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An Efficient Algorithm for Bipartite PLA Folding 
Chun-Yeh Liu and Kewal K. Saluja, Senior Member IEEE 

Abstract-Programmable Logic Arrays (PLA’s) provide a 
flexible and efficient way of synthesizing arbitrary combina- 
tional functions as well as sequential logic circuits. They are 
used in both LSI and VLSI technologies. The disadvantage of 
using PLA’s is that most PLA’s are very sparse. The high 
sparsity of the PLA results in a significant waste of silicon area. 

PLA folding is a technique which reclaims unused area in the 
original PLA. In this paper, we propose a column bipartite 
folding algorithm based on matrix representation. Heuristics 
are used to reduce the search space and to speed up the search 
processes. The algorithm has been implemented in C program- 
ming language on a SUN-4 workstation. The program was used 
to study several large PLA’s of varying sizes. The experimental 
results show that in most cases the proposed algorithm finds 
optimal solution in a reasonable CPU time. 

I. INTRODUCTION 

TERACTIONS between the structured design tech- 

wide implications for overall design cost and efficiency of 
digital circuits and systems. Use of a regular structures 
facilitates the design process and eliminates tedious man- 
ual operation. Due to the regularity of the structure and 
the simplicity of the design, Programmable Logic Arrays 
(PLA) have found widespread acceptance in the design of 
digital systems. 

The PLA is a hardware form used for implementing 
two-level multiple-output combinational logic circuit. 
PLA design is easily automated because of a direct cor- 
respondence between physical PLA layout and the per- 
sonality matrix. The major disadvantage of the PLA is 
that most practical logic problems leave much PLA area 
unused. A straightforward physical design results into a 
significant waste of silicon area, which may be unaccept- 

able. Also, speed and power become critical parameters 

as the size of the PLA increases [7]. The gate capaci- 
tances of the input signals carried by long polysilicon lines 
become the key factor in determining the timing (speed) 

performance. In moderate to large PLA’s, the polysilicon 

resistance becomes as important a factor as the capaci- 
tance. The signal can be seriously degraded with the large 

resistance added to the line, no matter how large the driv- 
ers are. Further, if the PLA becomes large, the width of 
the power and the ground lines should also be increased 
to avoid possible metal migration. Most PLA generators 

I”. niques and the design of complex VLSI circuits have 
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[15] automatically increase the width of the power lines 
and the ground lines in the PLA, depending on the total 
current demand. 

PLA optimization aims at minimizing the area occupied 
by the PLA and as a result addresses almost all disadvan- 
tages listed above. Two minimization techniques are 

commonly used to reduce the PLA areas, 

1) Logic minimization: Logic minimization seeks a 

logic representation with a minimal number of im- 
plicants. Reduction of the number of implicants al- 

lows a PLA to be implemented in a small area. 
2)  Topological minimization: PLA folding is a tech- 

nique which reclaims unused space without destroy- 

ing the regular structure of the PLA. According to 
Egan and Liu [2] arbitrary boolean functions pro- 
duce sparse PLA’s, in which typically 90% of the 
crosspoints are unused. Folding achieves size re- 
duction by compaction and removal of areas of 
unused crosspoints. 

In this paper, we study the problems of the PLA fold- 
ing. There are many types of PLA folding, depending on 
the technology employed to implement a PLA. All PLA 
folding methods involve the merging of two or more col- 

umns (rows) of a PLA into a single column (row). The 
simplest form of folding, called Simple Column Folding 
[7], involves merging pairs of columns into single col- 
umns. 

The object of PLA folding is to find the maximum num- 

ber of pairs of columns/rows that can be folded simulta- 
neously. The PLA folding has a complex functional de- 
pendence on the ordering of the rows. The optimal simple 

PLA column folding problem can be defined as: 

Determine a permutation of the rows which allows 
a maximum set of column pairs to be implemented 
in such a way that each column of the folded PLA 
contains a pair of columns from the set. 

The optimal folding problem has been shown to be NP- 
complete [6], [ 141. Many algorithms and heuristics have 
been developed to solve this problem. The simplest one 
is the branch and bound algorithm [4], [13]. Although it 
is simple and able to find an optimal solution in theory, 
its practicality for large PLA’s is questionable because it 
carries out an exhaustive search for an optimal solution. 
Therefore, many heuristics have been developed to find 
good, but nonoptimal solutions. Hwang et al .  [lo] used a 
best-first search algorithm to find a near-optimal result. 

Ullman [20] used a graph algorithm to find a feasible so- 
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lution in a time complexity no worse than O ( w c 2 ) ,  where 
w is proportional to the number of rows and c is the num- 
ber of columns. Hachtel et al. 171, [8] proposed algo- 

rithms for both row and column foldings, which find the 
folding pairs one by one. The PLA folding results thus 
obtained are only locally optimal and depend on the se- 
lection of order of the folding pairs. For example, for col- 
umn folding, they try to fold as many columns as possible 
and then determine the row permutation according to the 
folding set so found. In fact, each folding set corresponds 
implicitly to some row permutation order. Thus, after a 
folding set is selected, the next folding set is constrained 
by the row permutation orders. Wong [22] applied the 
simulated annealing technique to the folding problem. 
Lecky et al. [ 121 transformed the PLA into a graph where 
cliques in the graphs correspond to the PLA folding set, 
and Greedy algorithm [5], [11] is used to identify the 

maximal cliques. Hsu et al. [9] modeled the PLA person- 
ality matrix as network and the bipartite PLA folding as 
a partitioning problem of the network. 

In this paper a new bipartite PLA folding algorithm 
based on matrix representation is presented. Before 
searching a bipartite folding, the columns which do not 

satisfy certain constrains, and hence nonfoldable, are 
pruned. This reduces the search space. During search, 
heuristics are used to find an alternative folding. This 

speeds up the search processes. 
This paper is organized as follows: The advantages and 

constraints of PLA folding are given in Section IT. The 

PLA bipartite folding is also introduced in this section. 
Terms which are used in the proposed algorithm are de- 
fined in Section 111. In Section IV, a bipartite folding al- 
gorithm is described. Results on the benchmark examples 
are presented in Section V. Section VI concludes the pa- 
per. 

11. ADVANTAGES AND LIMITATIONS OF PLA FOLDING 

Table 1 summarizes the Simple Column Folding results 
of 48 PLA’s from the lists of 56 PLA’s given in [l] .  The 
results are found with the aid of a folding program 
“pleasure” [17]. For each PLA, the table shows the num- 
ber of inputs Ni, the number of outputs No, the number of 
product terms Np,  number of folding pairs in AND plane 
f a ,  number of folding pairs in OR plane&, and the relative 
area RA. The relative area in the last column is defined as 

Af 
R4=-xl100 

A 

where Af is the area after folding, and A is the original 

area. 
Layout follows the design rules for CMOS technology 

proposed in [21]. Since the “pleasure” limits the size of 

the PLA which can be folded, only 48 PLA’s out of 56 
PLA’s are chosen. 

For most of the large PLA’s, the relative areas are less 
than 100%. For example the x2dn has the relative area 
57.0%, which is very close to the optimal lower bound 

50% [2]. This table shows that the folding technique is 
effective for area saving in PLA. Note that the RA’s of 
some small PLA’s are greater than loo%, as shown in 
Table I .  This is because the area of placing the extra input 

decoders and output buffers in a folded PLA is greater 
than the area saved by folding. 

Although PLA folding can reduce the area effectively, 
there exist constrains, such as routing, on folding a PLA 
or a folded PLA. In a VLSI system design, these con- 

strains should be taken into account. Two of the important 
constraints and their impacts are discussed below. 

Routing: In a folded PLA, one of the folded input 

(output) signals must come from the top of the PLA 
and the other from the bottom. Since the inputs may 
be required anywhere and the output may go to 

anywhere, it often increases the complexity of rout- 
ing. Furthermore, it is well known that the routing 
of signals often takes more silicon area than the logic 

blocks. Typically, 30% of total design time and 
about 60% of the chips are expended merely to in- 
terconnect the circuit elements [ 181. Therefore, any 
calculation made to estimate the overhead without 
considering the routing area is often too optimistic. 
Thus, folded PLA design must consider the routing 
area of interconnects and time to complete the de- 
sign. 
Testing: The input decoders and output buffers of a 

testable design of a PLA are generally augmented 
such that they can control the columns of the PLA 
easily. For a folded PLA, transistors can be placed 
between the cuts of the columns, such that the PLA 
can be controlled by the augmented input decoder 
only from one side during testing. Otherwise, input 

decoders at the both sides would need to be aug- 
mented to test the PLA. To place a transistor on the 
cut in a folded PLA can be costly for a CMOS tech- 
nology design. This is because the layout of a PLA 
is very compact. For a simple column folding PLA, 
the cuts are in different levels, the area increased to 

place the transistors are dependent on the number of 
cuts in a folded PLA, which results in significant 
waste of silicon area. 

A bipartite folding is a folding in which all of the breaks 
(cuts) occur at the same level. The single break level of a 
bipartite folding splits a PLA into two regions [2], an up- 

per folding region ( U )  which contains those folded input 
and output lines that are above the break, and a lower 
fofding region (L) which contains the folded input and 

output lines that are below the break. A column bipartite 
folding exists if every line in the upper folding region is 
disjoint from every line in the lower folding region. 

There are several advantages for using bipartite fold- 

ing: 

Our experimental results show that the size of a bi- 
partite folded PLA compares favorably to the size of 
the PLA obtained after single column folding. 
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Routing the nets to or from the PLA is simplified, 
since the folded lines entering from the top of the 
PLA can be ordered independently of the folded lines 
entering from the bottom of the PLA. 
The area of a PLA can be further reduced by folding 
the upper folding region and lower folding region. 
The same algorithm can be applied recursively to the 
bipartite folded PLA. 
The area required for inclusion of testability features 
in a bipartite folded PLA is much less than that of a 
single column folded PLA. Since all of the cuts in a 
bipartite folded PLA are at the same level, therefore 
as argued earlier, this PLA can be tested from one 
side alone with very little area overhead. The idea 
proposed in [19] can be used to obtain Built-in Self- 
Test folded PLA by placing pass transistors between 
the cuts of a bipartite folded PLA. 

111. PRELIMINARIES 

An example of the AND plane of a PLA is shown in 
Fig. 1 .  In this figure, columns represent uncomplement- 
complement pairs of literals. A dot means the placing of 
a transistors on uncomplemented or complemented input. 
Each horizontal line of the PLA carries a product term. 
There are 13 inputs and 21 product terms in the example 
PLA. We will use this example AND plane of a PLA 
throughout this section. 

Definition I: Two columns are disjoint (compatible) if 
they do not share a common product line. 

More explicitly, two input lines are disjoint if the cor- 
responding inputs do not occur together in any product 
term for any of the output function. An input line is dis- 
joint from an output line, if the literal represented by this 
input line is not present in the function represented by the 
output line. Finally, two output lines are disjoint, if they 
do not share a product term. For the example PLA, inputs 
1 and 5 do not share any common product line, hence they 

1 1 1 1  
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Fig. 1 .  An example PLA. 

are disjoint. Inputs 9 and 13 appear on product line 1, 
therefore they are not disjoint. 

Definition 2: A square matrix which depicts the com- 
patibility relation among all pairs of columns of a PLA 
will be called a compatibility matrix ( C M )  of the PLA. 

The compatibility matrix contains a row and a column 

corresponding to each column of the PLA. Therefore, the 
size of CM is the sum of number of inputs and number of 
outputs. The C M [ i ,  j ]  element of the compatibility matrix 
is 1 if columns i and j of the PLA are compatible. CM 
satisfies the following two properties, 

CM has all 0’s on the leading diagonal, since a col- 

CM is symmetric, since if column i is disjoint from 

Construction of the matrix CM from a given PLA is 
straightforward. The compatibility matrix of the PLA of 

Fig. 1 is shown in Fig. 2. The last column, labeled weight, 
will be explained later. 

A column bipartite folding is a folding in which all the 

breaks (cuts) in the columns occur at the same level. Fig. 
3 shows a bipartite folding of the example PLA. In Fig. 
3, U contains inputs 7, 8, 9, 10, and 12, and L contains 

inputs 1, 2, 4, 5 ,  and 6. The size of a bipartite folding 
PLA is the cardinality of either folding region. Since the 
breaks of a bipartite folding PLA are at the same level, 
the following lemma is evident and is given without proof. 

Lemma I :  A column bipartite folding exists if and only 
if every line in the upper folding region is disjoint from 
every line in the lower folding region. 

Dejinition 3: A submatrix of CM called a foldability 
matrix (FM) provided it satisfies the following properties: 

It is an m X m matrix where 2m I n, n being the 
total number of columns of the PLA and m being the 
number of folding pairs. 
Every element in the upper folding region is the col- 
umn of FM, and it has the lower folding region as its 
row. 

umn is not disjoint from itself, 

j ,  then j is disjoint from i. 

It has all-1 . 
An FM of the PLA in Fig. 1 is shown in Fig. 4. This 

FM corresponds to the bipartite folded PLA shown in 



1842 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 12, DECEMBER 1993 

Fig. 2 .  Compatibility matrix of the example PLA. 
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Fig. 3 .  A bipartite folding result of the example PLA. 

Fig. 4. Foldable matrix of the folding result. 

Fig. 3. In the FM the row labels denote the elements in 
U ,  and the column labels denote the elements in L.  

The optimal column bipartite folding problem can be 
formulated as the following decision problem: 

Instance 1 :  Positive M ,  and a compatible matrix CM.  
Question 1:  Is there a foldable matrix FM of size M for 

the PLA with compatibility matrix CM and M is maxi- 
mum? 

Theorem 1: This decision problem is NP-complete. 
Proof: The reduction is from the following problem 

which was shown to be NP-complete in [3], p. 196. 
Instance 2: Bipartite graph G = ( V ,  E ) ,  positive inte- 

gerM 5 IVI. 
Question 2: Are there two disjoint subsets Vl and V2 

such that / V I /  = /V21 = M ,  and such that U E VI, v E V 2 ,  

implies that ( U ,  U >  E E ?  
This problem is known as the Balanced Complete Bi- 

partite Subgraph Problem, which has shown to be NP- 

complete in [ 161. G and E are constructed from the given 
PLA. Each node in the G denotes the column of the PLA, 
and if C M [ i ,  j ]  = 1 then an edge is placed between the 

corresponding nodes i a n d j  in G. Thus, two columns are 
disjoint if and only if there is an edge between the two 

corresponding nodes in G. Vl represents the upper folding 

region ( U ) ,  and V2 represents the lower folding region 
(L) .  The condition that there exists an edge for each node 
in Vl and each node in V2 implies that each column in U 
is disjoint from each column in L. The requirement that 
every line in the upper folding region of a bipartite folding 
is disjoint from every line in the lower folding region im- 

plies that a bipartite folding of a size M exist if and only 
if there is a foldable matrix (FM)  of size M .  

DeJnition 4: In a CM, the number of 1’s in a column 
(row) Ci is the weight of Ci. 

Definition 5: If the weight of a column (row) is zero in 

a CM, then the corresponding column (row) is expendable 

with respect to the corresponding CM. 
The last column in Fig. 2 shows the weight of each 

column. Input 13 is expendable. An expendable column 

(row) can be deleted from the CM, since it is nondisjoint 
from all other columns. In other words, the expendable 
columns (rows) can not appear in either upper folding re- 
gion or lower folding region. 

Theorem 2: If a PLA contains M bipartite folding pairs 

then at least 2M columns in the CM have weights greater 
than or equal to M .  

Pro08 In an M pairs bipartite folding PLA, each 

column in U can be folded with every column in L. Since 
there are M columns in U ,  each of these columns must 
have weight at least M .  Likewise, each of the columns in 
L must also have weight at least M .  Hence, the total num- 
ber of columns with weight M or more in a bipartite folded 

PLA is at least 2M. 
This theorem can be used to reduce the search space for 

bipartite folding. In other words, if we are looking for a 
bipartite folding with size M, all candidate columns should 
have weights greater than or equal to M .  For example, 

there are 12 columns in Fig. 2 after removing the expend- 
able column 13. In the CM, the value of M cannot be 6 
since there are only 9 columns with weights greater than 

or equal to 6. Hence, M is upper-bounded by 5 in the 
given example. 

Dejnition 6: A pair of columns Ci and is called a 

companion pair of order M if weight(Ci) + weight(C’) 1 
2M, where M is the size of bipartite folding. 

Theorem 3: Given 2M columns with M bipartite folded 
pairs, the number of companion pairs of these 2M col- 
umns is greater than or equal to M 2 .  

Proof: A column in U is disjoint from every column 

in the L.  Hence, the weight of each column in U is at least 
M. Likewise, every column in L has weight greater than 
or equal to M .  Further, every column in U is a companion 
pair with every column in L ,  with weight(Ci) + weight(Cj) 
2 2M,  where Ci is a column in U and Cj is a column in 
L.  There are M 2  combinations of the columns. Hence, the 

total number of companion pairs in a bipartite folding is 

Theorem 3 gives the basic constrain for bipartite fold- 

ing for a given set of 2M columns. If Theorem 2 is used 

M 2 .  
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to find 2M columns as the cardinality of a bipartite fold- 
ing, Theorem 3 must be satisfied for these columns for 

bipartite folding to exist. 

The next section gives a column bipartite folding al- 
gorithm based on these two theorems. 

can easily block the change of placing next column in 
L ( U ) .  For a sparse PLA, most columns have larger 
weights. Hence, BIFOLDING can easily find a bipartite so- 
lution. The experimental results in Section V show that 
BIFOLDING can find a solution efficiently. 

The selection steps are important to produce a “good” 

IV. THE FOLDING ALGORITHM AND HEURISTICS folding. These steps have to be chosen so that Uand L 
computed by the algorithm have cardinality as close as 
possible to the maximum. 

number of pairs is large. Because we have 
large freedom to arrange the folding pairs, a much easier 
task is Therefore, it 
appears that a good heuristic is to select columns with 

The optimal bipartite folding problem was shown to be 

algorithm to obtain a “good” solution. To explain the 
basic ideas behind the algorithm, let us first introduce a 
frame of the algorithm. The algorithm frame is described 
in the following structured code’ 

121* Therefore, we propose a heuristic-based 
If we select columns with large degrees (weights), the 

in the following folding 

- 

Algorithm BIFOLDING 

CM + FINDCOMPATIBILITYMATRIX(PLA) ; 
CM + REMOVEREDUNDANT(CM); 
M + MAXIMUMFOLDINGNUMBER( C M )  ; 
found + false; 

while (M L 0 and not found) do 

begin 

begin 

V + WEIGHTSELECT(CM, M); /* select columns with weights L M */ 
if (I)Vll > 2 M )  then 
begin 

while (there exists any column in V which has not been selected 

begin 
and not found) do 

V + SELECT(V); !* selection of candidates */ 
INITIALFOLDING( V, K, L); /* initial arrangement of columns */ 
if CHECKFOLDING (V, U, L) then /* test for folding */ 

found + true; 

end; 
end; 
M = M - l ;  

end; 
write(U, L) 

end; 

BIFOLDING proceeds as follows. Initially, it selects 2M 
columns from the compatible matrix (CM), where each 
column has weight greater than or equal to M. If these 2M 

columns cannot be placed into L and U, BIFOLDING dis- 
cards one of the columns and selects another one from 

CM. This process continues until a solution is found or 
all possible choices have failed. If the search fails, 
BIFOLDING reduces the M and tries to find another solu- 

tion. 
Since BIFOLDING only processes those columns whose 

weights are at least M, the columns with weights less than 
M are not considered. This reduces the search space. For 
a dense PLA, most columns have small weights. This re- 
sults in a small size of CM, hence, the effort for searching 
is small. Also any column which has been places in U(L) 

‘Algorithms are written in an informal notation call pidgin algol. The 
term pidgin algol appears to have been introduced in A. V. Aho, J. E. 
Hopcroft, and J. D. Ullman, The Design and Analysis of Computer 

Algorithms, pp. 33-39, (Reading, MA: Addison-Wesley, 1974). 

maximum degree as candidates to be folded and place 
them in candidate FM. 

However, selecting a column with large degree for in- 

clusion in FM increases the difficulty of folding. In fact, 
many possible foldings are created by the choice of max- 
imum degree columns. If we select columns with mini- 
mum degree the number of possible alternate foldings is 

kept small. This argument seems to suggest that we should 
select columns with minimum degree form candidates to 
be placed in FM. 

Of course these two selection rules are contradictory, 
therefore a tradeoff must be made. We decided to use the 
following selection rule: Select columns with maximum 
degree as the cardinalities to be folded and place them in 
candidate FM, then select columns with minimum degree 
from candidate FM and place it into FM. 

In BIFOLDING, there are several subprocedures. We now 

describe these subprocedures and the heuristics used in 
them. 
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The algorithm SELECT implements the idea of selecting 
2M columns with maximum degree from C M .  In CM, the 
columns are sorted into decreasing order according to 

weight. Hence, SELECT selects the first 2M columns which 
have not been justified. The sorting of CM saves the effort 
of searching 2M columns with weights at least M .  

VSELECT is based on choosing a minimum degree col- 
umn from the 2M selected column. 

Algorithm VSELECT ( V )  

min + a large number 
for each u in V do 

begin 

if (weight(u) < min) then 

min +- weight(u) 

begin 

end 
return(u) 

end; 

Algorithm INITIALFOLDING( V,  U, L) ,  given below, is 
used to arrange 2M columns into U and L. It proceeds a 
follows: In the beginning of the algorithm, a column u is 

selected with least freedom using VSELECT, and put into, 
say U .  It then removes u from V and sets L to be an empty 
set. Then, for each element U in the V ,  if U is not disjoint 
from every element in U @ ) ,  it is placed in L(U) and re- 
moved from V. This step continues until every element in 
V has been justified. 

INITIALFOLDING reduces the search space by fixing 
some columns in U or L. Since these columns have least 
freedom (weights), which limits the chance of the folding 
of other columns. 

Algorithm INITIALFOLDING( V,  U ,  L)  

U + VSELECT( V ) ;  

begin 

V + V - ( u } ;  

U +  {VI; 
L +- 0; 

while (V  # 0) do 
begin 

if not COMPATIBLE(U, U )  and not COMPATIBLE 

(U, L) then 
return false 

if not COMPATIBLE(U, U )  then 

if not COMPATIBLE(U, L)  then 
u c u u  {U); 

L +- LU{u}; 
V +- V - (U}; 

end; 
end; 

The algorithm COMPATIBLE( U ,  R )  determines the com- 

patibility of a column u with a folding region R,  where R 
is upper folding or lower folding region. If Y is disjoint 
from every element in R,  COMPATIBLE returns true, 
otherwise it returns false. For a given folding region R ,  if 
U is compatible with R,  U can be placed in the opposite 

Algorithm COMPATIBLE(V, R )  

if (1) R 11 = M )  then 
return false 

else 
begin 

begin 

for each U in R do 
if CM(u,  U) = 0 then 

return false; 

end 
return true; 

end; 

CHECKFOLDING(~, U ,  L)  tries to place the elements in 

V into U and L.  It first selects the column with least free- 
dom in V .  If this element can be put in neither U nor L,  
the folding condition fails, and CHECKFOLDING returns 
false. Otherwise, this element is put into the correspond- 

ing folding region. Every element in V is tested using 
CHECKFOLDING. 

begin 

Algorithm CHECKFOLDING( I/, U ,  L)  

if ( V  = 0) then 
return true; 

else 
begin 

u + VSELECT(V); 
if not COMPATIBLE(U, U )  and not COMPATIBLE 

( U ,  L) then 
return false; 

else 
begin 

if COMPATIBLE(U, L) then 

if COMPATIBLE(U, U )  then 

CHECKFOLDING(V - U ,  U U U ,  L); 

CHECKFOLDING(V - U ,  U ,  L U U ) ;  

end; 
end; 

end; 

V. EXPERIMENT RESULTS 

The algorithms have been implemented in C program- 
ming language on a SUN SPARC-station 2 .  We have used 

our algorithm to find bipartite folding for a number of 
PLA’s of varying sizes. We have not analyzed the com- 
plexity of the algorithm but its efficiency is evident from 
the results presented in this section. 

Table I1 summarizes the results of 30 large PLA’s from 
the list of 56 PLA’s given in [l]. The definitions of the 
column headings are as follows, 

Ni, No, and Np:  number of inputs, outputs, and product 
terms, respectively. 

fa and& M: the upper bound on folding pairs in the AND 

plane and in the OR plane, respectively. Note that 

faM and& are not the optimum solution for fold- 
ing. They indicate the maximum possible number 
of folding pairs. 

_ -  

fplding region. - *  
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time 

0.183 
0.650 
26.650 
60.750 
60.267 
20.217 
0.183 

58.770 
0.133 
7.583 
0.200 
0.133 
0.133 
9.617 
3.367 
0.150 
1.767 
0.100 

55.783 
4.783 

32.917 
9.883 

46.733 
0.117 
0.117 

22.650 
43.667 
4.683 
0.150 
0.867 

1845 

RRA(%) 
1.00 

- 

1.09 
1.11 

1.10 
1.04 

- 

1.00 
1.00 
0.98 
1.00 
1.00 
1.00 
1.07 
1.04 
1.18 
1.04 

- 
1.00 
1.00 

- 
1.09 
1.19 
0.90 

1.00 
1.00 

- 
0.90 

- 

- 

name 

apla 
be0 
bca 
bcb 
bcc 
bed 
chkn 

CPS 
dk48 
exep 

W Y  
in0 
in2 
in3 
in4 
in5 
in6 
in7 

misg 
mish 

OPa 
ti 

vg2 
xldn 
d d n  
x6dn 
x7dn 
x9dn 

- - 

- 

- 

- 

jbp 

- 

- 

pla 

BiFoldmg 
in out 

0 6 
7 0 
10 10 
10 8 
10 10 
10 8 
5 3 

0 8 
3 31 
2 2 
2 1 
4 1 

11 11 
7 7 
6 4 
11 9 
7 4 
15 28 

28 11 
47 21 
2 34 
18 28 
4 4 

3 54 

- 
Ni 

10 
26 
26 
25 
26 
23 
29 
24 
15 
30 
15 
15 
19 
35 
32 
24 
33 
26 
36 
56 
94 
17 
47 
25 
27 

82 
39 
66 
27 
23 

- - 

- 

- 

- 

- 

- 

- 

Time 
Pleasure BiFoldin 

25.2 2.233 
- 16.467 
- 26.650 

91.3 60.750 
79.7 60.267 
67.9 45.217 
31.6 4.133 

25.8 2.917 
54.4 7.583 
39.4 4.305 
27.2 2.850 
26.7 4.517 
21.0 8.133 
74.6 0.867 
15.3 15.250 
15.8 1.767 
17.3 31.767 
44.0 55.783 
18.3 25.483 
27.0 32.917 

- 9.883 
98.8 46.733 
22.4 19.250 

- 58.770 

- 
NO 
12 
11 

46 
39 
45 
38 
7 

109 
17 
63 
11 
11 

10 
29 
20 
14 
23 
10 
57 
23 
43 
69 
72 
8 
6 

56 

5 
15 
7 

19 

= 

- 

- 

- 

- 

- 

- 

134 
479 
301 
299 
245 

243 
153 
654 
148 
175 
214 
138 
137 
75 

234 
62 
54 

166 
75 
91 

342 
241 
110 
112 

112 
121 
622 
120 
52 

TABLE I1 
COMPARISON OF FOLDED AREA 

m 
0 
7 

10 
10 
10 
10 
5 
3 
0 
3 

2 
2 
5 

11 

10 
7 

12 
8 4 7  

16 
28 
47 
2 

20 
4 
4 

41 
16 
28 
5 
9 

6 
0 

10 
8 

10 
8 
3 

54 

8 
31 
2 
1 
2 

11 
7 
4 
9 
4 

28 
I1 

21 
34 
28 
4 
3 

28 
0 
7 
3 
9 

- 
f. 
5 

0 
7 

10 
10 
10 
10 

5 
3 
0 
3 
2 
2 
4 

11 

10 
7 

11 

7 
15 

- 

- 

- 

$ 
2 

18 
4 
4 

40 
14 
27 
1 
9 

- 

- 

rn 
90.8 
81.2 
73.8 
73.8 
74.1 
72.1 
87.3 
64.4 
90.9 
75.7 
91.7 
96.1 
87.7 
77.4 
73.3 
84.6 
78.7 
82.2 
60.8 
59.3 
57.1 
67.4 
65.7 
88.8 
90.9 

57.0 
72.9 
61.3 
90.7 
71.8 

- 
- foM 

6 
0 

18 
13 
16 
15 
3 

54 
8 

31 
3 
1 

3 
12 
8 
4 

10 
4 

28 
11 

21 
34 
34 
4 
3 

28 
0 
7 
3 
9 

- 

- 

- 

- 

- 

- 

- 

fa andf,: number of folding pairs found by BIFOLDING 
in the AND plane and the OR plane, respectively. 

RA: relative area for the folded PLA, 
time: the CPU time in second. 

M A :  the relative area with respect to arbitrary column 

Note that the RA’s are computed from the “exact” area 

of the PLA, which includes the input decoders, pull-ups, 
and output buffers. The layout of a bipartite folded PLA 
is generated by a CMOS PLA generator developed by us. 
The choice of 30 PLA’s out of 56 PLA’s is based on the 
area reduction (RA) of folding. As pointed out in Section 
11, placing the input decoders and output buffers on top of 
small PLA may increase the area in spite of folding. The 
PLA’s with increased area after folding are not listed in 
Table 11. Besides, some PLA’s among the 56 PLA’s are 
too small such that the searching of the solution can be 

carried exhaustively. These small PLA’s are also not con- 
sidered in Table 11. 

We notice from Table I1 that for most of the PLA’s f, 
= faM andf, = foM. Thus, we conclude that BIFOLDING 
provides optimal solution in most cases. 

From theresults given in Tables I and 11, it is evident 

that the areas of PLA’s obtained by BIFOLDING are com- 
parable to those obtained by simple column folding. For 
many of the large sparse PLA’s, the folding pairs found 
by bipartite folding are the same as found by simple col- 
umn folding. A dash (-) in the last column indicates that 
the simple column folding program was either unable to 
provide an answer or could not be run due to the large 
size of the PLA. 

folding. 

- 
name 

apla 
bcO 
bca 
bcb 
bcc 
bed 
chkn 

CPS 
dk48 
exep 

g=Y 
in0 
in2 
in3 
in4 
in5 
in6 
in7 

misg 
mish 

OPa 
ti 

vg2 
xldn 
x2dn 
x6dn 
x7dn 
x9dn 

- - 

- 

- 

- 

jbp 

- 

- 

pl. 

TABLE 111 
COMPARISON OF EXECUTION TIME WITH PLEASURE 

PLA 
in out pr 

10 12 134 
26 11 479 
26 46 301 
26 39 299 

26 45 245 

23 38 243 
29 7 153 
24 109 654 
15 17 148 
30 63 175 
15 11 214 
15 11 138 
19 10 137 
35 29 75 
32 20 234 
24 14 62 
33 23 54 
26 10 84 
36 57 166 
56 23 75 
94 43 91 
17 69 342 
47 72 241 
25 8 110 
27 6 112 
82 56 112 
39 5 121 
66 15 622 
27 7 120 
23 19 52 

Pleasure 
in out 

0 6  
- -  
~- 

10 14 
10 17 
10 16 
6 3  

0 8  
3 31 
1 3  
2 1  
4 2  
11 11 
11 9 
8 4  
16 9 
8 4  
12 28 
28 11 

47 21 

19 35 
0 4  
1 3  

40 28 
14 0 

1 3  
9 8  

- -  

- -  

- -  

4 3 I 22.6 81.800 
40 28 I 34.5 53.067 i i, 1 281 7.233 

4.683 
25.3 72.800 
10.5 0.867 

The CPU time in seconds is also shown in Table 11. For 

most of the PLA’s, the CPU time is less than 1 s. The 
reasons that BIFOLDING is fast are, 

1) The folding constrains are considered before 
searching. Hence, no time is spent on those col- 
umns which cannot be folded. 

2) The heuristics in BIFOLDING select those columns 
with maximum freedom and then search the candi- 
dates with minimum freedom. This increases the 
possibility of finding a folding while keeping the 
search space alternatives as few as possible. 

In the last row of Table 11, “pla” is the PLA that ap- 
pears in €he paper by Hachtel et al. [7]. The PLA has 23 

inputs, 19 outputs, 52 product terms, and 182 of the row- 
column intersections are personalized. The BIFOLDING 

was able to fold 18 columns, 9 in AND plane and 9 in OR 

plane. This implementation yields 7 1.8 % area reduction 
and required only 0.867 s of CPU time. For physical consis- 
tency, the input columns have been folded with input __ ~ col- 

umns and output columns with output columns. This has 
been easily achieved by placing additional constrains in 
CM. Hachtel’s algorithm only folded 17 pairs, 9 and AND 

plane and 8 in OR plane, 
To compare the speed between our algorithm and 

“pleasure,” BIFOLDING was also ported onto a VAX 
1 U750 machine, where both “pleasure” and BIFOLDING 
could run. Table I11 shows the folding results and the CPU 
time of BIFOLDING and “pleasure.” The last 2 columns 
show the CPU time in seconds for “pleasure” and BI- 
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1 

3 
! 
I 

11 

10 11 

12 

13 14 

!Z 

1 2 3 4 5 6 7 8 9 1 1 1  1 1 1 1 1 1 1 2  
0 1 2  3 4 5 6 7 8 9 0  

(b) 

Fig. 5 .  A PLA “alul.” (a) Personality matrix. (b) PLA implementation. 

1 1 2 1  
7 3 8 4  9 5 0 6  

6 5 2 1 9 1 1 1  1 1 1 1  
0 1 2  8 7 4 3  

Fig. 6. The bipartite folding result of “alul.” (a) Personality matrix. 

(b) PLA implementation. 

FOLDING, respectively. This table substantiates the claims 

made about the speed of BIFOLDING. 
To show the folding result of BIFOLDING, a small PLA 

“alul” which is listed in the 56 PLA’s in Table I ,  is used 
to demonstrate. 

Fig. 5(a) show the personality matrix and Fig. 5(b) 
shows the PLA implementation of ‘ ‘alu 1. ” ‘‘alu 1 ” has 
12 inputs, 8 outputs, and 19 product terms. The size of 
“alul” is 608. In Fig. 5(a), a “1” (“0”) in the AND 

plane shows the presence of the corresponding uncomple- 
mented (complemented) input on a product term. Simi- 
larly, a “1” in the OR plane shows the presence of the 
corresponding product term in the output. The reason to 
choose “alul,” instead of those PLA’s in Table 11, is that 
its size is small and there are folding pairs existed in it. 

Fig. 6 shows the “alul” after folding. There are 4 
folding pairs in the AND plane and 4 folding pairs in the 

OR plane. In the AND plane, for physical consistency, the 
input columns have been folded with input columns and 
output columns with output columns. A “!” is a normal 
contact to uncomplemented input and split below, a “0” 
is a normal contact to complemented input and split be- 

low, and a “=” means no contact but split below. Sim- 
ilarly, a “!” in OR plane is a normal contact to output and 
split below , and a “ = ” means no contact but split below. 

The size of the folded PLA is 380. This implementation 
yields 37.5 % area reduction. 

VI. CONCLUSION 

We proposed an efficient PLA folding algorithm appli- 
cable for column bipartite folding, based on matrix rep- 

resentation. The compatibility of the column pairs is found 
and stored in a compatibility matrix. This step discards 
“pairs” that cannot be in the final solution. Theorems are 

proved and invoked during this phase that help limit the 
search space. The BIFOLDING algorithm proposed in the 
paper makes use of heuristics to guide the search. The 

algorithm proposed in this paper yields nearly optimal re- 
sults for almost all examples and in certain cases bipartite 
folded PLA’s provide a better solution than arbitrary sim- 

ple column folding as obtained by “pleasure.” Gener- 
ally, our algorithm provides PLA’s that have areas com- 
parable to single column folded PLA’s but is much faster 
in providing the solution. 

We have also outlined some of the advantages of bi- 
partite folding, many of these ideas, especially those re- 

lating to testability have been incorporated in a program 
which generates testable PLA. 
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