
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993 1839

An Efficient Algorithm for Bipartite PLA Folding
Chun-Yeh Liu and Kewal K. Saluja, Senior Member IEEE

Abstract-Programmable Logic Arrays (PLA’s) provide a
flexible and efficient way of synthesizing arbitrary combina-
tional functions as well as sequential logic circuits. They are
used in both LSI and VLSI technologies. The disadvantage of
using PLA’s is that most PLA’s are very sparse. The high
sparsity of the PLA results in a significant waste of silicon area.

PLA folding is a technique which reclaims unused area in the
original PLA. In this paper, we propose a column bipartite
folding algorithm based on matrix representation. Heuristics
are used to reduce the search space and to speed up the search
processes. The algorithm has been implemented in C program-
ming language on a SUN-4 workstation. The program was used
to study several large PLA’s of varying sizes. The experimental
results show that in most cases the proposed algorithm finds
optimal solution in a reasonable CPU time.

I. INTRODUCTION

TERACTIONS between the structured design tech-

wide implications for overall design cost and efficiency of
digital circuits and systems. Use of a regular structures
facilitates the design process and eliminates tedious man-
ual operation. Due to the regularity of the structure and
the simplicity of the design, Programmable Logic Arrays
(PLA) have found widespread acceptance in the design of
digital systems.

The PLA is a hardware form used for implementing
two-level multiple-output combinational logic circuit.
PLA design is easily automated because of a direct cor-
respondence between physical PLA layout and the per-
sonality matrix. The major disadvantage of the PLA is
that most practical logic problems leave much PLA area
unused. A straightforward physical design results into a
significant waste of silicon area, which may be unaccept-

able. Also, speed and power become critical parameters

as the size of the PLA increases [7]. The gate capaci-
tances of the input signals carried by long polysilicon lines
become the key factor in determining the timing (speed)

performance. In moderate to large PLA’s, the polysilicon

resistance becomes as important a factor as the capaci-
tance. The signal can be seriously degraded with the large

resistance added to the line, no matter how large the driv-
ers are. Further, if the PLA becomes large, the width of
the power and the ground lines should also be increased
to avoid possible metal migration. Most PLA generators

I”. niques and the design of complex VLSI circuits have

Manuscript received June 22, 1992; revised May 25, 1993. This work
was supported in part by the National Science Foundation under Grant MIP-
91111886 and a grant from the AT&T Foundation. This paper was rec-
ommended by Associate Editor R. Otten.

The authors are with the Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, Madison WI 53706.

IEEE Log Number 9212365.

[15] automatically increase the width of the power lines
and the ground lines in the PLA, depending on the total
current demand.

PLA optimization aims at minimizing the area occupied
by the PLA and as a result addresses almost all disadvan-
tages listed above. Two minimization techniques are

commonly used to reduce the PLA areas,

1) Logic minimization: Logic minimization seeks a

logic representation with a minimal number of im-
plicants. Reduction of the number of implicants al-

lows a PLA to be implemented in a small area.
2) Topological minimization: PLA folding is a tech-

nique which reclaims unused space without destroy-

ing the regular structure of the PLA. According to
Egan and Liu [2] arbitrary boolean functions pro-
duce sparse PLA’s, in which typically 90% of the
crosspoints are unused. Folding achieves size re-
duction by compaction and removal of areas of
unused crosspoints.

In this paper, we study the problems of the PLA fold-
ing. There are many types of PLA folding, depending on
the technology employed to implement a PLA. All PLA
folding methods involve the merging of two or more col-

umns (rows) of a PLA into a single column (row). The
simplest form of folding, called Simple Column Folding
[7], involves merging pairs of columns into single col-
umns.

The object of PLA folding is to find the maximum num-

ber of pairs of columns/rows that can be folded simulta-
neously. The PLA folding has a complex functional de-
pendence on the ordering of the rows. The optimal simple

PLA column folding problem can be defined as:

Determine a permutation of the rows which allows
a maximum set of column pairs to be implemented
in such a way that each column of the folded PLA
contains a pair of columns from the set.

The optimal folding problem has been shown to be NP-
complete [6], [141. Many algorithms and heuristics have
been developed to solve this problem. The simplest one
is the branch and bound algorithm [4], [13]. Although it
is simple and able to find an optimal solution in theory,
its practicality for large PLA’s is questionable because it
carries out an exhaustive search for an optimal solution.
Therefore, many heuristics have been developed to find
good, but nonoptimal solutions. Hwang et al . [lo] used a
best-first search algorithm to find a near-optimal result.

Ullman [20] used a graph algorithm to find a feasible so-

0278-0070/93$03.00 @ 1993 IEEE

1840 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

lution in a time complexity no worse than O (w c 2) , where
w is proportional to the number of rows and c is the num-
ber of columns. Hachtel et al. 171, [8] proposed algo-

rithms for both row and column foldings, which find the
folding pairs one by one. The PLA folding results thus
obtained are only locally optimal and depend on the se-
lection of order of the folding pairs. For example, for col-
umn folding, they try to fold as many columns as possible
and then determine the row permutation according to the
folding set so found. In fact, each folding set corresponds
implicitly to some row permutation order. Thus, after a
folding set is selected, the next folding set is constrained
by the row permutation orders. Wong [22] applied the
simulated annealing technique to the folding problem.
Lecky et al. [121 transformed the PLA into a graph where
cliques in the graphs correspond to the PLA folding set,
and Greedy algorithm [5], [11] is used to identify the

maximal cliques. Hsu et al. [9] modeled the PLA person-
ality matrix as network and the bipartite PLA folding as
a partitioning problem of the network.

In this paper a new bipartite PLA folding algorithm
based on matrix representation is presented. Before
searching a bipartite folding, the columns which do not

satisfy certain constrains, and hence nonfoldable, are
pruned. This reduces the search space. During search,
heuristics are used to find an alternative folding. This

speeds up the search processes.
This paper is organized as follows: The advantages and

constraints of PLA folding are given in Section IT. The

PLA bipartite folding is also introduced in this section.
Terms which are used in the proposed algorithm are de-
fined in Section 111. In Section IV, a bipartite folding al-
gorithm is described. Results on the benchmark examples
are presented in Section V. Section VI concludes the pa-
per.

11. ADVANTAGES AND LIMITATIONS OF PLA FOLDING

Table 1 summarizes the Simple Column Folding results
of 48 PLA’s from the lists of 56 PLA’s given in [l] . The
results are found with the aid of a folding program
“pleasure” [17]. For each PLA, the table shows the num-
ber of inputs Ni, the number of outputs No, the number of
product terms Np, number of folding pairs in AND plane
f a , number of folding pairs in OR plane&, and the relative
area RA. The relative area in the last column is defined as

Af
R4=-xl100

A

where Af is the area after folding, and A is the original

area.
Layout follows the design rules for CMOS technology

proposed in [21]. Since the “pleasure” limits the size of

the PLA which can be folded, only 48 PLA’s out of 56
PLA’s are chosen.

For most of the large PLA’s, the relative areas are less
than 100%. For example the x2dn has the relative area
57.0%, which is very close to the optimal lower bound

50% [2]. This table shows that the folding technique is
effective for area saving in PLA. Note that the RA’s of
some small PLA’s are greater than loo%, as shown in
Table I . This is because the area of placing the extra input

decoders and output buffers in a folded PLA is greater
than the area saved by folding.

Although PLA folding can reduce the area effectively,
there exist constrains, such as routing, on folding a PLA
or a folded PLA. In a VLSI system design, these con-

strains should be taken into account. Two of the important
constraints and their impacts are discussed below.

Routing: In a folded PLA, one of the folded input

(output) signals must come from the top of the PLA
and the other from the bottom. Since the inputs may
be required anywhere and the output may go to

anywhere, it often increases the complexity of rout-
ing. Furthermore, it is well known that the routing
of signals often takes more silicon area than the logic

blocks. Typically, 30% of total design time and
about 60% of the chips are expended merely to in-
terconnect the circuit elements [181. Therefore, any
calculation made to estimate the overhead without
considering the routing area is often too optimistic.
Thus, folded PLA design must consider the routing
area of interconnects and time to complete the de-
sign.
Testing: The input decoders and output buffers of a

testable design of a PLA are generally augmented
such that they can control the columns of the PLA
easily. For a folded PLA, transistors can be placed
between the cuts of the columns, such that the PLA
can be controlled by the augmented input decoder
only from one side during testing. Otherwise, input

decoders at the both sides would need to be aug-
mented to test the PLA. To place a transistor on the
cut in a folded PLA can be costly for a CMOS tech-
nology design. This is because the layout of a PLA
is very compact. For a simple column folding PLA,
the cuts are in different levels, the area increased to

place the transistors are dependent on the number of
cuts in a folded PLA, which results in significant
waste of silicon area.

A bipartite folding is a folding in which all of the breaks
(cuts) occur at the same level. The single break level of a
bipartite folding splits a PLA into two regions [2], an up-

per folding region (U) which contains those folded input
and output lines that are above the break, and a lower
fofding region (L) which contains the folded input and

output lines that are below the break. A column bipartite
folding exists if every line in the upper folding region is
disjoint from every line in the lower folding region.

There are several advantages for using bipartite fold-

ing:

Our experimental results show that the size of a bi-
partite folded PLA compares favorably to the size of
the PLA obtained after single column folding.

LIU AND SALUJA: BIPARTITE PLA FOLDING

10
10
26

29

30
15
16
35
24
26

94

8

47

82
27

in5

radd

wim

x2dn

N..
7 4

8 5
8

12

45
7

4 7
8 5

9 9
63
11
17

29
14
10

43
8 5
5 3

31

7 3
72

4 7
56

7

-

-_

-_

-

fo

0
0

4
6

17
3
3
1

4
31
3

0
11
4
4

21
2

1

15
0

35
0
28
3

TABLE I
LIST OF PLA FOLDING ANDRELATIVE AREA

RA(%)
100.0

100.0
97.9
90.8

67.0
84.3

119.1
100.4

103.0
75.7
93.9

99.0

77.4
81.2
78.9
57.1

100.5
117.9
76.9

100.0
80.2

100.0
57.0

100.4

f.
1
4
4
14

16
0

2
5

8
0
1
2

9

9
11

0
3
1

1
2
4
3
0

0

RA(%)
104.4
85.2
99.9
67.5

65.4
100.0

99.9
95.8

90.9
100.0
96.1
87.7
68.7

66.5
59.3

100.0
105.9
102.4
100.4
106.9
102.3
100.7
72.9

100.0

eo14

de2 58

128

256

91
134

245
153
15

256
52

175
214

110
75
62
8 4 8
91

120

32
74
9 6 0

241
10

112
120

--

--

--

-

xldn

0

0
0

0
10
6
0
0

0

3
1
2

11
8

47
0

0
1

19
0

40
1

-

z
5
0

10
10
0

1
0

0

0

4
11

16

28

0

0

0

0

1

14
0

-

-

-

-

-

Routing the nets to or from the PLA is simplified,
since the folded lines entering from the top of the
PLA can be ordered independently of the folded lines
entering from the bottom of the PLA.
The area of a PLA can be further reduced by folding
the upper folding region and lower folding region.
The same algorithm can be applied recursively to the
bipartite folded PLA.
The area required for inclusion of testability features
in a bipartite folded PLA is much less than that of a
single column folded PLA. Since all of the cuts in a
bipartite folded PLA are at the same level, therefore
as argued earlier, this PLA can be tested from one
side alone with very little area overhead. The idea
proposed in [19] can be used to obtain Built-in Self-
Test folded PLA by placing pass transistors between
the cuts of a bipartite folded PLA.

111. PRELIMINARIES

An example of the AND plane of a PLA is shown in
Fig. 1 . In this figure, columns represent uncomplement-
complement pairs of literals. A dot means the placing of
a transistors on uncomplemented or complemented input.
Each horizontal line of the PLA carries a product term.
There are 13 inputs and 21 product terms in the example
PLA. We will use this example AND plane of a PLA
throughout this section.

Definition I: Two columns are disjoint (compatible) if
they do not share a common product line.

More explicitly, two input lines are disjoint if the cor-
responding inputs do not occur together in any product
term for any of the output function. An input line is dis-
joint from an output line, if the literal represented by this
input line is not present in the function represented by the
output line. Finally, two output lines are disjoint, if they
do not share a product term. For the example PLA, inputs
1 and 5 do not share any common product line, hence they

1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Fig. 1 . An example PLA.

are disjoint. Inputs 9 and 13 appear on product line 1,
therefore they are not disjoint.

Definition 2: A square matrix which depicts the com-
patibility relation among all pairs of columns of a PLA
will be called a compatibility matrix (C M) of the PLA.

The compatibility matrix contains a row and a column

corresponding to each column of the PLA. Therefore, the
size of CM is the sum of number of inputs and number of
outputs. The C M [i , j] element of the compatibility matrix
is 1 if columns i and j of the PLA are compatible. CM
satisfies the following two properties,

CM has all 0’s on the leading diagonal, since a col-

CM is symmetric, since if column i is disjoint from

Construction of the matrix CM from a given PLA is
straightforward. The compatibility matrix of the PLA of

Fig. 1 is shown in Fig. 2. The last column, labeled weight,
will be explained later.

A column bipartite folding is a folding in which all the

breaks (cuts) in the columns occur at the same level. Fig.
3 shows a bipartite folding of the example PLA. In Fig.
3, U contains inputs 7, 8, 9, 10, and 12, and L contains

inputs 1, 2, 4, 5 , and 6. The size of a bipartite folding
PLA is the cardinality of either folding region. Since the
breaks of a bipartite folding PLA are at the same level,
the following lemma is evident and is given without proof.

Lemma I : A column bipartite folding exists if and only
if every line in the upper folding region is disjoint from
every line in the lower folding region.

Dejinition 3: A submatrix of CM called a foldability
matrix (FM) provided it satisfies the following properties:

It is an m X m matrix where 2m I n, n being the
total number of columns of the PLA and m being the
number of folding pairs.
Every element in the upper folding region is the col-
umn of FM, and it has the lower folding region as its
row.

umn is not disjoint from itself,

j , then j is disjoint from i.

It has all-1 .
An FM of the PLA in Fig. 1 is shown in Fig. 4. This

FM corresponds to the bipartite folded PLA shown in

1842 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

Fig. 2 . Compatibility matrix of the example PLA.

1 1
7 8 9 0 2

1
2
4
5
6
7
8
9

10
11
15
3

12
13
14
16
17
18
19
20
21

1 2 4 5 6 3 1 1
1 3

Fig. 3 . A bipartite folding result of the example PLA.

Fig. 4. Foldable matrix of the folding result.

Fig. 3. In the FM the row labels denote the elements in
U , and the column labels denote the elements in L.

The optimal column bipartite folding problem can be
formulated as the following decision problem:

Instance 1 : Positive M , and a compatible matrix CM.
Question 1: Is there a foldable matrix FM of size M for

the PLA with compatibility matrix CM and M is maxi-
mum?

Theorem 1: This decision problem is NP-complete.
Proof: The reduction is from the following problem

which was shown to be NP-complete in [3], p. 196.
Instance 2: Bipartite graph G = (V , E) , positive inte-

gerM 5 IVI.
Question 2: Are there two disjoint subsets Vl and V2

such that / V I / = /V21 = M , and such that U E VI, v E V 2 ,

implies that (U , U > E E ?
This problem is known as the Balanced Complete Bi-

partite Subgraph Problem, which has shown to be NP-

complete in [161. G and E are constructed from the given
PLA. Each node in the G denotes the column of the PLA,
and if C M [i , j] = 1 then an edge is placed between the

corresponding nodes i a n d j in G. Thus, two columns are
disjoint if and only if there is an edge between the two

corresponding nodes in G. Vl represents the upper folding

region (U) , and V2 represents the lower folding region
(L) . The condition that there exists an edge for each node
in Vl and each node in V2 implies that each column in U
is disjoint from each column in L. The requirement that
every line in the upper folding region of a bipartite folding
is disjoint from every line in the lower folding region im-

plies that a bipartite folding of a size M exist if and only
if there is a foldable matrix (FM) of size M .

DeJnition 4: In a CM, the number of 1’s in a column
(row) Ci is the weight of Ci.

Definition 5: If the weight of a column (row) is zero in

a CM, then the corresponding column (row) is expendable

with respect to the corresponding CM.
The last column in Fig. 2 shows the weight of each

column. Input 13 is expendable. An expendable column

(row) can be deleted from the CM, since it is nondisjoint
from all other columns. In other words, the expendable
columns (rows) can not appear in either upper folding re-
gion or lower folding region.

Theorem 2: If a PLA contains M bipartite folding pairs

then at least 2M columns in the CM have weights greater
than or equal to M .

Pro08 In an M pairs bipartite folding PLA, each

column in U can be folded with every column in L. Since
there are M columns in U , each of these columns must
have weight at least M . Likewise, each of the columns in
L must also have weight at least M . Hence, the total num-
ber of columns with weight M or more in a bipartite folded

PLA is at least 2M.
This theorem can be used to reduce the search space for

bipartite folding. In other words, if we are looking for a
bipartite folding with size M, all candidate columns should
have weights greater than or equal to M . For example,

there are 12 columns in Fig. 2 after removing the expend-
able column 13. In the CM, the value of M cannot be 6
since there are only 9 columns with weights greater than

or equal to 6. Hence, M is upper-bounded by 5 in the
given example.

Dejnition 6: A pair of columns Ci and is called a

companion pair of order M if weight(Ci) + weight(C’) 1
2M, where M is the size of bipartite folding.

Theorem 3: Given 2M columns with M bipartite folded
pairs, the number of companion pairs of these 2M col-
umns is greater than or equal to M 2 .

Proof: A column in U is disjoint from every column

in the L. Hence, the weight of each column in U is at least
M. Likewise, every column in L has weight greater than
or equal to M . Further, every column in U is a companion
pair with every column in L , with weight(Ci) + weight(Cj)
2 2M, where Ci is a column in U and Cj is a column in
L. There are M 2 combinations of the columns. Hence, the

total number of companion pairs in a bipartite folding is

Theorem 3 gives the basic constrain for bipartite fold-

ing for a given set of 2M columns. If Theorem 2 is used

M 2 .

LIU AND SALUIA: BIPARTITE PLA FOLDING 1843

to find 2M columns as the cardinality of a bipartite fold-
ing, Theorem 3 must be satisfied for these columns for

bipartite folding to exist.

The next section gives a column bipartite folding al-
gorithm based on these two theorems.

can easily block the change of placing next column in
L (U) . For a sparse PLA, most columns have larger
weights. Hence, BIFOLDING can easily find a bipartite so-
lution. The experimental results in Section V show that
BIFOLDING can find a solution efficiently.

The selection steps are important to produce a “good”

IV. THE FOLDING ALGORITHM AND HEURISTICS folding. These steps have to be chosen so that Uand L
computed by the algorithm have cardinality as close as
possible to the maximum.

number of pairs is large. Because we have
large freedom to arrange the folding pairs, a much easier
task is Therefore, it
appears that a good heuristic is to select columns with

The optimal bipartite folding problem was shown to be

algorithm to obtain a “good” solution. To explain the
basic ideas behind the algorithm, let us first introduce a
frame of the algorithm. The algorithm frame is described
in the following structured code’

121* Therefore, we propose a heuristic-based
If we select columns with large degrees (weights), the

in the following folding

-

Algorithm BIFOLDING

CM + FINDCOMPATIBILITYMATRIX(PLA) ;
CM + REMOVEREDUNDANT(CM);
M + MAXIMUMFOLDINGNUMBER(C M) ;
found + false;

while (M L 0 and not found) do

begin

begin

V + WEIGHTSELECT(CM, M); /* select columns with weights L M */
if (I)Vll > 2 M) then
begin

while (there exists any column in V which has not been selected

begin
and not found) do

V + SELECT(V); !* selection of candidates */
INITIALFOLDING(V, K, L); /* initial arrangement of columns */
if CHECKFOLDING (V, U, L) then /* test for folding */

found + true;

end;
end;
M = M - l ;

end;
write(U, L)

end;

BIFOLDING proceeds as follows. Initially, it selects 2M
columns from the compatible matrix (CM), where each
column has weight greater than or equal to M. If these 2M

columns cannot be placed into L and U, BIFOLDING dis-
cards one of the columns and selects another one from

CM. This process continues until a solution is found or
all possible choices have failed. If the search fails,
BIFOLDING reduces the M and tries to find another solu-

tion.
Since BIFOLDING only processes those columns whose

weights are at least M, the columns with weights less than
M are not considered. This reduces the search space. For
a dense PLA, most columns have small weights. This re-
sults in a small size of CM, hence, the effort for searching
is small. Also any column which has been places in U(L)

‘Algorithms are written in an informal notation call pidgin algol. The
term pidgin algol appears to have been introduced in A. V. Aho, J. E.
Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, pp. 33-39, (Reading, MA: Addison-Wesley, 1974).

maximum degree as candidates to be folded and place
them in candidate FM.

However, selecting a column with large degree for in-

clusion in FM increases the difficulty of folding. In fact,
many possible foldings are created by the choice of max-
imum degree columns. If we select columns with mini-
mum degree the number of possible alternate foldings is

kept small. This argument seems to suggest that we should
select columns with minimum degree form candidates to
be placed in FM.

Of course these two selection rules are contradictory,
therefore a tradeoff must be made. We decided to use the
following selection rule: Select columns with maximum
degree as the cardinalities to be folded and place them in
candidate FM, then select columns with minimum degree
from candidate FM and place it into FM.

In BIFOLDING, there are several subprocedures. We now

describe these subprocedures and the heuristics used in
them.

1844 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

The algorithm SELECT implements the idea of selecting
2M columns with maximum degree from C M . In CM, the
columns are sorted into decreasing order according to

weight. Hence, SELECT selects the first 2M columns which
have not been justified. The sorting of CM saves the effort
of searching 2M columns with weights at least M .

VSELECT is based on choosing a minimum degree col-
umn from the 2M selected column.

Algorithm VSELECT (V)

min + a large number
for each u in V do

begin

if (weight(u) < min) then

min +- weight(u)

begin

end
return(u)

end;

Algorithm INITIALFOLDING(V, U, L) , given below, is
used to arrange 2M columns into U and L. It proceeds a
follows: In the beginning of the algorithm, a column u is

selected with least freedom using VSELECT, and put into,
say U . It then removes u from V and sets L to be an empty
set. Then, for each element U in the V , if U is not disjoint
from every element in U @) , it is placed in L(U) and re-
moved from V. This step continues until every element in
V has been justified.

INITIALFOLDING reduces the search space by fixing
some columns in U or L. Since these columns have least
freedom (weights), which limits the chance of the folding
of other columns.

Algorithm INITIALFOLDING(V, U , L)

U + VSELECT(V) ;

begin

V + V - (u } ;

U + {VI;
L +- 0;

while (V # 0) do
begin

if not COMPATIBLE(U, U) and not COMPATIBLE

(U, L) then
return false

if not COMPATIBLE(U, U) then

if not COMPATIBLE(U, L) then
u c u u {U);

L +- LU{u};
V +- V - (U};

end;
end;

The algorithm COMPATIBLE(U , R) determines the com-

patibility of a column u with a folding region R, where R
is upper folding or lower folding region. If Y is disjoint
from every element in R, COMPATIBLE returns true,
otherwise it returns false. For a given folding region R , if
U is compatible with R, U can be placed in the opposite

Algorithm COMPATIBLE(V, R)

if (1) R 11 = M) then
return false

else
begin

begin

for each U in R do
if CM(u, U) = 0 then

return false;

end
return true;

end;

CHECKFOLDING(~, U , L) tries to place the elements in

V into U and L. It first selects the column with least free-
dom in V . If this element can be put in neither U nor L,
the folding condition fails, and CHECKFOLDING returns
false. Otherwise, this element is put into the correspond-

ing folding region. Every element in V is tested using
CHECKFOLDING.

begin

Algorithm CHECKFOLDING(I/, U , L)

if (V = 0) then
return true;

else
begin

u + VSELECT(V);
if not COMPATIBLE(U, U) and not COMPATIBLE

(U , L) then
return false;

else
begin

if COMPATIBLE(U, L) then

if COMPATIBLE(U, U) then

CHECKFOLDING(V - U , U U U , L);

CHECKFOLDING(V - U , U , L U U) ;

end;
end;

end;

V. EXPERIMENT RESULTS

The algorithms have been implemented in C program-
ming language on a SUN SPARC-station 2 . We have used

our algorithm to find bipartite folding for a number of
PLA’s of varying sizes. We have not analyzed the com-
plexity of the algorithm but its efficiency is evident from
the results presented in this section.

Table I1 summarizes the results of 30 large PLA’s from
the list of 56 PLA’s given in [l]. The definitions of the
column headings are as follows,

Ni, No, and Np: number of inputs, outputs, and product
terms, respectively.

fa and& M: the upper bound on folding pairs in the AND

plane and in the OR plane, respectively. Note that

faM and& are not the optimum solution for fold-
ing. They indicate the maximum possible number
of folding pairs.

_ -

fplding region. - *

-.

LIU AND SALUJA: BIPARTITE PLA FOLDING

time

0.183
0.650
26.650
60.750
60.267
20.217
0.183

58.770
0.133
7.583
0.200
0.133
0.133
9.617
3.367
0.150
1.767
0.100

55.783
4.783

32.917
9.883

46.733
0.117
0.117

22.650
43.667
4.683
0.150
0.867

1845

RRA(%)
1.00

-

1.09
1.11

1.10
1.04

-

1.00
1.00
0.98
1.00
1.00
1.00
1.07
1.04
1.18
1.04

-
1.00
1.00

-
1.09
1.19
0.90

1.00
1.00

-
0.90

-

-

name

apla
be0
bca
bcb
bcc
bed
chkn

CPS
dk48
exep

W Y
in0
in2
in3
in4
in5
in6
in7

misg
mish

OPa
ti

vg2
xldn
d d n
x6dn
x7dn
x9dn

- -

-

-

-

jbp

-

-

pla

BiFoldmg
in out

0 6
7 0
10 10
10 8
10 10
10 8
5 3

0 8
3 31
2 2
2 1
4 1

11 11
7 7
6 4
11 9
7 4
15 28

28 11
47 21
2 34
18 28
4 4

3 54

-
Ni

10
26
26
25
26
23
29
24
15
30
15
15
19
35
32
24
33
26
36
56
94
17
47
25
27

82
39
66
27
23

- -

-

-

-

-

-

-

Time
Pleasure BiFoldin

25.2 2.233
- 16.467
- 26.650

91.3 60.750
79.7 60.267
67.9 45.217
31.6 4.133

25.8 2.917
54.4 7.583
39.4 4.305
27.2 2.850
26.7 4.517
21.0 8.133
74.6 0.867
15.3 15.250
15.8 1.767
17.3 31.767
44.0 55.783
18.3 25.483
27.0 32.917

- 9.883
98.8 46.733
22.4 19.250

- 58.770

-
NO
12
11

46
39
45
38
7

109
17
63
11
11

10
29
20
14
23
10
57
23
43
69
72
8
6

56

5
15
7

19

=

-

-

-

-

-

-

134
479
301
299
245

243
153
654
148
175
214
138
137
75

234
62
54

166
75
91

342
241
110
112

112
121
622
120
52

TABLE I1
COMPARISON OF FOLDED AREA

m
0
7

10
10
10
10
5
3
0
3

2
2
5

11

10
7

12
8 4 7

16
28
47
2

20
4
4

41
16
28
5
9

6
0

10
8

10
8
3

54

8
31
2
1
2

11
7
4
9
4

28
I1

21
34
28
4
3

28
0
7
3
9

-
f.
5

0
7

10
10
10
10

5
3
0
3
2
2
4

11

10
7

11

7
15

-

-

-

$
2

18
4
4

40
14
27
1
9

-

-

rn
90.8
81.2
73.8
73.8
74.1
72.1
87.3
64.4
90.9
75.7
91.7
96.1
87.7
77.4
73.3
84.6
78.7
82.2
60.8
59.3
57.1
67.4
65.7
88.8
90.9

57.0
72.9
61.3
90.7
71.8

-
- foM

6
0

18
13
16
15
3

54
8

31
3
1

3
12
8
4

10
4

28
11

21
34
34
4
3

28
0
7
3
9

-

-

-

-

-

-

-

fa andf,: number of folding pairs found by BIFOLDING
in the AND plane and the OR plane, respectively.

RA: relative area for the folded PLA,
time: the CPU time in second.

M A : the relative area with respect to arbitrary column

Note that the RA’s are computed from the “exact” area

of the PLA, which includes the input decoders, pull-ups,
and output buffers. The layout of a bipartite folded PLA
is generated by a CMOS PLA generator developed by us.
The choice of 30 PLA’s out of 56 PLA’s is based on the
area reduction (RA) of folding. As pointed out in Section
11, placing the input decoders and output buffers on top of
small PLA may increase the area in spite of folding. The
PLA’s with increased area after folding are not listed in
Table 11. Besides, some PLA’s among the 56 PLA’s are
too small such that the searching of the solution can be

carried exhaustively. These small PLA’s are also not con-
sidered in Table 11.

We notice from Table I1 that for most of the PLA’s f,
= faM andf, = foM. Thus, we conclude that BIFOLDING
provides optimal solution in most cases.

From theresults given in Tables I and 11, it is evident

that the areas of PLA’s obtained by BIFOLDING are com-
parable to those obtained by simple column folding. For
many of the large sparse PLA’s, the folding pairs found
by bipartite folding are the same as found by simple col-
umn folding. A dash (-) in the last column indicates that
the simple column folding program was either unable to
provide an answer or could not be run due to the large
size of the PLA.

folding.

-
name

apla
bcO
bca
bcb
bcc
bed
chkn

CPS
dk48
exep

g=Y
in0
in2
in3
in4
in5
in6
in7

misg
mish

OPa
ti

vg2
xldn
x2dn
x6dn
x7dn
x9dn

- -

-

-

-

jbp

-

-

pl.

TABLE 111
COMPARISON OF EXECUTION TIME WITH PLEASURE

PLA
in out pr

10 12 134
26 11 479
26 46 301
26 39 299

26 45 245

23 38 243
29 7 153
24 109 654
15 17 148
30 63 175
15 11 214
15 11 138
19 10 137
35 29 75
32 20 234
24 14 62
33 23 54
26 10 84
36 57 166
56 23 75
94 43 91
17 69 342
47 72 241
25 8 110
27 6 112
82 56 112
39 5 121
66 15 622
27 7 120
23 19 52

Pleasure
in out

0 6
- -
~-

10 14
10 17
10 16
6 3

0 8
3 31
1 3
2 1
4 2
11 11
11 9
8 4
16 9
8 4
12 28
28 11

47 21

19 35
0 4
1 3

40 28
14 0

1 3
9 8

- -

- -

- -

4 3 I 22.6 81.800
40 28 I 34.5 53.067 i i, 1 281 7.233

4.683
25.3 72.800
10.5 0.867

The CPU time in seconds is also shown in Table 11. For

most of the PLA’s, the CPU time is less than 1 s. The
reasons that BIFOLDING is fast are,

1) The folding constrains are considered before
searching. Hence, no time is spent on those col-
umns which cannot be folded.

2) The heuristics in BIFOLDING select those columns
with maximum freedom and then search the candi-
dates with minimum freedom. This increases the
possibility of finding a folding while keeping the
search space alternatives as few as possible.

In the last row of Table 11, “pla” is the PLA that ap-
pears in €he paper by Hachtel et al. [7]. The PLA has 23

inputs, 19 outputs, 52 product terms, and 182 of the row-
column intersections are personalized. The BIFOLDING

was able to fold 18 columns, 9 in AND plane and 9 in OR

plane. This implementation yields 7 1.8 % area reduction
and required only 0.867 s of CPU time. For physical consis-
tency, the input columns have been folded with input __ ~ col-

umns and output columns with output columns. This has
been easily achieved by placing additional constrains in
CM. Hachtel’s algorithm only folded 17 pairs, 9 and AND

plane and 8 in OR plane,
To compare the speed between our algorithm and

“pleasure,” BIFOLDING was also ported onto a VAX
1 U750 machine, where both “pleasure” and BIFOLDING
could run. Table I11 shows the folding results and the CPU
time of BIFOLDING and “pleasure.” The last 2 columns
show the CPU time in seconds for “pleasure” and BI-

1846 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993

1

3
!
I

11

10 11

12

13 14

!Z

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2
0 1 2 3 4 5 6 7 8 9 0

(b)

Fig. 5 . A PLA “alul.” (a) Personality matrix. (b) PLA implementation.

1 1 2 1
7 3 8 4 9 5 0 6

6 5 2 1 9 1 1 1 1 1 1 1
0 1 2 8 7 4 3

Fig. 6. The bipartite folding result of “alul.” (a) Personality matrix.

(b) PLA implementation.

FOLDING, respectively. This table substantiates the claims

made about the speed of BIFOLDING.
To show the folding result of BIFOLDING, a small PLA

“alul” which is listed in the 56 PLA’s in Table I , is used
to demonstrate.

Fig. 5(a) show the personality matrix and Fig. 5(b)
shows the PLA implementation of ‘ ‘alu 1. ” ‘‘alu 1 ” has
12 inputs, 8 outputs, and 19 product terms. The size of
“alul” is 608. In Fig. 5(a), a “1” (“0”) in the AND

plane shows the presence of the corresponding uncomple-
mented (complemented) input on a product term. Simi-
larly, a “1” in the OR plane shows the presence of the
corresponding product term in the output. The reason to
choose “alul,” instead of those PLA’s in Table 11, is that
its size is small and there are folding pairs existed in it.

Fig. 6 shows the “alul” after folding. There are 4
folding pairs in the AND plane and 4 folding pairs in the

OR plane. In the AND plane, for physical consistency, the
input columns have been folded with input columns and
output columns with output columns. A “!” is a normal
contact to uncomplemented input and split below, a “0”
is a normal contact to complemented input and split be-

low, and a “=” means no contact but split below. Sim-
ilarly, a “!” in OR plane is a normal contact to output and
split below , and a “ = ” means no contact but split below.

The size of the folded PLA is 380. This implementation
yields 37.5 % area reduction.

VI. CONCLUSION

We proposed an efficient PLA folding algorithm appli-
cable for column bipartite folding, based on matrix rep-

resentation. The compatibility of the column pairs is found
and stored in a compatibility matrix. This step discards
“pairs” that cannot be in the final solution. Theorems are

proved and invoked during this phase that help limit the
search space. The BIFOLDING algorithm proposed in the
paper makes use of heuristics to guide the search. The

algorithm proposed in this paper yields nearly optimal re-
sults for almost all examples and in certain cases bipartite
folded PLA’s provide a better solution than arbitrary sim-

ple column folding as obtained by “pleasure.” Gener-
ally, our algorithm provides PLA’s that have areas com-
parable to single column folded PLA’s but is much faster
in providing the solution.

We have also outlined some of the advantages of bi-
partite folding, many of these ideas, especially those re-

lating to testability have been incorporated in a program
which generates testable PLA.

ACKNOWLEDGMENT

We are thankful to the anonymous referees for their
constructive criticism. Their careful review and valuable
comments of the manuscript of this paper greatly im-
proved the quality of presentation.

REFERENCES

[l] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Boston, MA: Kluwer Academic, 1984.

[2] J . R . Egan and C. L. Liu, “Bipartite folding and partitioning of a
PLA,” IEEE Trans. Computer-AidedDesign, vol. CAD-3, no. 3, pp.
191-199, July 1984.

[3] M. R . Garey and D . S . Johnson, Computers and Intractability-A
Guide to the Theory of NP-Completeness. San Francisco, CA: Free-

man, 1979.
[4] W. Glass, “A depth-first branch and bound algorithm for optimal

PLA folding,” in Proc. 19th Design Automat. Conf., June 1982, pp.

[5] J . R . Griggs, “Lower bounds on the independence number in terms
of degrees,” J . Combinatorial Theory, vol. 8, no. 34, pp. 22-38,
1983.

[6] G. D. Hachtel, A. R . Newton, and A. Sangiovanni-Vincentelli,
“Some results in optimal PLA folding,” in Proc. Inr. Conj. Circuits
and Computers, 1980, pp. 1023-1027.

[7] -, “An algorithm for optimal PLA folding,” IEEE Trans. Com-
puter-Aided Design Integrated Circuits Syst., pp. 63-76, 1982.

[8] -, “Techniques for programmable logic a m y folding,” in Proc.
19th Design Automat. Conj., lune 1982, pp. 147-155.

[9] Y. C. Hsu, Y. L. Lin, H. C. Hsieh, and T. H. Chao, “Combining

133-140.

LIU AND SALUJA: BIPARTITE PLA FOLDING 1847

logic minimization and folding for PLA’s,” IEEE Trans. Comput.,
vol. 40, no. 6 , pp. 706-713, 1991.

[lo] S. Y. Hwang, R. W. Dutton, and T. Blank, “A best-first search al-
gorithm for optimal PLA folding,” IEEE Trans. Computer-Aided De-
sign, vol. CAD-5, no. 3, pp. 433-442, July 1986.

[l l] D. S. Johnson, “Approximation algorithms for combinational prob-
lems,” J. Comput. Syst., pp. 256-278, 1974.

[12] J. E. Lecky, 0. J. Murphy, and R. G. Absher, “Graph theoretic al-
gorithms for the PLA folding problems,” IEEE Trans. Computer-
Aided Design, vol. CAD-8, pp. 1014-1021, 1990.

[I31 J. L. Lewandowski and C. L. Liu, “A branch and bound algorithm

for optimal PLA folding,” in Proc. 21st Design Automat. Conf., June

1984, pp. 426-433. cation.
[I41 M. Luby, U. Vanirni, V. Varzirni, and A. Sangiovanni-Vincentelli,

“Some theoretical results on the optimal PLA folding problem,” in
Proc. 1982 Int. Symp. Circuit Syst., Oct. 1982, pp. 185-170.

[15] B. Mayo and J. Ousterhout, “Pictures with parentheses: Combining
graphics and procedures in a VLSI layout tool,” in Proc. 20th Design
Automat. Conf., June 1983, pp. 270-276.

[161 R. Muller and D. Wagner, “a-vertex separator is np-hard even for
3-regular graphs,” Computing, vol. 4, pp. 343-353, 1991. Kewal K. Saluja (S’70-M’73-SM’89) received

[17] G. D. Micheli and A. Sangiovanni-Vincentelli, “PLEASURE: A the B.E. degree from the University of Roorkee,
computer program for simplelmultiple constrained/unconstrained India, and the M.S. and Ph.D. degrees in electri-

folding of programmable logic arrays,” in Proc. 20th Design Auto- cal and computer engineering from the University

mat. Conf., June 1983, pp. 27-29. of Iowa.
[18] A. Mukhejee, Introduction to NMOS and CMOS VLSI Systems De- He is a Professor in the Department of Electri-

sign. Englewobd Cliffs, NJ: Prentice-Hall, 1986. cal and Computer Engineering, University of
[19] R. Treuer, H. Fujiwara, and V. K. Agrawal, “Implementing a built- Wisconsin-Madison where he teaches logic de-

in self-test PLA design,” IEEE Design Test Cornput. Apr. 1985, pp. sign, computer architecture, microprocessor based

37-48. systems, VLSI design and testing. Previously he

[20] J. D. Ullman, Computational Aspects of VLSI. Rockville, MD: was at the University of Newcastle, Australia. He

Computer Science Press: 1984. has also held visiting and consulting positions at such institutions as the

[21] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI De- University of Southern California, University of Iowa, Hiroshima Univer-

sign-A Systems Perspective. Reading, MA: Addison-Wesley, 1984. sity. His research interests include design for testability, fault tolerant com-
[22] D. F. Wong, H. W. Leong, and C. L. Liu, “Multiple PLA folding puting, VLSI design and computer architecture. He is the Associate Editor

by the method of simulated annealing,” in Proc. Integrated Circuits for the letters sections of the Journal of Electronic Testing: Theory and

Conf., May 1986, pp. 351-355. Applications (JETTA).

Chun-Yeh Liu received the B.S. degree from the

National Tsing-Hua University, Taiwan, and M.S.
degree in electrical and computer engineering from
the University of Wisconsin-Madison.

He is a Ph.D. candidate in the Department of
Electrical and Computer Engineering at the Uni-
versity of Wisconsin-Madison where he is work-
ing on the design of testable finite state machines.
His research interests are CAD tools development
with emphasis on testing, VLSI design and com-
puter architecture. He has worked at Intel Cor-

poration where he was involved in circuit design and performance verifi-

