
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.F. Groote, F.W. Vaandrager

An efficient algorithm for

branching bisimulation and stuttering equivalence

Computer Science/ Department of Software Technology

Biblicth0elt
Cr.intrumvoc..rWis''L~-...1~ CO lnfonnetiN

Report CS-R9001 January

The Centre for Mathematics and Computer Science is a research institute of

the Stichting Mathematisch Centrum, which was founded on February 11 ,

1946, as a nonprofit institution aiming at the promotion of mathematics, com

puter science, and their applications. It is sponsored by the Dutch Govern

ment through the Netherlands Organization for the Advancement of Research

(N .W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

An Efficient Algorithm for

Branching Bisimulation and Stuttering Equivalence

Jan Friso Groote

Frits Vaandrager

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: jfg@cwi.nl & fritsv@cwi.nl

This paper presents an efficient algorithm for the Relational Coarsest Partition with Stuttering problem

(RCPS) . The RCPS problem is closely related to the problem of deciding stuttering equivalence on finite

state Kripke structures (see BROWNE, CLARKE & GRUMBERG [3)) , and to the problem of deciding branching

bisimulation equivalence on finite state labelled transition systems (see VAN GLABBEEK & WEIJL AND [12]) . If n

is the number of states and m the number of transitions , then our algorithm has time complexity

O(n ·(n + m)) and space complexity O(n + m). The algorithm induces algorithms for branching bisimulation

and stuttering equivalence which have the same complexity . Since for Kripke structures m .;;;, n2
, this

confirms a conjecture of BROWNE, CLARKE & GRUMBERG [3] , that their O(n 5)-time algorithm for stuttering

equivalence is not optimal.

Key Words and Phrases: labelled transition systems, branching bisimulation equivalence, Kripke structures,

stuttering equivalence , divergence blind stuttering equivalence , relational coarsest partition problem (RCP) ,

relational coarsest partition with stuttering problem (RCPS), decision algorithm.

1985 Mathematics Subject Classification. 68005, 68020, 68025, 68060.

1987 CR Categories. F.1 .1, F.2 .1, F.3.1.

Note.· To appear in : Proceedings ICALP 90. The research of the authors was supported by RACE project

no. 1046, Specification and Programming Environment for Communication Software (SPECS) . The research

of the second author was also supported by ESPRIT project no. 3006 CONCUR.

1. INTRODU CTION

In thi s paper we present an efficient algorithm for the Relational Coarsest Partition with Stultering

problem (RCPSJ. This problem is interesting because it is closely related to (I) deciding stuttering

equivalence on finite Kripke structures. and (2) deciding branching bisimulation equivalence on finite

labelled transition systems. Below we comment on these two problems separately.

1. 1. Stuttering equivalence. Temporal logic model checking procedures have been successful m finding

errors in relatively small network protocols and sequential circuits (for an overview see (5]). However,

a serious problem for the model checking approach is the state explosion problem: in general. the

number of states in the global state graph may grow exponentially with the number of components.

In order to deal with this problem. it seems natural to hide details that do not need to be visible

externally and merge those states that become indistinguishable. In the setting of temporal logic. hid

ing of 'details' is achieved by making it illegal to refer to these details in temporal logic formulas . If a

program is constructed in a hierarchical fashion. then state explosion may be avoided by simplifying

the components before computing the global state graph [6] . Our paper deals with the question how

the idea of merging indistinguishable states can be implemented in the setting of the logic CTL• .

Report CS-R9001

Centre for Mathematics and Computer Science

P 0 . Box 4079, 1009 AB Amsterdam, The Netherlands

2

The computation tree logic CTL • [I OJ is a very powerful temporal logic that combines both branch

ing time and linear time operators. CTL [4] is a restricted subset of CTL. that permits only branching

time operators. One of the operators in CTL/CTL•. the nexttime operator X. has been subject to

some criticism. LAMPORT [15] argues that in reasoning about concurrent systems, the nexttime opera

tor may be dangerous since it refers to the global next state instead of the local next state. If, for this

reason, one decides not to use the nexttime operator. then it becomes interesting to study the

equivalences on states induced by the sets of formulas CTL - X and CTL • - X. The idea is that two

states that satisfy the same CTL - X/CTL. - X formulas have the same relevant properties (and

maybe some irrelevant ones as well) and are therefore identified. BROWNE. CLARKE & GRUMBERG [3]

introduce the notion of stuttering equivalence on Kripke structures and prove that this equivalence

characterizes both the equivalence induced by CTL - X and the equivalence induced by CTL • - X.

They show that stuttering equivalence can be decided in polynomial time but give a rather high upper

bound of O(n 5
) for the time complexity. where n is the number of states of the Kripke structure.

They conjecture the existence of a faster algorithm. The present paper confirms this conjecture: our

algorithm for the RCPS problem solves stuttering equivalence in O(m·n) time. where mis the number

of transitions in the Kripke structure. Here, like in the rest of this paper, we assume m ~n. The reader

may drop this assumption if (s)he reads m + n whenever we write m. In Kripke structures always

m ,;;; 11 2.

1.2. Bra11chi11g hisimulation equivalence. VAN GLABBEEK & WEIJLAND [12] introduce the notion of

hra11chi11g hisimulation equivalence on labelled transition systems. This equivalence resembles, but is

finer than the observation equivalence of MILNER [17]. They argue that, unlike observation equivalence.

branching bisimulation preserves the branching structure of processes. in the sense that it preserves

computations together with the potentials in all intermediate states that are passed through, even if

silent moves are involved. Besides this conceptual aspect. a number of other recent results indicate

that branching bisimulation equivalence has very nice properties:

1. The corresponding congruence has a simple algebraic characterization [12]. In the setting of

CCS. only a single axiom has to be added to the laws for strong bisimulation equivalence:

a·(T·(x +r) + X) = a·(x +r).

2. In contrast with observation equivalence. the resulting axiom system can be turned easily into a

complete term rewriting system.

3. A modal characterization of branching bisimulation equivalence can be obtained by adding to

Hennessy-Milner logic a kind of until operator [9].

4. Branching bisimulation equivalence can be characterized in terms of back and forth hisimulations

(8]. This characterization induces a second modal characterization of branching bisimulation

which is a variant of Hennessy-Milner logic with backward modalities [9].

5. Branching bisimulation equivalence is the natural analogue of stuttering equivalence in a setting

where the transitions rather than the states are labelled. It is even possible to view CTL• - X as a

logic for branching bisimulation [9].

6. Unlike observation equivalence. branching bisimulation is preserved under refinement of actions

in a setting without parallelism [13].

7. For a large class of processes. branching bisimulation and observation equivalence are the same

[12]. We are not aware of any protocol that can be verified in the setting of observation

equivalence but not in the stronger setting of branching bisimulation equivalence.

In this paper we show how our algorithm for RCPS can be easily transformed to an O (m ·n) algo

rithm for deciding branching bisimulation equivalence (O(m logm +m·n) if the set of labels is infinite

or not fixed).

3

1.3. Outline of paper. The structure of this paper is as follows . In Section 2 we present the RCPS prob

lem and in Section 3 our algorithm to solve it. Section 4 describes how the algorithm can be used to

decide stuttering equivalence and in Section 5 we show how a variant of the algorithm solves the

problem of deciding branching bisimulation. Section 6 contains some concluding remarks. We conjec

ture that, at the price of a more complicated algorithm, the efficiency of our algorithm for RCPS can

be slightly improved upon by incorporating ideas from the O(m logn) algorithm of PAIGE & TARJAN

[18] for the Relational Coarsest Partition problem (RCP). Also in Section 6, we compare the complexity

of deciding branching bisimulation equivalence with the complexity of deciding observation

equivalence.

ACKNOWLEDGEMENTS

We thank Robert de Simone and Didier Vergamini for helping us to obtain the test results of Section

6. We also thank Scott Smolka for proof-reading of an earlier version.

2. THE RCPS PROBLEM

Let S be a set. A collection { B1 IJ El} of nonempty subsets of S is called a partition of S if

U
1

E 1 B
1

= S and for i=:/=j: B;nB
1

= 0. The elements of a partition are called blocks. If P and P' are

partitions of S then P' refines P, and P is coarser than P', if any block of P' is included in a block of

P. The equivalence ~p on S induced by a partition Pis defined by: r ~ps <=> 3B E P : r E B /\ s E B.

The Relational Coarsest Partition with StuUering problem (RCPS) can now be specified as follows :

Given: a nonempty. finite set S of states. a relation ➔ C: S X S of transitions , and an initial partition

P 0 of S.

Find: the coarsest partition Pf satisfying:

(i) Pf refines PO;

(ii) if r ~p sand r ➔ r' , then there is an n ;;;.Q and there are s0 , .. ,sn ES such that:
I

s0 = s;

for all Q,;;;;; i < n: r ~p s; and s; ➔ s; + J ;
I

r'~p
1

S
11

•

Below we show that a coarsest partition satisfying (i) and (ii) always exists; if it exists, then clearly it

is unique.

3. THE ALGORITHM

Next we will describe our algorithm for the RCPS problem. We fix a nonempty. finite set S of states,

a transition relation ➔ and an initial partition P 0 . Let IS I = n and I ➔ I = m. For B,B' c:;S we

define the set pos(B,B') as the set of states in B from which , after some initial stuttering, a state in B '

can be reached:

pos(B.B') = {s E Bl3n;;;.0 3so, --, Sn :sa= s, (Vi < n : S; EB I\ s ; ➔ S; + il and Sn E B ' }.

Call B' a !>pliuer of Band (B,B') a spliuing pair iff 0 =/=pos(B,B')=:/=B. Since pos (B,B) = B, a block can

never be a splitter of itself. If P is a partition of S and B' a splitter of B, define Refp(B,B') as the par

tition obtained from P by replacing B by pos(B,B') and B - pos(B,B'). Pis stable with respect to a

block B' if for no block B, B' is a splitter of B. P is stable if it is stable with respect to all its blocks.

Thus the RCPS problem consists of finding the coarsest stable partition that refines P 0 .

Our algorithm maintains a partition P that is initially P0 . The following refinement step is repeated as

long as P is not stable:

find B.B'E P such that B' is a splitter of B ;

P: = Refp(B.B')

4

3.1 . THEOREM. The above algorithm terminates after at most n - I P 0 I refinement steps. The resulting

partition P1 is the coarsest stable partition refining P 0 .

PROOF. In order to see that the algorithm terminates, observe that after each iteration of the

refinement step the number of blocks of P has increased by one. Since a partition of S can have at

most n blocks, termination will occur after at most n - I P 0 I iterations.

Next we show that the algorithm solves the RCPS problem. By induction on the number of

refinement steps we prove that any stable refinement of P O is also a refinement of the current parti

tion. Clearly the statement holds initially. Suppose it is true before a refinement step that refines a

partition P to a partition Q, using a splitting pair (B ,B'). Let R be any stable refinement of P 0 and

let C be a block of R. It is enough to show that C is included in a block from Q. By induction

hypothesis, we can assume that C is included in a block D of P. If D-=/=B, then D is a block of Q and

we are done. So suppose D =B. We have to show that either C Cpos(B,B') or C cB-pos(B,B'). Sup

pose that there are r,sEC with r Epos(B,B') and sepos(B,B'). We derive a contradiction. There are

r0 , .. ,rn such that r = r0 , for all i < n: r; E B /\ r; ➔ r; + J and rn E B'. Let C 0 , .. ,C11 be the blocks of R

such that r; E C; . Then C 0 =C and, by induction, for all i < n: C;CB and CnCB'. Now use the fact

that R is stable to construct a sequence s0 , . . ,sm with s0 =s, for i < m : s;EB /\ s; ➔ s; + i and smEB'.

This contradicts sepos(B,B'). Thus we have proved the induction step. D

Below we describe an implementation of our algorithm. We show how to compute in O(m) time

whether or not a partition is stable. The computation is organized in such a way that if the partition

is not stable, a counterexample, i.e. a splitting pair (B ,B'), is produced. Next we show how to com

pute Refp(B,B') in O(m) time. Since the number of iterations of the main loop is O(n), this estab

lishes a complexity of O(m·n) for the RCPS problem.

Efficient implementation of the algorithm requires some preprocessing. Let P be a partition. We call

a transition s ➔ s' inert with respect to P, or P-inert , iff s ~ ps'. If in the initial partition a set of

states is strongly connected via inert transitions, then these states will be in the same block of the

final partition: by definition of inert they are in the same block of the initial partition. and no

refinement step will place two states from the set in a different block. As a preprocessing step in our

algorithm we look for strongly connected components with respect to inert transitions in the initial

partition and 'collapse' these components to one state. Here we can use the well-known O(m) algo

rithm for finding strongly connected components in a directed graph (see for instance AHO, HOP

CROFT & ULLMAN[!]). Thus it is sufficient to solve the RCPS problem in the case where P 0 contains

no cycles of inert transitions.

For BC S, define the set bottom (B) of bottom states of B by :

bottom(B) = {rEB Iv's : r ➔ s ⇒ seB}.

If P is a partition, then the set bottom (P) of bottom states of P is given by:

bottom (P) = U bottom (8).
BEP

The following two observations play a crucial role in the implementation of our algorithm :

3.2. LEMMA. Let P be a refinement of P 0 and let B,B' E P. Then B' is a spliuer of B iff
(I) B-=/=B',

(2) for some r E B and r' E B': r ➔ r ', and

(3) there is an sEbottom(B) such that for no s'EB': s ➔ s'.

PROOF. " ⇒" Suppose B' is a splitter of B. Then B-=/=B' because a block can never split itself. By

definition of a splitter: 0-=/=pos(B,B'). Thus r ➔ r' for some rEB and r'EB' . Suppose that for every

5

bottom states of B there is an s' E B' with s ➔ s' . We derive a contradiction. Pick an element t E B.

Since P0 contains no cycle of inert transitions. P does not contain such a cycle either. Thus there

must be a path of inert transitions from t to a bottom state t' of B. Since for some t" E B' we have

r' ➔ r", tis inpos(B,B'). But since twas chosen arbitrarily. this means thatpos(B,B') = B. This con

tradicts the fact that B' is a splitter of B.

"-=" Suppose that B and B' satisfy condition (I), (2) and (3) . Then B' is a splitter of B:

pos(B,B')-=I= 0 because of (2), and pos(B,B')-=l=B because of (I) and (3). □

3.3. LEMMA. Let P,R be partitions such that R refines P, and P and R have the same bottom states. Let

B be a block of both P and R such that P is stable with respect to B. Then R is stable with respect to B.

PROOF. Let P, R and B be as above. Pick a block B' of R. Suppose that B is a splitter for B'. We will

derive a contradiction. Application of Lemma 3.2 gives: (I) B'-=/=B, (2) for some r E B' and r' E B:

r ➔ r', and (3) there is an s Ebottom(B') such that for no s ' EB : s ➔ s' . Now use that B' is included

in some block C of P. Clearly C-=/=B. Moreover we can find r EC and r' E B with r ➔ r'. Since

bottom(P) = bottom(R) we have bottom(B')Cbottom(C). Thus we can find an s Ebottom(C) such that

for nos' EB: s ➔ s'. Now apply Lemma 3.2 to conclude that B is a splitter for C which is a contrad

iction. □

3.4. REMARK. In the setting of the Relational Coarsest Partition problem, stability is inherited under

refinement in general ; that is, if R is a refinement of P and P is stable with respect to B, then so is R .

The O(m logn) algorithm of PAIGE & TARJAN (18] depends crucially on this property.

In the case of the RCPS problem stability is in general not inherited under refinement; the condi

tion in Lemma 3.3 that P and R have the same bottom states cannot be dropped. An example is

presented in Figure I below. If P = {{s. t, u},{v,w}} and R = {{s,t},{u},{v,w}}, then Pis stable wrt

{ v, w} but R is not. As a consequence the idea behind the PAIGE & T ARJAN [I 8] algorithm cannot be

applied directly to solve the RCPS problem.

s l ::- u

,1, l

V w

FIGURE I.

3.5. The implementation. In the implementation of the algorithm, there is for each block, state and

transition a corresponding record of type block. state resp. transition (see Figure 2). We identify a

block, state and transition with the record representing it. There are two doubly linked lists, tobepro

cessed and stable, of blocks. A block B is in stable when the current partition is stable with respect to

B. Otherwise B is in the list tobeprocessed. Initially, all blocks of P 0 are in the list tobeprocessed and

the list stable is empty. Each block B points to a list of bottom states in B and to a list of the non

bottom states in B. We assume that whenever s ➔ s' for s,s' E B - bottom(B), sis afters' in the list of

non-bottom states. Initially, the division of states in bottom states and non-bottom states, and also

the ordering on the non-bottom states, can be accomplished by a standard depth first search algo

rithm using O(m) time and space (see for instance AHO, HOPCROFT & ULLMAN [I]). Each state con

tains a pointer to the block of which it is an element. Each transition contains two pointers to resp.

its starting state and its target state. Each non-bottom state points to a list of the inert transitions

6

tobeprocessed

B 1, B 2 , B 3 , .. are the blocks of the current partition.

s 1,s 2 ••. are the bottom states in block B 1.

t 1 ,t 2 , .. are the non-bottom states in block B 1.

cf>, ,cf>i ,cp3 •.. are the non-inert transitions that end in block B 1•

1/;1, 1/;2 , .. are the inert transitions that start in state t 1•

FIGURE 2.

stable

starting in this state. Each block points to a list of the non-inert transitions that end in this block.

Each state and each block has an auxiliary field flag of type boolean, which is O initially. Moreover

we use an auxiliary variable BL of type list of pointers to a block, which is empty initially.

Next we describe how to find out in O(m) time whether a partition is stable. Let B' be a block in

tobeprocessed. Scan the list of non-inert transitions which end in B'. When some transition is visited,

the flag of the starting state is raised (i.e. the value I is assigned to the field flag of the starting state).

If the flag of the block to which the starting state belongs has not yet been raised. then we do so and

append a pointer to this block to the list BL. After having scanned all non-inert transitions ending in

B', we consider the list BL. This list contains references to all blocks, different from B'. which contain

a state from which a state from B' can be reached. There is at most one reference to each block in the

list. Remove the first element from the list BL and consider the block B to which this element refers.

By Lemma 3.2, B' is a splitter of B iff there is a bottom states of B such that for nos' E B' : s ➔ s'.

So in order to find out whether B' is a splitter of B we only have to check whether the flag of all bot

tom states in B is raised.

Suppose that B' is a splitter of B. In this case we remove B from the linked list of blocks in which it

occurs (in general this can be either the list tobeprocessed or the list stable), and insert two new blocks

B I and B 2 in the list tobeprocessed. The flag fields of the new blocks are set to 0. All bottom states of

B with a raised flag become bottom states of B 1, the other bottom states of B become bottom states

of B 2 . Next we scan the non-bottom states of B. If for some non-bottom state the flag is not raised

7

and if none of the outgoing P-inert transitions leads to a state in B 1, then this state becomes a non

bottom state of B 2 (here we use the ordering on the list of non-inert states in the old partition). In

this case the outgoing inert transitions of this state remain the same. Otherwise, the state is placed in

B 1• It may be that certain transitions which were inert in the old partition lead to a state in B 2 • In

that case they have to be moved to the list of non-inert transitions which end in B 2 • It may be that a

state which is not a bottom state in the old partition becomes a bottom state in the new partition, just

because no inert transitions are left. If, in a refinement, a non-bottom state becomes a bottom state,

then (cf. Lemma 3.3) we append the list srable to the list tobeproressed and make stable empty. The

non-inert transitions ending in B are distributed in the obvious way over B I and B 2 .

If B' is not a splitter of B, or if it is a splitter and we have carried out the splitting as described

above, then we consider the block referred to by the new first element of list BL and check whether

B' is splitter for that block, etc. When we have dealt with all element of list BL then we know that for

no block in the current partition B' is a splitter. We move B' from the list tobeprocessed to the list

stable, reinitialize all flags by an additional scan of the non-inert transitions with an end state in B',

and we apply the same procedure for a next block in tobeprocessed, etc. If tobeprocessed is empty then

we know that the current partition is stable.

One can easily check that in O(m) time we either have found a splitter and refined the partition, or

we have established that the current partition is stable. Moreover the space complexity is O(m). Thus

we have the following theorem:

3.6. THEOREM. The RCPS problem can be decided in O(nrn) time, using O(m) space.

3. 7. REMARK. The implementation may be simplified slightly by eliminating the stable list. However,

since the stable list provides a very simple way to avoid a lot of work (in our trial implementation the

time performance increased with more than a factor 2), we decided to include it in the above descrip

tion.

4. STUTTERING EQUIV ALEN CE

In this section we show how a solution of the the RCPS problem can be used to decide stuttering

equivalence on finite Kripke structures. Let AP be a set of atomic proposition names.

4.1 . DEFINITION. A Kripke structure is a triple '.J1 =(S , ➔ ,1:) where Sis a set of states , ➔ c;;;,S X S is

the transition relation and t: S ___,.2AP is the proposition labelling. A Kripke structure is finite if the set of

states is finite and for each state the set of associated proposition names is finite.

4.2. DEFINITION. Let '."h · = (S, ➔ ,f) be a Kripke structure. A relation Rc;;;,S X S is called a divergence

blind stuttering bisimulation if it is symmetric and whenever r Rs then:

(i) t (r) =t(s) and

(ii) if r -~r' then there exist s0 , .. ,snE S (n ;;;e, O) such that s = s0 , for all 0 .;; i < n: s; ➔ s ; + I /\ rRs; ,

and r'R s
11

•

Two states r,s ES are divergence blind stuttering equivalent, notation :1-i:r +::::?dbs s or just r +::::?dbs s, iff there

exists a divergence blind stuttering bisimulation relation relating r and s. One can easily check that

divergence blind stuttering equivalence is indeed an equivalence relation.

Let '.li°= (S, ➔ . i:) be a finite Kripke structure with IS I =n and I ➔ I = m. In order to determine

whether two states in S are divergence blind stuttering equivalent, one can use our RCPS algorithm as

follows .

The initial partition Po is constructed by putting all states with the same labels in the same block.

Assuming that the set AP is finite and fixed. the initial partition can be computed in O(n) time using

8

a lexicographic sorting method [I]. If lexicographic sorting is not feasible, it can be computed in

O(n logn) time. Next the RCPS algorithm is used to compute the coarsest stable partition P1 that

refines P0 . This takes O(m·n) time. The following theorem says that partition P1 solves our problem.

4.3. THEOREM. Two states are in the same block of P1 exactly when they are divergence blind stuttering

equivalent.

PROOF. Suppose r,s E B for some block B in P1. Let R1 be the relation that relates two states iff they

are in the same block of P1. Clearly r R1 s. We show that R1 is a divergence blind stuttering bisimula

tion. Let p ,q ES with p R1q. As P1 refines P0 , t(p)=t(q). Moreover, condition (ii) of Definition 4.2

holds as it exactly coincides with the condition (ii) in the RCPS problem. Hence R1 is a divergence

blind stuttering bisimulation and r and s are divergence blind stuttering equivalent.

Let P
5

be the partition of S induced by ~dbs · By definition of divergence blind stuttering P5 refines

P0 . Moreover, P5 is stable. As P1 is the coarsest stable partition refining P0 , P5 refines P1. □

Thus the time complexity of deciding divergence blind stuttering equivalence is at ·most

O(m ·n +n logn) = O(m·n) (remember m ;;,,, n).

In DE NICOLA & V AANDRAGER [9] it is shown that for finite Kripke structures divergence blind

stuttering equivalence coincides with the equivalence induced by CTL - X/ CTL• - X formulas if one

quantifies over all paths in the Kripke structure (the finite as well as the infinite ones). If one only

quantifies over the infinite paths, then this leads to the following sturtering equivalence:

4.4. DEFINITION. Let :\= (S, ➔ .i:) be a Kripke structure. Let s0 be a state not in Sand let p 0 be an

atomic proposition such that for alls in S: p 0 fl. t (s). Define a Kripke structure X= (S'. ➔ ', t') by:

S' = SU{so},

➔' = ➔ lJ { (s.s 0) Is ES has no outgoing transition or occurs on a cycle of states which all have

the same label}.

t'= tU {(so,{po })}.

Two states r,s E S are sturtering equivalent if in :\' : r~dbss (Note that this definition does not depend

on the particular choice of state s 0 and atomic proposition p 0).

For finite Kripke structures the stuttering equivalence as defined above coincides with the equivalence

induced by CTL - X and CTL. - X if one quantifies over infinite paths [9]. Since BROWNE. CLARKE

& GRUMBERG [3] proved the same result for their version of stuttering equivalence. both notions

agree. For finite Kripke structures the transformation of Definition 4.4 can be accomplished in O(m)

time. Thus our algorithm for RCPS can be used to decide stuttering equivalence in O(m·n) time.

5. BRANCHING BISIMULATION EQUIVALENCE

The RCPS algorithm cannot be used directly for deciding branching bisimulation equivalence. We

have to generalize RCPS to the case where transitions have labels.

5.1 . The Generalized Relational Coarsest Partition with Stuttering problem (GRCPS) is given by:

Given: A nonempty, finite set S of states, a finite set A of labels containing the silenr step T, a relation

➔ <: S X A X S of transitions and an initial partition PO of S .

Find: the coarsest partition P1 satisfying:

(i) P1 refines P0 •

(ii) if r ~p sand r~r', then either a = T and r ' ~p s, or there is an n ;;,,,Q and there are s0 , .. ,sn,s'
I I

such that s 0 = s. for all O<i,;;;n: [r ~p s; I\ s; - J ~s;], sn~s' and r' ~p s'.
I I

9

5.2. We now present our algorithm for the GRCPS-problem. This algorithm is a minor modification

of the algorithm for the RCPS-problem. Therefore. we will not describe it in detail but only sketch

the differences. We fix S. A, ➔ and P 0 and, as usual, write IS I = n and I ➔ I = m.

For B,B 'c;;,,S and a EA. the setpos0 (B.B') is defined by :

pos0 (B.B') = {s E B I 3n ;;;.Q 3so, .. ,sn E B 3s' E B ': so =s, [V0 < i :,;;; n : s; - I ~s;] and Sn ~s'}.

We say that B ' is a spliuer of B with respect to a iff R -=j=B' or a-=j=T. and 0-=/=pos
0

(B.B')-=/=B. If Pis a

partition of Sand B ' is a splitter of B with respect to a, then Re.ff,(B,B') is the partition P where B is

replaced by posa(B,B ') and B - posa(B,B') . Pis stable with respect to a block B ' if for no block Band

for no action a, B' is a splitter of B wrt a. P is stable if it is stable with respect to all its blocks.

The algorithm maintains a partition P that is initially P 0 . It repeats the following step, until P is

stable :

find blocks B,B' E P and a label a EA such that B' is a splitter of B with respect to a;

P: = Re.ff,(B,B').

5.2.1 . THEOREM. The above algorithm for the GRCPS problem terminates after at most n - I P 0 I
refinement steps. The resulting partition P1 is the coarsest stable partition re.fining P 0 .

PROOF. Simjlar to the proof of Theorem 3.1. D

We must now show that one can find a splitter B' with respect to some label a in time O(m) or find

in O (m) time that no such splitter exists. Moreover. a refinement must be carried out in O (m) time.

To this purpose we use the data structure of the RCPS algorithm. But now a transition s ~s' is

called (P-)inert ifs ~ps' and a = T, and a state sE B is a bottom state of B if sE B and there is no

s' E B such that s ~s'. The data structure is initialized in the same way as for the RCPS algorithm.

However, the non-inert transitions ending in a block B are grouped on label , i.e. all transitions with

the same label are in subsequent records in the list. If there are non-inert transitions with a label T

ending in a block B, then they are at the beginning of the list. This facilitates adding inert transitions

that become non-inert after a refinement at the beginning of the transition list. Grouping of the tran

si tions has time complexity O(m log m) (heapsort) or O (IA I + m) (bucket sort).

The following lemmas are the counterparts of Lemma 3.1 and 3.2. As the proofs are similar, they

are omitted.

5.2.2. LEMMA. Let P be a refinement of P 0 and let B,B' E P and a EA . Then B ' is a spliuer of B with

respect to a if/
I) a-=/=T or B-=/=B'.

2) for some rEB and r 'E B': r~r', and

3) there is a bouom states of B such that for no s' E B': s ~s'.

5.2.3. LEMMA. Let P. R be partitions such that R re.fines P, and P and R have the same bottom states.

Let B be a block of both P and R such that P is stable with respect to B. Then R is stable with respect to

B.

A splitter can be found in the same way as in the RCPS algorithm. Continue the following step until

the list tobeprocessed is empty or a splitter has been found. Consider a block B from the list tobepro

cessed. Consider subsequently all groups <I> of non-inert transitions ending in B with the same label a ,

set the flag field of the starting states of transitions in <I> and construct BL. A copy of <I> is maintained

for resetting the flags. Then check stability of all blocks B' in BL with respect to B and label a and

split B' if necessary. Due to Lemma 5.2.2 and Lemma 5.2.3 this can be performed in exactly the same

10

way as in the RCPS case. Reset the flags of the states using the copy of <I>. If B splits itself into blocks

B I and B 2 , it is not necessary to check more transitions ending in B, as they must again be checked

for B I and B 2 • If all incoming transitions in block B have been checked, if B is not split and if there

is no new bottom state, move B from tobeprocessed to stable.

5.3. Branching bisimulation is mostly defined on labelled transition systems (L TS's). The GRCPS

algorithm can be used to decide branching bisimulation on finite L TS's.

5.3.1. DEFINITION. A labelled transition system (LTS) is a triple t=(S,A, ➔) with Sa set of states, A

a set of labels containing the silent step T, and ➔ sS X A X S a transition relation. t' is called finite if

both S and A are finite.

5.3.2. DEFINITION (12]. Let (:= (S,A, ➔) be a LTS. Let= be the transitive and reflexive closure of

~ . A relation R s S X S is a branching bisimulation if it is symmetric and whenever r R s and r ~r',

then either a = T and r' Rs, or there exist s 1 ,s' such that s = s 1 ~s' and r Rs I and r' R s'.

Two states r,s ES are branching bisimilar, notation r "'=b s, if there exists a branching bisimulation rela

tion relating r and s.

We could have strengthened this definition by requiring all intermediate states in s = s I to be related

with r. The following lemma implies that this would lead to the same equivalence rela tion .

5.3.3. LEMMA (cf. Lemma 1.3 of (12]). Let t'= (S,A,~) be a LTS and let for some n > 0,

r0 ~r, ~--~r,, - I ~r,, be a path in t' with r0 "'=b r,, . Then for all 0~i ~ n: r0 "'=b r,.

5.3.4. THEOREM. Let t'= (S,A, ➔) be a finite LTS. Let Pf be the final partition obtained after applying

the GRCPS algorithm on an initial partition containing only block S. Then ~pf= "'=b·

PROOF. "s" Using Theorem 5.2.1 it follows that ~ pf is a branching bisimulation relation .

"-;)" "'=b induces a stable partition on S (use Lemma 5.3.3). As Pf is the coarsest stable partition,

~ pf d "'=b · □

So in order to compute whether two states in a finite L TS are branching bisimilar we can apply the

GRCPS algorithm with as initial partition the partition containing the set of states as only block. This

takes O(m logm +m·n) resp. 0(I A I +m·n) time.

6. CONCLUDING REMARKS

6./ . Lower bounds. So, is our O(m·n) algorithm for the RCPS problem optimal? We do not think so.

In fact we conjecture that our algorithm can be slightly improved upon by incorporating ideas behind

the O(m logn) algorithm of PAIGE & TARJAN (18] for the RCP problem. Let m; be the number of

inert transitions in the initial partition and let n; be the number of states which have an outgoing

inert transition in the initial partition but are bottom states in the final partition. We have the follow

ing conjecture:

6.1.1. CONJECTURE. The RCPS problem can be decided in O(m·n; + m(n + m logn) lime, using O(m)

space.

As already observed in Remark 3.4, stability is not inherited under refinement in general: problems

arise when, in a refinement, a non-bottom state becomes a bottom state. This situation can occur n;

times. The summand m·n; in the expression above corresponds to the additional amount of work that

has to be done to deal with these situations. At present we do not see how to avoid scanning all inert

11

transitions when we do a refinement step. This explains the summand m;-n. If there are no inert tran

sitions, then the algorithm which we conjecture is as efficient as the PAIGE & TARJAN [18) algorithm

for the RCP problem. However, often m; will be of the same order as m. In tha t case the order of

complexity equals the one of our 0(m·n) algorithm. For this reason, and also because the algorithm

which we conjecture is rather complex (it combines the techniques of PAIGE & TARJAN [18] with the

techniques of our 0(m·n) algorithm). we decided to concentrate first on a clear exposition of the

0(m·n) algorithm.

6.2. Branching bisimulation versus observation equivalence. In a sense. branching bisimulation

equivalence can be viewed as an alternative to observation equivalence. Thus it is interesting to com

pare the complexities of deciding these equivalences. First consider the situation where the set A of

labels is fixed (so O(m) ~O(n 2
)). All known algorithms for deciding observation equivalence (see e.g.

[2, 14]) work in two phases. First a transitive closure algorithm is used to compute the so-called dou

ble arrow relation . With a simple algorithm (see e.g. [I]) this takes 0(11 3) time. The result of the tran

sitive closure is a new L TS with at most 0(11
2

) more edges than the original L TS. Next a variant of

the PAIGE & TARJAN [18) algorithm is used to decide strong bisimulation equivalence on the new LTS.

This takes O (n 2 log 11) time. The resulting complexity in this case for deciding observation equivalence

is 0(11 3), which is the same as the complexity of our algorithm. Now there are numerous sub-cubic

transitive closure algorithms in the literature (see e.g. [7] for an O (n
2 376

) algorithm). These algorithms

tend to be practical only for large values of 11. Still we have that if the set of labels is fixed, the

number of states is large and the number of transitions is of order O (n
2

), observation equivalence can

be decided faster than branching bisimulation if one uses these sub-cubic algorithms.

However, things change if one does not fix the set of labels. Since one has to compute the double

arrow relation for all labels that occur in the L TS, the complexity of computing the double arrow

relation then becomes O(m·n 2
·
376

) (at least. we do not know any faster solution). In that case our

algorithm for branching bisimulation is more efficient.

6.3. A trial implementation. Clearly, the issue of comparing the complexities of observation equivalence

and branching bisimulation is nontrivial and the analysis above does not give very much insight into

the performance of our algorithm in practical applications. Therefore. we wrote a trial implementation

in Pascal and compared the performance of this implementation with the performance of AUTO [19]

and Aldebaran [11]. as far as we know the two fastest tools currently available for deciding observa

tion equivalence.

The process we used for our tests was the 'scheduler' as described by MILNER [16]. This scheduler

schedules k processes in succession modulo k. i.e. after process k process I is reactivated again. How

ever. a process must never be reactivated before it has terminated.

-
C I

C; + I C; + I

a,

FIGURE 3.

The scheduler is constructed of k cyclers C 1 •.. ,C1;, where cycler C; takes care of process i. The left

part of Figure 3 shows the transition system for cycler C;. In the right part the architecture of the

12

scheduler is depicted. The dotted lines indicate where the cyclers synchronize. Cycler C; first receives

a signal c; which indicates that it may start.:._ It then activates process i via an action a;. Next. it waits

for termination of process i. indicated by b; , and in parallel. it informs the next cycler that it may

start. Finally, the cycler returns to its initial state. In a CCS-Iike language cycler C; is described by:

C; = c;-a;-(b; IC; + i)·C;.

The complete scheduler for k processes is described by:

Schk = (c1 ·ni/lC1 I··· ICk) \ c1 ··· \ ck.

Here c 1 ·nil is an auxiliary process that starts the first cycler.

The results of experiments with schedulers of different size are given in Table I . Here k is the

number of cyclers per scheduler. The second and third column give the number of states resp. transi

tions of the corresponding transition system. Then we give the time necessary to calculate the bisimu

lation equivalence classes of the schedulers for Aldebaran, AUTO and our trial implementation (BB).

We give these figures not only for the case where labels a; and b; are both visible. but also for the

case where actions b; are hidden (i.e. renamed into -r).

-
both a; and h; visible only a; visible

k states trans. AUTO Aldeb. BB eq.cl. AUTO Aldeb. BB eq.cl.

4 97 241 0.5s 0.26s 0.07s 64 0.4s 0.15s 0.02s 4

5 241 721 1.9s 0.88s 0.3s 160 I.ls 0.6s 0.07s 5

6 577 2017 8.0s 2.6s 0.9s 384 3.3s 1.9s 0.2s 6

7 1345 5377 38s 7.2s 2.5s 896 12s 6.9s 0.5s 7

8 3073 13825 201s 21s 7.7s 2048 57s 24s 1.2s 8

9 6913 34561 - 56s 23s 4608 - 80s 2.9s 9

10 15361 84481 - 160s 67s 10240 - - 7.4s IO

11 33793 202753 - * 214s 22528 - - 19s 11

12 73729 479233 - * 1254s 49152 - - 53s 12

TABLE I .

The figures for AUTO and our trial implementation have been obtained using a SUN 3/ 60 with 16

MB of memory. The figures for Aldebaran. which are taken from (11]. were obtained with a 50 MB

SUN 3/ 60. It is important to note that these figures refer only to the second phase of the algorithm

where the strong bisimulation equivalence classes are computed . So the time it takes to carry out the

first phase (the transitive closure) is not included. This means that. roughly speaking. the figures for

Aldebaran must be multiplied by 2. The figures for AUTO refer to the time needed for the complete

algorithm. In separate columns the number of resulting equivalence classes of both experiments are

given. They are the same for branching bisimulation and observation equivalence. In the table, "-"

means that no outcome was obtained due to lack of memory and "*" means that no outcome is avail

able.

Our implementation improves the performance of Aldebaran and AUTO considerably. especially

when a lot of -r's are around. For the space requirements this is directly reflected in the fact that, in

the case where only the a;-actions are visible, we can handle 12 cyders on a 16 MB machine. whereas

Aldebaran, on a 50 MB machine. can handle only 9 cyders and AUTO, on a 16 MB machine, only 8.

The figures about the time performance also show a considerable improvement (up to a factor 47). So

it appears that in practical situations our algorithm is doing better than the usual algorithms for

observation equivalence. However, we find it hard to draw firm conclusions from the results of our

experiments since they are influenced by many uncontrollable factors .

13

REFERENCES

[I] A.V. AHO, J.E. HOPCROFT & J.D. ULLMAN (1974): The design and ana~rsis of computer

algorithms, Addison-Wesley.

[2] T. BOLOGNESI & S.A. SMOLKA (1987): Fundamental results for the verification of observational

equivalence: a survey. In : Proceedings 7th IFIP WG6. I International Symposium on Protocol

Specification, Testing. and Verification, Zurich. Switserland. May 1987 (H . Rudin & C. West.

eds.), North-Holland.

[3] M.C. BROWNE, E.M. CLARKE & 0 . GRUM BERG (1988): Characterizing finite Kripke structures in

propositional temporal logic. Theoretical Computer Science 59(1,2), pp. 115-131.

[4] E.M. CLARKE & E.A. EMERSON (1981): Synthesis of synchronization skeletons for branching time

temporal logic. In : Proceedings of the Workshop on Logic of Programs, Springer-Verlag, pp. 52-

71.

[5] E.M. CLARKE & 0 . GRUMBERG (1987): Research on automatic verification of finite state concurrent

~ystems. Ann. Rev. Comput. Sci. 2, pp. 269-290.

[6] E.M. CLARKE, D.E. LONG & K .L. Mc MILLAN (1989): Compositional model checking. In :

Proceedings 4th Annual Symposium on Logic in Computer Science (LICS), Asilomar. California,

IEEE Computer Society Press, Washington, pp. 353-362.

[7] D. COPPERSMITH & S. WINOGRAD (1987): Matrix multiplication via arithmetic progressions. In :

Proceedings 19th ACM Symposium on Theory of Computing, New York City. NY, pp. 1-6.

[8] R. DE NICOLA, U. MONTANARI & F.W. VAANDRAGER (1990): Back and forth bisimulations, in

preparation.

[9] R. DE NICOLA & F.W. VAANDRAGER (1990): Three logics for branching bisimulation, to appear

as: CWI Report CS-R90 ... Extended abstract to appear in : Proceedings LICS 90.

[10] E.A. EMERSON & J.Y. HALPERN (1986): 'Sometimes' and 'Not Never' revisited: on branching time

versus linear time temporal logic. JACM 33(I), pp. I 5 I- I 78.

[11] J. FERNANDEZ (1989): An implementation of an efficient algorithm for bisimulation equivalence.

[12] R.J . VAN GLABBEEK & W.P. WEIJLAND (1989) : Branching time and abstraction in bisimulation

semantics (extended abstract) . In : Information Processing 89 (G.X. Ritter, ed.). Elsevier Science

Publishers B.V. (North Holland), pp. 613-618.

[13] R.J . VAN GLABBEEK & W.P. WEIJLAND (1989) : Refinement in branching time semantics. Report

CS-R8922, Centrum voor Wiskunde en Informatica, Amsterdam. also appeared in : Proceedings

AMAST Conference, May 1989. Iowa, USA, pp. 197-201.

[14] P.C. KANELLAKIS & S.A. SMOLKA (1983): CCS expressions, finite state processes, and three prob

lems of equivalence. In: 2nd ACM Symposium on Principles of Distributed Computing (PODC),

Montreal, Quebec, Canada, August I 983, to appear in : Information & Computation.

[15] L. LAMPORT (1983): What good is temporal logic?. In : Information Processing 83 (R.E. Mason,

ed.), Elsevier Science Publishers B.V. (North Holland), pp. 657-668.

[16] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag.

[17] R. MILNER (1989) : Communication and concurrency, Prentice-Hall International.

[18] R. PAIGE & R. TARJAN (1987): Three partirion refinement algorithms. SIAM Journal on Comput

ing 16(6), pp. 973-989.

(19] R. DE SIMONE & D. VERGAMINI (1989) : Aboard AUTO. Technical Report Ill. INRIA , Centre

Sophia-Antipolis, Valbonne Cedex.

.

