ = 0,

abN − µ εmax
2n − λ = 0,

εmax ≤ A, n ≥ 2, N ≥ Nmin,

µ ≥ 0, λ ≥ 0, δ ≥ 0,

µ(εmax(n,N) − A) = 0, λ(2 − n) = 0, δ(Nmin −N) = 0.

(46)

The optimal parameters turn out to be(
N∗,n∗, µ∗, λ∗, δ∗

)
=

(
Nmin,

c2

A2Nmin
,

2abc2

A3 , 0, a(1 − b)
)
, (47)
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yielding the minimal cost

C∗R = aNmin(1 − b) +
abc2

A2 . (48)

The LTMCR method has to be competitive with respect to a reference MC
solution uref(x0), which is defined as an approximate solution given by a single
MC simulation yielding the accuracy

εref = εMC(Nref, href) = A, (49)

and using the same confidence interval Γq and the same integrator Ξh as the
LTMCR. According to (6), we require that both the bias and the statistical error
be smaller than the accuracy. This allows us to compute Nref and href by

q
√

vmax

Nref
≈ A ⇒ Nref ≈

q2vmax

A2 , (50)

εhref = A ⇒ href ≈ A/
∣∣∣β∣∣∣, (51)

thus yielding

Cref = CMC(Nref, href) = ρ
q2vmax

∣∣∣β∣∣∣
A3 . (52)

Comparing this cost with the optimal cost (48), we get

C∗R ≤ Cref ⇔ aNmin(1 − b) +
abc2

A2 ≤ ρ
q2vmax

∣∣∣β∣∣∣
A3 . (53)

Condition (53) is satisfied if the following inequalities hold:

Nmin

h1
(1 − b) ≤

q2vmax

∣∣∣β∣∣∣
A3 , (54)

1 + 3l2

L
log

(
1 +

L
h1

)
≤

∣∣∣β∣∣∣
A
. (55)

In (54) and (55) we have considered the expressions (42), (43) and (45) for the
parameters a, b, c. Constraint (54) provides an upper bound for Nmin, but since
the accuracy A is usually quite small, Nmin can be picked nearly freely still
fulfilling that Nmin < c2

2A2 . On the other hand, (55) determines the value of A for
which the LTMCR achieves a speedup larger than one, once the sample {hi}

n
i=1

has been fixed. In sum, the theoretical speedup (8) is

S(A, h1, hn, |β|) =
h1q2vmax

∣∣∣β∣∣∣
A3

(
Nmin(1 − b) + bc2

A2

) . (56)

Remark 2. The LTMCR will deliver a better speedup if: i) the accuracy goal A
is small; ii) the bias decreases fast with h (|β| is large); and/or iii) φ(Xτ) has a
large variance.
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3 General bias

Let us extend the analysis in the preceding section to the case when the leading
term of the bias for h < h̄ is any power larger or equal than 1/2 (which is the
weak convergence rate of the most general integrator, the Euler-Maruyama
scheme, for bounded diffusions). In this case the model is

εMC(N, hi) ∼ u0 + εh(hi) + εN(N, hi) = α + βhr
i + δi, (57)

with r ≥ 1/2. Again, we consider an evenly spaced cloud {hi}
n
i=1. Let us define

a new variable ξ as
ξ = hr. (58)

We may perform the analysis of Section 2 in this case by substitution of h with
ξ. The variance of the LTMCR approximation is

Var(α̂w) =
1∑
wi

+
(ξ̄w)2∑

wi(ξi − ξ̄w)2
. (59)

According to Remark 1, εR ≤ εmax, where

εmax(N,n) ≈ q

√
vmax

N

√
1
n

+
ξ̄2∑

ξ2
i − nξ̄2

= q

√
vmax

N

√
1
n

∑
ξ2

i∑
ξ2

i − nξ̄2
. (60)

Applying the same approximations as before with r = 1 and r = 2 yields∑
ξi ≈ hr

1

{
1 +

h1(n − 1)
L

1
r + 1

[(
1 +

L
h1

)r+1
− 1

]}
= hr

1

{
1 + f1(n − 1)

}
, (61)∑

ξ2
i ≈ h2r

1

{
1 +

h1(n − 1)
L

1
2r + 1

[(
1 +

L
h1

)2r+1
− 1

]}
= h2r

1

{
1 + f2(n − 1)

}
, (62)

where the positive constants f1 and f2 are defined as

f j :=
h1

L
1

jr + 1

[(
1 +

L
h1

) jr+1
− 1

]
, j = 1, 2. (63)

After some manipulation, recalling that nξ̄ =
∑
ξi, when n is large enough the

radicand of (60) can be written as∑
ξ2

i

n
∑
ξ2

i − n2ξ̄2
∼

1
n

f2
f2 − f 2

1

. (64)

From (64), the difference f2− f 2
1 must be positive, or, equivalently, Q = f2/ f 2

1 > 1.
By making the substitution y = 1 + L/h1 = hn/h1 > 1, we can study the function

Q(y, r) =
(r + 1)2

2r + 1
(y − 1)(y2r+1

− 1)
(yr+1 − 1)2 , (65)

which, according to Maple, fulfils Q(y, r) > 1 if y > 1. This means that the
constants always satisfy f2/( f2 − f 2

1 ) > 0 and that we can approximate the error
function as

εmax(N,n) ≈
c
√

nN
, with c := q

√
vmax f2
f2 − f 2

1

. (66)
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The cost is again

CR(N,n) ≈ aN
(
1 + b(n − 1)

)
, with a :=

kρ
h1

b :=
h1

L
log

(
1 +

L
h1

)
. (67)

Solving system (46) yields the (constrained) minimal cost

C∗R = CR(N∗,n∗) = aNmin(1 − b) +
abc2

A2 . (68)

Notice that the solution is formally the same as the one of the linear case, but the
constant c changes. Concerning the single Monte Carlo reference simulation
for nonlinear bias, Nref remains as in (50), while

href =
(
A/

∣∣∣β∣∣∣)1/r
, (69)

resulting in a reference cost

Cref = CMC(href,Nref) = kρ
q2vmax

A2

( ∣∣∣β∣∣∣
A

)1/r

. (70)

The equivalent to conditions (54) and (55) are

Nmin

h1
(1 − b) ≤

q2vmax

A2

( ∣∣∣β∣∣∣
A

)1/r

, (71)

f2
f2 − f 2

1

1
L

log
(
1 +

L
h1

)
≤

( ∣∣∣β∣∣∣
A

)1/r

, (72)

with a similar interpretation as in the linear case. In conclusion, the theoretical
speedup function for the case of general bias is

S(A, h1, hn, |β|, r) =
Cref

C∗R
=

h1q2vmax

∣∣∣β∣∣∣1/r
A2+1/r

(
Nmin(1 − b) + bc2

A2

) . (73)

Remark 3. The speedup will be better if a low-order integrator Ξh (such that
r ? 1/2) is used. The reason is that, in that case, href must be smaller.

3.1 Complete LTMCR algorithm.

Algorithm 1 is a practical pseudocode. Note that we have three kinds of input
data. First, the asymptotic weak convergence rate of the integrator Ξh, r, is as-
sumed known (from the integrator theory) and valid within the interval [h1, h̄].
(While in the theory we allow hn ≤ h̄, here we just set hn = h̄ for simplicity.)
Second, there is an accuracy target (A with probability Γq). Finally, in order
to get the optimal performance from the LTMCR (i.e. the least computational
time overall), vmax and Nmin within [h1, h̄] must be estimated. Recall that Nmin
is the least number of trajectories such that the sample variance is deemed
meaningful. This can be gauged via the variance of the sample variance, which
is [15]

Var(σ2) =
2σ4

N − 1
. (74)
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In order to do so, a preprocessing set of fast MC simulations are run on ñ
points {h̃ j} in [h1, h̄] until the variance of the variance is some small fraction ã
of the variance itself. The details of this are necessarily vague. We have used
ñ = 5 and ã = .05 and have simply picked the largest values in the set for vmax.
For Nmin we could have done the same but instead took Nmin = 106, which is
more that necessary and leaves scope for further improvement in the speedups
reported in Section 4.

Note that, while there may seem to be many parameters, most of them would
be needed with the plain MC method as well. For instance, in Section 4 we
will compare the LTMCR with plain MC simulations. In order to achieve an
accuracy A for a plain MC simulation at h, we need to know r, whether h is
small enough for r to hold, and Nmin at h such that the sample variance is a safe
estimate–just like in the LTMCR method.

Finally, let us emphasize that the LTMCR is fully parallelizable except for the
preprocessing runs and the final regression computations (of negligible cost).

4 Numerical experiments

In this section we solve pointwise two BVPs of the type (3), combining the
LTMCR algorithm with a different numerical integrator Ξh in each case (more
examples can be found in [12]). The code for the MC approximations, both for
the reference MC simulation and for those used in the LTMCR, is written in C++
and run on a 64-core cluster using MPI. In both examples, q = 2 (Γ2 = 95.5%),
Nmin = 106, r is known; and we report:

1. The detailed results of a single LTMCR cloud, for the purpose of illus-
tration, where we choose to fix (n,N, h1, hn) (there is no accuracy target
A).

2. The error distribution of the LTMCR cloud with the same (n,N, h1, hn)
as above, approximated with a histogram of the experimental error over
many LTMCR simulations.

3. The agreement between observed, predicted, and theoretically worst-case
(i.e. lower bound) speedups. Here, we set a priori values for Nmin and
hn and investigate the cases with A fixed and h1 variable, and vice versa.
Recall that now the LTMCR uses the values for N∗ = Nmin and n∗ ≥ 2
which maximize the expected speedup under an accuracy target A, q.

Example 1: Euler-Maruyama integrator. Let us consider a two dimensional
BVP like (3) with

d∑
i=1

d∑
j=1

ai j
∂2u
∂xi∂x j

= ∇2, b =

(
x

y/2

)
, c = y + 1/2, f = −2xy − xy2, g = xy. (75)

The diffusion matrix for the Laplacian in Rd is σ =
√

2Id (where Id is the d × d
identity matrix). The domain Ω is a ball centered in (3/2, 0)T with radius R = 1.8.
The solution of (75) is u(x, y) = g(x, y) and we computed it on x0 = (1.85714, 0.5),
where u0 = u(x0) = 0.9286. In the following LTMCR test, we used a cloud of
n = 26 MC simulations with N = 106 trajectories each. The cloud time steps
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Algorithm 1 LTMCR algorithm

Require: r and [h1, h̄]
Data: A and q

1. Estimate vmax and Nmin in [h1, h̄]:
let ñ ≈ 5 and ã ≈ .05
let {h̃k} be ñ equispaced points in [h1, h̄]
for k = 1, . . . , ñ do

let Nk = 0 and σ̃2
k = ∞

repeat
set a new seed of the random number generator
compute one more realization of (2) with Ξh and h̃k
let Nk = 1 + Nk
compute the sample variance σ̃2

k according to (12).

until
2σ̃4

k
Nk−1 < ãσ̃2

k
end for
estimate vmax from {σ̃2

k} and Nmin from {Nk}

2. Find the optimal parameters for LTMCR, n∗ and N∗:
calculate L, l as in (33), f1, f2 as in (63), and a, b, c as in (66) and (67)
let N∗ = Nmin and n∗ = d c2

A2Nmin
e as in (47)

let {hi} be n∗ equispaced points in [h1, h̄]

3. Perform n∗ independent MC simulations at h1, . . . , h̄:
for i = 1, . . . ,n∗ do

for j = 1, . . . ,N∗ do
set a new seed of the random number generator
solve the SDE (2) with Ξh and hi

end for
compute uMC(hi) as in (4), σi as in (12), and the weight wi as in (14)

end for

4. Perform the weighted regression between {uMC(hi)}ni=1 and {hr
i }:

construct W and U according to (17)-(18)
construct X like in (16), but substituting hr

i for hi (i = 1, . . . ,n∗)
with this X, obtain the LTMCR solution α̂w from (15)

are uniformly distributed in [h1, h26] = [0.001, 0.026]. For each of the n MC
simulations in the cloud, the Euler-Maruyama integrator (r = 1/2) was used
[11].

Figure 2 shows the results of the LTMCR simulation described above. The
fitted bias has been removed from the solutions to yield the data labelled
as ’clean’. The fact that they hover on average around a well-defined value
suggests that the bias has actually been removed. More precisely, the coefficient
of determination between {uMC(N, hi)} and {h1/2

i } is R2 = 0.9976. Using r = 1/2
in (57), we obtain as outputs of the regression the estimator values uR = α̂w =
0.9307 and β̂w = −1.4568.
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Figure 2: Bias behavior and solution extrapolation with LTMCR for Example 1.
The horizontal line is u0, and the inset zooms in on the LTMCR solution, uR, at
h = 0.

In Figure 3 we compare the histogram of uR − u0 with the fitted normal
distribution N(µ̂, σ̂2), where µ̂ = 0.0035 and σ̂ = 0.0018. We address now
the attained speedup, S. Formulas (51) and (50) yield href = (A/|β̂w|)1/r and
Nref = (q/A)2vmax, where vmax = 9.1 is the largest sample variance in the cloud.
Results concerning S are given in Tables 1 and 2 and Figure 4, showing good
agreement with the theory and that the lower bounds for the speedup (56) are
conservative. TR is the CPU times, in seconds, for the LTMCR simulation.

Interestingly, the maximum speedup for a set accuracy (h∗1 ≈ 0.0025) roughly
coincides with that of the lower bound estimate for S -see Figure 4 (left).

A theoretical S numerical S n∗ Nref href TR

0.0021 323.4 280.0 98 8.6 × 106 1.96 × 10−6 138
0.0025 203.2 197.6 64 5.6 × 106 3.00 × 10−6 99
0.0030 141.5 139.4 45 3.9 × 106 4.16 × 10−6 67
0.0040 70.7 72.2 26 2.3 × 106 7.59 × 10−6 41
0.0050 42.2 44.8 17 1.5 × 106 11.4 × 10−6 29
0.0060 25.1 26.6 12 1.0 × 106 17.0 × 10−6 22
0.0070 16.6 16.7 9 0.7 × 106 22.8 × 10−6 19

Table 1: Speedup S(A, h1 = 0.001) for Example 1. Data of Figure 4 (right).
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Figure 3: Histogram over 950 samples of the LTMCR error of Example 1.

h1 theoretical S numerical S n∗

0.0010 42.2 42.8 17
0.0019 49.6 49.6 20
0.0028 51.1 47.7 34
0.0047 44.2 41.3 33
0.0084 29.8 26.4 64
0.0121 17.5 15.7 129
0.0158 9.6 7.3 315
0.0195 3.4 2.6 952

Table 2: Speedup S(A=.005, h1) for Example 1 with Nref = 1.5 × 106 and href =
11.4 × 10−6. Data of Figure 4 (left).

Example 2: Gobet-Menozzi integrator. The second example is a three-
dimensional problem with functions

c(x, y, z) = 0, g(x, y, z) = xyz, b(x, y, z) = [y, z, x]T,

f (x, y, z) = −y2z − z2x − x2y − 1
2

(
z
√

1 + |x|
√

1 + |z| + x
√

3
4

√
1 + |x|

√
1 + |y|

)
(76)

σ(x, y, z) =


√

1 + |z| 0 0
1
2

√
1 + |x|

√
3
4

√
1 + |x| 0

0 1
2

√
1 + |y|

√
3
4

√
1 + |y|


The domain is a ball with radius R = 1.8 centered at the origin. The solution
is u(x, y) = g(x, y) and we computed it on x0 = (−0.7, 0.3, 0.3), where u0 =
u(x0) = −0.0630. In this problem, we use the integrator proposed by Gobet and
Menozzi in [8]. Theoretically, the Gobet-Menozzi integrator has a bias o(

√
h)

(meaning that the leading power is at least 1/2), but in this specific problem,
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Figure 4: Speedup for Example 1. Left: S(A = 0.005, h1), see also Table 2. Right:
S(A, h1 = 0.001), see also Table 1.

(76), it experimentally yielded a linear bias in the tests in [8]. Since our goal here
is just to check the LTMCR in a case with linear bias, we chose this BVP and
the Gobet-Menozzi integrator, due to its extreme simplicity. (Many integrators
with rigorously O(h) bias can be found in [14], chapter 6.) For the illustrative
LTMCR test below we used a cloud with n = 45 timesteps uniformly distributed
in [h1, h45] = [0.0277, 0.1] and N = 106 trajectories per timestep.

Figure 5: Bias behavior and solution extrapolation with LTMCR for Example 2.

The output of the regression analysis is uR = α̂w = −0.06303, β̂w = −0.1607,
and R2 = 0.9609. In Figure 6, a histogram of the LTMCR error is shown. The
fitted normal distribution has parameters µ̂ = −0.0097 and σ̂ = 5.3078e−4: as in
the previous case it was not possible to remove all of the bias in order to have a
distribution centered at zero. The speedup results are compiled in Tables 3 and
4. The data in Table 3 are also represented in Figure 7. Contrary to Example 1,
Table 4 shows apparently monotonical speedup. The reason is simply that the
value h∗1 for which S(A = 0.0001, h1) hits the maximum happens to be below the
range of timesteps considered in the table.
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Figure 6: Histogram over 950 samples of the LTMCR error for Example 2.

Same problem, different integrator. Due to the linear bias of the Gobet-Menozzi
integrator in this example, S is not as large as in the previous example with
the Euler-Maruyama integrator. However, the CPU time should be less using
a higher-order integrator. In order to check this, we solved Example 2 with the
LTMCR using Euler-Maruyama instead (Figure 7, right). Because the leading,
O(
√

h), term kicks in closer to zero now, the cloud must be shifted towards the
left. For A = 0.43 × 10−3 (see Table 3), CPU times (in seconds) for the LTMCR
are 55 using the Gobet-Menozzi integrator and 384 using Euler-Maruyama.
However, S is better in the second case because the reference MC simulations
took 107 s. and 120355 s., respectively.

A theoretical S numerical S n∗ Nref href TR

0.05 × 10−3 17.68 17.02 6124 592 × 106 0.3 × 10−3 4065
0.145 × 10−3 6.10 5.95 729 70 × 106 0.9 × 10−3 485
0.24 × 10−3 3.68 3.56 266 25 × 106 1.5 × 10−3 178
0.43 × 10−3 2.00 1.95 83 8 × 106 2.7 × 10−3 55
0.62 × 10−3 1.38 1.42 40 3.9 × 106 3.8 × 10−3 26
0.81 × 10−3 1.07 1.00 24 2.3 × 106 4.8 × 10−3 17
0.84 × 10−3 1.04 1.00 22 2.1 × 105 4.9 × 10−3 15
1.0 × 10−3 0.85 0.75 16 1.5 × 106 5.9 × 10−3 12

Table 3: Speedup S(A, h1 = 0.0277) for Example 2.

Remark 4. The LTMCR stands on the choices that i) N∗ ≥ Nmin is the same for
all the cloud points, and ii) the cloud points are equispaced. Assumptions i)
and ii) enable semi-analytic approximations leading to closed formulas for the
solution of the constrained minimization problem.
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h1 theoretical S numerical S n∗

0.0277 4.39 4.05 1531
0.0300 4.18 3.83 1666
0.0324 3.91 3.61 1835
0.0371 3.43 3.10 2241
0.0466 2.46 2.19 3460

Table 4: Speedup S(A = 0.0001, h1) for Example 2, with Nref = 14.7 × 107 and
href = 0.0012.

Figure 7: Left: Speedup S(A, h1 = 0.0277) for Example 2. The lower bound
was calculated with the observed value vmax = 0.37. The crossover value (for
which S = 1) was accurately predicted using (56) (black vertical line). Right:
LTMCR extrapolation for Example 2 but using the Euler-Maruyama integrator
rather than Gobet-Menozzi’s (compare the scale with that of Figure 5). The
inset zooms in on the LTMCR solution (i.e. at h = 0).

Imagine that Ni = N(hi) were variable rather than constant. The minimization
problem would then be n∗+1-dimensional instead of bidimensional. Assuming,
for the sake of the argument, that the minimum (n∗,N∗1, ...,N

∗

n∗ ) could still be
found in a practical and accurate way such as with the LTMCR, one should
still require N∗i ≥ Nmin(hi) for consistency. But it is unrealistic to expect that an
h-dependent Nmin(hi) can be known for exploiting this.

Also, note that our semi-analytic approximations break down if n = O(1),
so it might happen that taking a ’cloud’ with only 2, 3, ... points would yield
better speedups. This depends on the parameters Nmin, h1, hn. A convenient
advantage of taking the cloud with n∗ points is that it allows one to check,
after computing the highest (and least time-consuming) values of hi in the
cloud (i.e. hn, hn−1, . . .), whether those parameters were acceptable indeed, and
abort the simulation otherwise. As an illustration, consider Figure 8, where the
statistical error has been suppressed for the sake of clarity. After computing the
MC solution corresponding to the black dots, it could be inferred that hn has
been picked too large (recall that h̄ is unknown), because the black dots do not
follow the curve u + βhr (dashed line). On the other hand, just the end points
(squares) do not reveal the shape in between, and would lead here to wrong
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results that could not be detected even a posteriori.

Figure 8: Advantage of a cloud (circles) over just two points (squares), see
Remark 4. Dashed line: asymptotic behavior u + βhr. Solid line: MC solution
with actual bias. Notice that the noise has been suppressed. Compare with
Figs. 2 and 5.

5 Conclusions

The LTMCR exploits the fact the power of the leading term is often known
for the triplet integrator Ξh / BVP (3) / domain Ω. (An up-to-date survey and
comparison of existing integrators is [2].) Another advantage of the LTMCR is
that it is extremely easy to implement and to combine with existing codes for
Monte Carlo solutions of BVPs.

The error involved in the LTMCR has been rigourously studied in order to
compare its complexity with that of a Monte Carlo simulation with single time
step and the same confidence intervals. Numerical results support the theo-
retical analysis and show that the LTMCR can deliver a substantial speedup.
Although the analysis here only considers linear elliptic BVPs with Dirichlet
BCs, it could very easily be extended to other situations such as parabolic BVPs,
Neumann BCs, and option pricing in finance.
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