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Abstract—The Hausdorff distance (HD) between two point sets is a commonly used dissimilarity measure for comparing point sets

and image segmentations. Especially when very large point sets are compared using the HD, for example when evaluating magnetic

resonance volume segmentations, or when the underlying applications are based on time critical tasks, like motion detection, then the

computational complexity of HD algorithms becomes an important issue. In this paper we propose a novel efficient algorithm for

computing the exact Hausdorff distance. In a runtime analysis, the proposed algorithm is demonstrated to have nearly-linear

complexity. Furthermore, it has efficient performance for large point set sizes as well as for large grid size; performs equally for sparse

and dense point sets; and finally it is general without restrictions on the characteristics of the point set. The proposed algorithm is tested

against the HD algorithm of the widely used national library of medicine insight segmentation and registration toolkit (ITK) using

magnetic resonance volumes with extremely large size. The proposed algorithm outperforms the ITK HD algorithm both in speed and

memory required. In an experiment using trajectories from a road network, the proposed algorithm significantly outperforms an HD

algorithm based on R-Trees.

Index Terms—Hausdorff distance, algorithm, evaluation, runtime analysis, computational complexity

Ç

1 INTRODUCTION

THE Hausdorff distance (HD) is a measure of dissimilar-
ity between two point sets. The HD is an important met-

ric that is commonly used in many domains like image
processing and pattern matching as well as evaluating the
quality of clustering. For example it is common to use the
Hausdorff distance in the medical domain in applications
like evaluation of medical segmentations and registration.
In many cases medical images, such as magnetic resonance
(MRI) and computed tomography (CT) volumes are com-
pared e.g., to evaluate the performance of registration [4],
[5] and segmentation algorithms [19], [3], [15].

There are various types of measures used to compare two
point clouds. Overlap based measures, e.g., the Dice coeffi-
cient, consider an imaginary grid on the union of the two
point sets and calculate the overlap (intersection) between
the point sets with respect to the grid. Points are assigned to
subsets depending on whether they are or are not in the
intersection to build the confusion matrix. The drawback
of such measures is that the positions of the points are
ignored: once a point is not in the intersection, it makes
no difference where it is located [16]. Furthermore, such
measures are not suitable for sparse point sets [24]. Infor-
mation theoretic based measures like the mutual information
consider entropy and joint entropy. Probabilistic based
measures such as the distance between densities generally
compare probability densities and other statistics of the

point sets to measure the similarity [20], [14]. Measures
in the last two categories are known to be robust, but not
sensitive to the spatial positions of the points and thus
not suitable for applications where the positions of the
individual points are important [23]. Spatial distance based
measures generally consider the pairwise distances
between the compared point sets. Examples from this cat-
egory are the average distance, i.e., the average of all
pairwise distances, and the Mahalanobis distance, which
compares estimates of the point sets as two hyper-
ellipses. Both examples are also not sensitive to the
positions of the individual points because in the case of
the average distance, distances of far points are compen-
sated by other near points and in the case of the Mahala-
nobis distance, estimating the point sets as hyper-ellipses
means ignoring details of the positions of the points. The
HD is a max-min distance, and hence has the advantage
that it takes into consideration the spatial position of
each individual point, which makes it capable of consid-
ering the spatial properties in the measurement, e.g., the
boundary of an object. However, in some applications
this makes it sensitive to outliers [7], [12].

The directed Hausdorff distance �H between two point
sets A and B is the maximum of distances between each
point x 2 A to its nearest neighbor y 2 B. That is

�HðA;BÞ ¼ maxx2Afminy2Bfjjx; yjjgg; (1)

where jj:; :jj is any norm e.g., the euclidean distance func-

tion. Note that �HðA;BÞ 6¼ �HðB;AÞ and thus the directed
Hausdorff distance is not symmetric. The Hausdorff dis-
tanceH is the maximum of the directed Hausdorff distances
in both directions and thus it is symmetric.H is given by

HðA;BÞ ¼ maxf �HðA;BÞ; �HðB;AÞg: (2)
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For a point set A, we define the point set size to be the num-
ber of elements in A. Images and image volumes are a spe-
cial class of point sets, where the elements are pixels (or
voxels for volumes) that are in pre-defined locations on a
grid. For an image A, we define the point set size to be the
number of pixels/voxels in A that are not in the background
(non-zero pixels/voxels). Also we define the grid size to be
the dimensions of the entire image including background
(width x length x height). Note that the proposed algorithm
is equivalently applicable on images and volumes, so we
will not strictly differentiate between them. The same
applies to pixel and voxel.

Many researchers have noted the computational com-
plexity of the HD [8], [11], [21]. The most important charac-
teristics to optimize are runtime and memory required.
However, evaluating the quality of a HD algorithm should
take into consideration how these two characteristics vary
in relation to the following parameters:

� Point set size. For example, a brain MRI volume
could reach a million voxels and that of a whole
body could reach 10 million voxels. The runtime of
the algorithm should stay reasonable when the set
size increases extremely.

� Grid size. It is desirable that the complexity of the
algorithm depends only on the point set size rather
than the grid size. For example, in brain tumor seg-
mentations, the volume of the tumor is normally a
small fraction of the grid size and the rest is back-
ground. The background should not be included in
the computation.

� Density and sparsity. An algorithm could perform
better with sparse point sets like geographical loca-
tions and worse with dense point sets like MRI seg-
mentations and vice versa.

� Generality. Algorithms restricted to a special class of
point sets cannot be applied in a general situation.

The algorithm proposed in this paper is optimized to effi-
ciently perform in all situations above. It has a nearly-linear
complexity and an efficient performance for extreme point
set sizes as well as for extreme grid size. It outperforms the
standard HD algorithm of the ITK Library,1 the leading
platform for image processing in the medical domain. Fur-
thermore the proposed algorithm performs equally for
sparse and dense point sets, and finally it is general without
restrictions on the characteristics of the point set. The
remainder of the paper is organized as follows. Related
work is discussed in Section 2. In Section 3 we propose the
novel algorithm for computing the Hausdorff distance and
provide a runtime analysis of the algorithm. Experiments
and results are presented in Section 4 and finally the paper
is concluded in Section 5.

2 RELATED WORK

Several approaches have been proposed that aim to over-
come the computational complexity of the Hausdorff dis-
tance. These approaches can be generally divided into two

categories, namely approximation and exact calculation of
the Hausdorff distance. The first category contains those
methods that try to efficiently find an approximation of the
Hausdorff distance. This category is especially common
with runtime-critical applications, for example pattern
matching under transformation (e.g., moving object detec-
tion). Because the method proposed in this paper aims to
calculate the exact Hausdorff distance, this category of
research is actually not directly in the focus of this paper;
we therefore only give some representative references for
this category. Alt et al. [1] used Voronoi diagrams to effi-
ciently approximate the HD between simple polygons.
Indyk et al. [13] proposed an algorithm for approximating
the HD for matching patterns under transformation by
using the Halls Theorem to reduce the necessary geometri-
cal matching. Hossain et al. [11] proposed a linear time algo-
rithm for finding an approximation of the HD with lower
approximation error. Most algorithms belonging to the sec-
ond category try to efficiently compute the exact Hausdorff
distance for specific classes of point sets or special types of
objects like polygons, line segments, or special curves. The
rest of these algorithms use complex structures that require
a preprocessing phase causing long computation time and
high memory need. In the next sections we highlight some
work related to this category in more detail.

2.1 Polygons

Atallah [2] provided an algorithm for computing the
Hausdorff distance for a special case of point sets, namely
non-intersecting, convex polygons. The algorithm has the
complexity of OðnþmÞ where m and n are the vertex
counts. The algorithm is mainly based on the fact that when
minimizing/maximizing distances between two non-inter-
secting convex polygons, then points with extreme distances
are always the vertices. This implies that only distances
between vertices need to be computed to find the Hausdorff
distance. Although this algorithm is simple and computa-
tionally efficient, it is restricted to a special class of point sets.

2.2 R-Trees

Papadias et al. [22] proposed an algorithm for finding
aggregate nearest neighbors (ANN) in databases. Given
two databases in form of point sets A and B, the algorithm
finds for a given point a 2 A the nearest point b 2 B. That is
ANNða;BÞ ¼ b 2 B : distða; bÞ ¼ minddistða;BÞ. The query
data points are spatially indexed to produce an R-Tree
which is then used to optimize searching for the ANN. In
fact, ANNða;BÞ can be an elementary function for comput-

ing the directed Hausdorff distance because �HðA;BÞ ¼
maxa2AxANNða;BÞ. But because the algorithm deals with
B as a single object, it follows that the direct use of ANN to
compute Hausdorff distance means iterating all points
a 2 A and performing ANN each time. Nutanong et al. [21]
extended the algorithm proposed in [22] by avoiding the
iteration of all points in A: the algorithm achieves this by
performing the aggregate nearest neighbor simultaneously
in both directions, that is to use two R-Trees at the same
time, one for each point set.

However, the drawbacks of both methods above are
(i) they use complex structureswith additional computational

1. National Library of Medicine insight segmentation and registra-
tion toolkit www.itk.org.
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effort needed for building the index and (ii) the methods
assume sparse point sets that are suitable for building an
efficient R-Tree. If the underlying point sets are very dense or
in the worst case rigid objects (e.g., medical segmentation),
algorithms based onR-Treesmay not be the best choice.

2.3 Distance Transform Based Algorithms

A distance transform (called also distance maps) is a
representation of an image in which each pixel becomes
a label that reflects its distance to the boundary or back-
ground. There are various transforms depending on the
distance metric used [18]. A common way to efficiently
compute the HD in image processing is to use the dis-
tance transform. These methods compute the Hausdorff
distance in linear time, given a distance transform, but
the time required for computing the distance transform
is proportional to the grid size, as it also takes back-
ground into account. Furthermore, these methods are
based on labeling the pixels which makes them restricted
to images, and thus they are not general. The ITK
Library1 uses distance transforms for computing the HD,
described in [25]. Ciesielski et al. [6] investigated the
computational complexity of the algorithm described in
[25]. We use the ITK implementation of this algorithm as
a reference to compare the performance of the proposed
algorithm in Section 4.

2.4 HD for Mesh Surfaces

Guthe et al. [10] proposed an algorithm for calculating the
Hausdorff distance between mesh surfaces. This algorithm
makes use of the specific characteristics of meshes to avoid
sampling all points in the compared surfaces. To achieve
this, two strategies are used. In the first strategy, the algo-
rithm aims to recognize areas in the two compared surfaces
where the pairwise triangles are expected to have maximum
distance between them. Only these areas are intensively
sampled thereby avoiding sampling all triangles of the sur-
faces. This is achieved by building a grid, in particular an
octree, on each of the surfaces and then calculating the
min/max distances between cells. The second strategy is to
avoid sampling all points in a particular triangle when cal-
culating the min/max distances of the cells. This is achieved
by measuring the distances of the triangle vertices to the
other mesh surface in a first step. Then, sampling further
points inside the triangle is stopped if all distances of the
vertices are less than the actual (yet unknown) HD. As men-
tioned above, this algorithm is based on the specific charac-
teristics of meshes and thereby lacks generality. In
particular, the second strategy is only applicable on surfaces
consisting of triangles (meshes) and because it is used in the
first strategy, this implies that also the first strategy can be
only applied on meshes efficiently.

3 PROPOSED METHODS

In this section we propose a novel algorithm for calculating
the exact Hausdorff distance. Before starting with the new
algorithm, we will define some notations that will hold
through the rest of the paper. We also present the straight-
forward algorithm for calculating the Hausdorff distance in
Algorithm 1 to ease explanation. Let A ¼ fx1; x2; . . . ; xmg

and B ¼ fy1; y2; . . . ; yng be two point sets in Rk and let

jjx; yjj be any norm Rk�!R where x; y 2 Rk. In the usual
case this is the euclidean distance function. Recall
equations (1) and (2) and note that the Hausdorff distance is
the maximum of the two directed Hausdorff distances in
both directions. Thus, from now we will only concentrate

on computing the directed Hausdorff distance �HðA;BÞ.

Algorithm 1. NAIVEHDD Straightforwardly Computes
the Directed Hausdorff Distance

Require: Two finite point sets A, B.
Ensure: Directed Hausdorff distance
1: cmax 0
2: for x 2 A do
3: cmin 1
4: for y 2 B do
5: d jjx; yjj
6: if d < cmin then
7: cmin d
8: end if
9: end for
10: if cmin > cmax then
11: cmax cmin
12: end if
13: end for
14: return cmax

Note that we will only use two dimensional point sets in
illustrations for simplicity, although the proposed algorithm
is applicable for point sets in Rk.

Obviously Algorithm 1 runs in Oðm � nÞ time where
m ¼ jAj and n ¼ jBj because both loops in Algorithm 1,
Lines 2 and 4, always run through all points. From now, we
will call these loops the outer loop and the inner loop
respectively.

Hereafter the three parts of the proposed algorithm are
presented: in the first part (Section 3.1), we show that a com-
plete scan in the inner loop is not always necessary (early
breaking). The second part (Section 3.2) presents a sampling
method that can replace the trivial scanning and consider-
ably enhance the performance. The combination of early
breaking and the sampling method provides a significant
efficiency increase compared to the application of these
optimizations individually. In the third part (Section 3.3), a
refinement technique is presented that excludes the inter-
section of the compared sets from computation in advance
in the case where the intersection is defined, e.g., when the
compared sets are images or volumes, which additionally
provides a small increase in the speed of the algorithm.
Finally, in Section 3.4 we present the runtime analysis of the
proposed algorithm.

3.1 Early Breaking

It is not always necessary that the scan in the inner loop
(Algorithm 1, Line 4) runs completely through. Since the
Hausdorff distance aims to find the maximum of the mini-
mums, the inner loop can actually break as soon as a
distance is found that is below the temporary HD (cmax),
because in this case cmax will definitely not change in the
rest of the loop. This means the algorithm can break the
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inner loop and continue with the next point of the outer
loop. Through the rest of the paper, we will call stopping
the inner loop because of finding some distance d < cmax
the early break. We modify Algorithm 1 to consider the
early break as illustrated in Algorithm 2, Line 9.

Algorithm 2. EARLYBREAK Computes the Directed
HDD Using the Early Break Technique and the Random
Sampling

Require: Two finite point sets A, B
Ensure: Directed Hausdorff distance
1: cmax 0
2: E  AnðA \BÞ {described in Section 3.3}
3: Er  randomizeðEÞ {Randomization described in

Section 3.2}
4: Br  randomizeðBÞ {Randomization described in

Section 3.2}
5: for all x 2 Er do
6: cmin 1
7: for all y 2 Br do
8: d jjx; yjj
9: if d < cmax then {Early break described in Section 3.1}
10: break
11: end if
12: if d < cmin then
13: cmin d
14: end if
15: end for
16: if cmin > cmax then
17: cmax cmin
18: end if
19: end for
20: return cmax

Note that the run time of Algorithm 2 depends on at least
the following factors:

� The order in which the outer loop iterates the points
in A: detecting a point with a relatively large dis-
tance to B leads to a larger value of cmax and conse-
quently to a higher probability of the occurrence of
an early break. In fact detecting the point with maxi-
mum distance to B at the beginning leads to the best
case.

� The order in which the inner loop performs the scan
in B: Here it is advantageous to pick points with
smaller distances, because a distance below cmax
leads to an early break. Fig. 1 illustrates the relation
between the iteration order and the occurrence of the
early break.

3.2 Random Sampling in Place of Scanning

Now the question is how much is the improvement from
using the early break alone? According to object coher-
ence [9] based on the principle of spatial locality, in some
classes of point sets, like images and volumes, the points
are likely to be spatially distributed in a way that points
iterated successively (e.g., line-wise or column-wise in an
image) in the first set have similar distances to some ref-
erence point in the second set, which means that the
early break could likely be delayed more than necessary.

In other words, if no early break occurs, it is likely that it
will not occur when a nearby point is tried. It is better in
this case to continue the search in another region which
is spatially far from the current point. In this section we
describe how to use random sampling instead of the triv-
ial scanning to improve performance. This method leads
to an algorithm with nearly-linear runtime as will be
shown in Section 3.4

In random sampling, the aim is to avoid similar dis-
tances in successive iterations. This is achieved by ran-
domly iterating the points in the inner loop. However,
we randomize the sampling order also in the outer loop.
We found that randomizing the sampling order addition-
ally in the outer loop makes the runtime more efficient in
some special cases. E.g., when the two point sets form
generally linear shapes and one of them is nearly on the
extension line of the other. The randomization addition-
ally in the outer loop reduces the probability of worst
cases with such point sets (this is e.g., frequent when the
compared point sets are trajectories). For other cases, it is
enough to only randomize the inner loop. But because
the randomization doesn’t need much computational
effort and because there are no cases where it has a nega-
tive effect on the efficiency, we always randomize both of
the loops. To achieve this, we prepare a list Br with all
points y 2 B randomly ordered and we use this set for
iteration in the inner loop instead of set B. The same is
done with iterating in the outer loop, more specifically
the set E is also randomized. Algorithm 2, Lines 3 and 4
show the additional randomization steps

Note that preparing the random set in advance is nec-
essary, because picking random candidates in the loop
cannot ensure iterating through all the points. Generating
the random order is possible in linear runtime by swap-
ping each point in the set with a randomly selected point
from the same set. Algorithm 3 illustrates this linear
randomization.

The random scan eliminates the effect of the spatial local-
ity in the point set and provides a significant improvement
as shown in Sections 3.4 and 4.

Fig. 1. xði�1Þ is the point already minimized in the previous iteration
where cmax was found to be the current maximum (temporary HD).
Point xi is being currently minimized by calculating its distances to B.
Points y1 . . . y8 2 B are numbered according to their distance to xi. An
iteration order beginning with y1, y2 or y3 is good because it will cause an
immediate break whereas an iteration order beginning with other points
is worse because the scan will continue.
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Algorithm 3. RANDOMIZE Finds a Random Order of a
Given Point Set

Require: A finite point set S
Ensure: Random order of S
Sr  S
for all p1 2 Sr do
p2  randompointðSrÞ
swapðp1; p2Þ

end for
return Sr

3.3 Excluding Intersection

In this section we describe a refinement that is applicable
when the compared point sets are not disjunct but rather
have a computable intersection. This is the case when the
point sets are defined on a grid. For instance in the evalu-
ation of medical volume segmentations, the compared
images (test image and ground truth image) mostly have
a large portion of voxels in common. We describe a tech-
nique that improves the performance of calculating the
Hausdorff distance by excluding the intersection from
the computation. This optimization generally provides a
small increase in speed beyond the combination of early
breaking and randomization. It is not a core part of the
general HD algorithm, and can be used to achieve a small
speed increase in cases where it is applicable. Let
S ¼ A \B be the intersection between the compared

point sets, then it is easy to conclude that �HðA;

BÞ ¼ �HðAnS; BÞ. This follows from the fact that when
iterating points x 2 A in the outer loop, 8xi 2 S
9s1 ¼ xi 2 A; s2 ¼ xi 2 B : jjs1; s2jj ¼ 0, it follows that dist
ðxi; BÞ ¼ 0 which means that cmax doesn’t change in the
corresponding iteration. In other words, for each of the
intersection points, a direct early break is guaranteed and
therefore it is not necessary to include them in the outer
loop and they can be excluded from A in advance. Note
that the intersection points must be however included in
the inner loop because they could be at minimum dis-
tance to some point y 2 B; y =2 S. Algorithm 2, Line 2
shows the additional step needed to implement this
improvement.

3.4 Runtime Analysis

Algorithm 2 has a runtime of OðmÞ in its best case and a run
time of Oðm � nÞ in its worst case. The best case is when an
early break occurs directly at the beginning of each iteration
in the inner loop, that is when we always select a point with
a distance below cmax. On the other hand, the worst case
occurs when a full scan runs through completely in each
iteration. The more important question is about the runtime
of the average case.

Informally, it is expected that the average case runtime is
biased towards the best case because the worst case gener-
ally requires conditions that are more difficult to satisfy.
While a definite iteration order in the inner and the outer
loops is required for the worst case so that the early break is
prevented in each iteration, the best case requires only one
condition, namely picking a point with a distance below
cmax in each first iteration in the inner loop.

Now let us see the average case runtime in a more
formal way. We consider the randomly picked point y 2 B in
Algorithm 2 in the inner loop and define the random variable
D to be the distance d measured between the point y and the
current reference point x 2 A. We also define the event e to be
that distance d is larger than cmax that is e � d > cmax. Note
that event e means the non-appearance of an early break. Let
us assume that event e always occurs with the probability
q that is P ðeÞ ¼ q. Obviously the event e occurs with probabil-
ity p ¼ 1� q and denotes picking a distance d � cmax.

We also define the random variable R to be the number
of successive distances exceeding cmax followed by one dis-
tance below cmax i.e., the length of a sequence of successive
events e followed by an event e. For any iteration i, this is
equivalent to i� 1 distances from the reference point x to
the points y1; y2; . . . ; yi�1 namely d1; d2; . . . . . . ; di�1 > cmax
and one distance di � cmax. The probability density func-
tion of R is given by

fðxÞ ¼ P ðd1 > cmax; . . . ; dx�1 > cmax; dx � cmaxÞ
¼ q � . . . : � q � p
¼ qx�1p

(3)

which is a geometrical probability distribution. Fig. 2 shows
the probability distribution fðxÞ. Note the strong steepness
of fðxÞ that make longer runs of event e unlikely and intui-
tively explains the bias of the average case runtime towards
the best case.

To formally find the average case runtime, the expected
value E½R� of fðxÞ should be found which is equivalent to
the expected number of iterations until an early break

E½R� ¼
X1
x¼1

xfðxÞ ¼
X1
x¼1

xqx�1p: (4)

E½R� is a geometrical series with 0 � p � 1 that converges
and has a sum. From Equation (4) it follows:

E½R� ¼ pþ 2:q:pþ 3:q2:pþ 4:q3:pþ � � � (5)

By multiplying both sides with q, subtracting the resulting
equation from Equation (5), and then dividing by p

E½R�ð1� qÞ
p

¼ 1þ q þ q2 þ q3 þ � � � (6)

Fig. 2. The probability density function of a geometrical distribution.
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By multiplying both sides with q, subtracting the resulting
equation from Equation (6), and then substituting q ¼ 1� p

E½R� ¼ 1

p
: (7)

Equation (7) tells the important fact that the number of tries
until an early break depends only on p which denotes the
probability of picking a point with distance below cmax.
The higher p is, the more likely that the inner loop termi-
nates after a lower number of tries and vice versa.

But how high is p actually and what does it depend on?
In fact, p depends mainly on how large cmax is and cmax is
limited by the HD because (cmax � h) which means the HD
determines how large cmax at most can be. If the Hausdorff
distance is large, cmax can take larger values and thus it is
more likely that a randomly selected point is below cmax
which means a higher value of p and vice versa, that is
p / h. Fig. 3 illustrates the relation between cmax, the prob-
ability p, the Hausdorff distance, and the distribution of the
pairwise distances dij where dij ¼ jjxi; yjjj : 8xi 2 A; yj 2 B.
Here, a normal distribution is just for illustration and the
relation holds for any distribution. The example is to show
how p does not directly depend on the size of set B, but
rather on the Hausdorff distance h and the distribution of
the pairwise distances.

Note that we don’t have to determine the distribution of
the pairwise distances to conclude that the runtime depends
only on h, this is because the distribution only determines
the value of p, which is irrelevant for whether the runtime is

dependent on B or not because the expected value 1
p is a con-

stant value for any p > 0.
Formally, the average probability that the randomly

picked distance d � cmax is given by

p ¼ average

�Z cmax

x¼0
fðxÞdx

�
¼ c

Z h

x¼0
fðxÞdx; (8)

where f is the probability density function that represents
the distribution of the pairwise distances and c is a constant
that results by estimating cmax in terms of h; the justifica-
tion of this estimation is in the next section.

3.5 Convergence of the Temporary HD (cmax)

The value of cmax geometrically increases during the prog-
ress of the outer loop (Algorithm 2) so that it already
reaches values near h after a very small number of iterations
compared with the total count of iterations, as demon-
strated in Fig. 4.

We explain this geometrical increase as follows: At the
beginning of the outer loop cmax is zero, then it increases
monotonically with the progress of the outer loop until it
reaches the Hausdorff distance h. In each iteration, there are
two possibilities, either the distance to the current point is
smaller than cmax, here no cmax update is performed or
the distance is larger than cmax, in this case cmax is
updated to have the distance value. Let us observe only
those iterations where cmax is updated. For any such
update iteration i we define cmaxðiÞ to be the cmax value in
that iteration (before update) and dðiÞ to be the distance of
the randomly selected point. The possible values that dðiÞ
can have are in the interval ½cmaxðiÞ; h�. This means dðiÞ has
an expected value of h�cmaxðiÞ

2 which is subsequently the

expected value of cmaxðiþ 1Þ. It follows that in the next
iteration iþ 1, the expected interval in which dðiþ 1Þ values
can be is ½h� h�cmaxðiÞ

2 ; h�. Analogously, for iteration iþ 2,

we likely get cmaxðiþ 2Þ ¼ h�cmaxðiÞ
4 and an interval

½h� h�cmaxðiÞ
4 ; h� and so on which implies a geometrical con-

vergence of cmax to h. To experimentally verify this geo-
metrical convergence, we computed the Hausdorff distance
between 1,000 pairs of trajectories generated from the road
network of Oldenburg (described in Section 4.7). Each of the
trajectories consists of 2,000 points. For each iteration in the
outer loop, two values were recorded, namely the number
of iterations until the early break n and the value of cmax at
the beginning of each iteration in the outer loop, hence
getting 2,000 values for each pair of trajectories, i.e., 2 million

Fig. 3. Distribution of pairwise distances assuming a normal distribution
for illustration. (A) Position of the Hausdorff distance h relative to the dis-
tribution affects p because cmax � h. (B) h is large and cmax can reach
large values thereby increasing p. (C) h is small and cmax remains small
thereby decreasing p.

Fig. 4. Progress of cmax in the first 10 thousand iterations (outer loop)
when comparing two real brain tumor segmentations. Note that only
10 thousand of 15.6 million iterations in total are shown and thus the
curve does not reach the HD.
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values in total. Two statistics were computed, the first by
averaging the number of iterations until the early break (n)
to get (n) at each iteration of the outer loop. This is visualized
with a logarithmic scale in Fig. 5. At first, n is very high
because cmax is zero and the inner loop is scanned
completely. After that, n decreases rapidly to converge
finally at very low values. This statistic confirms the conver-
gence behavior of the number of iterations until the early
break predicted theoretically. The second statistic was made
by converting the recorded cmax values to percentage values
of the HD between the corresponding pair of trajectories; this
is because the HD is different in each pair. From these per-
centage values, we counted howmany values exceed 90 and
99 percent at each iteration in the outer loop. Fig. 6 shows the
results. We show only the first 200 iterations to make the plot
more readable. The results confirm the quick convergence of
cmax to the HD. In about 80 percent of the cases, cmax is
already after five iterations above 90 percent of the HD, and
already after 50 iterations above 99 percent of the HD.

From Equations (7) and (8), the expected number of itera-
tions until the early break given a Hausdorff distance h is

E½R� ¼ 1

p
¼ 1

c
R h
x¼0 fðxÞdx

: (9)

Note that if h is very small, for example h 	 0, the algo-
rithm tends to get low performance. Nevertheless, low values
of h mean high match between the point sets which means
that it is likely that A and B have high intersection, which
also means that the improvement introduced in Section 3.3
will compensate the loss of performance by excluding the
intersection and thiswill keep a low overall runtime.

3.6 Handling of Outliers

The Hausdorff distance is generally sensitive to outliers [7],
[12]. The Hausdorff quantile is a method proposed in [12] to
solve the problem of outliers: according to the Hausdorff
quantile method, the Hausdorff distance is defined to be the

qth quantile of distances instead of the maximum, so that
possible outliers are excluded, where q is selected depend-
ing on the application and the nature of the measured point
sets. The proposed algorithm can be easily extended to sup-
port the Hausdorff quantile by saving all distances mea-
sured and after the outer loop is finished, the distances are
sorted and the qth quantile is returned instead of cmax.

4 EXPERIMENTS

The proposed algorithm was tested with three different
types of data, namely real brain tumor segmentations (MRI
3D volumes), trajectories generated from a road network
and random 3D Gaussians.

Testing with real brain tumor segmentations is done in
four different variants against the ITK HD algorithm and in
a fifth variant against a version of the proposed HD algo-
rithm without the random sampling. In the first experiment
(Section 4.1), the HD between the volumes and the corre-
sponding ground truth segmentations was calculated. In
the second experiment (Section 4.2), images were compared
with randomly selected volumes from the same set, so that
the volumes in each pair do not overlap to rule out that the
general performance is dependent on the overlap between
the compared images. In the third experiment (Section 4.3),
new images were generated by merging up to eight images
in order to test the performance when the point set size
increases. In the fourth experiment (Section 4.4), the vol-
umes were increased both in point set size and grid size to
test the sensitivity to grid size. In the fifth experiment
(Section 4.5), the same test as in the first experiment was
performed, but against the proposed algorithm without the
random sampling step to show the effect of combining the
early break with the random sampling.

In the sixth experiment (Section 4.6), 3D point sets were
generated based on random Gaussians and used to test the
proposed algorithm to rule out that the efficiency of the pro-
posed algorithm is not dependent on the nature of medical
images.

Finally, in the last experiment (Section 4.7), trajectories
generated from a road network were used to test the pro-
posed algorithm against the incremental Hausdorff distance
calculation algorithm (INC), based on R-Trees.

Fig. 5. The average number of iterations in the inner loop until the early
break at each iteration of the outer loop. Values are recorded from mea-
suring the HD between 1,000 pairs of trajectories generated from the
road network of Oldenburg. Each trajectory contains 2,000 points. Itera-
tions of the outer loop are on the x-axis and the number of iterations in
the inner loop averaged over all pairs on the y-axis.

Fig. 6. Convergence behaviour of the temporary HD (cmax) along the
iterations of the outer loop. Iterations of the outer loop are on the x-axis
and the frequencies of cmax values exceeding 90 and 99 percent of the
corresponding HD at each iteration are on the y-axis.
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The first six experiments were performed on a machine
with 3 GHz Intel core processor, 8 GB Memory, and Win-
dows 7 OS. The last experiment (Section 4.7) was done on a
machine with the specification described in [21].

4.1 Comparing Volumes with Ground Truth

In this experiment, we used a test set of 300 automatic brain
tumor segmentations (MRI 3D volumes) from the
BRATS2012 challenge.2 These volumes were produced by
segmentation algorithms proposed by four participants of
the BRATS challenge. The volumes vary widely in size and
span the range from 2 k to 600 k voxels as point set size and
from 125 
 125 
 125 to 250 
 250 
 250 voxels as grid size.
Each of these volumes was validated against the corre-
sponding ground truth segmentation made by human
experts. The test set consists of 240 volumes and 60 ground
truth segmentations. All volumes were validated using
three algorithms: the first is an implementation of the
straightforward algorithm (Algorithm 1) to ensure that the
proposed algorithm computes the correct Hausdorff dis-
tance. The second one is the standard Hausdorff distance
algorithm of the ITK library,3 namely the itk::HausdorffDis-
tanceImageFilter, assumed to represent the state-of-the-art.
The ITK algorithm is based on the distance transform tech-
nique and is described in [25] and [7]. The third algorithm is
the proposed algorithm, an implementation of Algorithm 2.

Fig. 7 shows the performance of the proposed algorithm
compared with the ITK algorithm: while the ITK algorithm
took an average time of 2.09 seconds per volume, all run-
times of the proposed algorithm were below one second
and have an average of 0.26 seconds per volume, which
means that the proposed algorithm outperforms the ITK
algorithm by about 7.6 times.

4.2 Testing with Non-Overlapping Images

The aim of this experiment is to rule out that the perfor-
mance depends on the overlap between the two compared
volumes. To this end, we put all images (segmentations and

ground truth volumes) in one pool of 300 images, then
300 pairs were selected from the pool so that the intersection
(overlap) between the two images in each pair is zero. This
was possible because brain tumors reside in different loca-
tions in the brain. The HD was calculated using the ITK
algorithm and the proposed algorithm. Note that we had to
unify all volumes to one grid size, namely 250 
 250 
 250
because the algorithms accept only pairs consisting of two
volumes with the same grid size. Fig. 8 shows the runtime
plot of the proposed algorithm compared with that of ITK:
again the proposed algorithm outperforms the ITK algo-
rithm about by 7.8 times. While the runtimes of the pro-
posed algorithm rarely exceed one second and have an
average of 0.51 sec, the ITK algorithm took an average of
3.82 sec. The result shows that the efficiency of the method
is not restricted to overlapped point sets and thus confirms
the runtime analysis in Section 3.4, namely Equation (9) that
shows that the algorithm tends to have a high efficiency
when the HD is large. The increase in the efficiency com-
pensates the efficiency lost when the intersection is not pres-
ent. This is the case in this experiment because the HD is
likely large, given that the images don’t overlap.

4.3 Testing with Large Volumes

In this experiment we test the runtime behavior when the
set size increases. For this, we constructed a new pool of
300 volumes, where each of them is generated by merging
up to 8 randomly selected volumes from the original test set
without increasing the grid size, which is still 250 
 250 

250 voxels, that is V ¼ V1 [ V2 [ V3 . . . where V1; V2; . . . are
the randomly selected volumes and V is the resulting test
volume. The resulting volumes span a set size range from
150 k to 850 k voxels. Finally, 300 pairs were randomly
selected and compared.

Fig. 9 shows that the proposed algorithm outperforms
the ITK algorithm and has no significant runtime increase
with increasing the set size.

4.4 Increasing the Grid Size

This experiment tests how the runtime and the needed
memory behave when the volume grid size is increased.

Fig. 7. Comparison between the performance of the proposed algorithm
and the ITK algorithm in validating 240 real brain tumor segmentations
against the corresponding ground truth. The set size in kilo voxels is on
the horizontal axis and the run time in seconds is on the vertical axis.
The grid size varies from 125 
 125 
 125 to 250 
 250 
 250 voxels.

Fig. 8. Comparison between the performance of the proposed algorithm
and the ITKalgorithm in comparing 300pairs of volumes selected randomly
so that the overlap between volumes in each pair is zero. The set size in
voxels is on the horizontal axis and the runtime in seconds on the vertical
axis. All volumes have a unified grid size of 250
 250
 250 voxels.

2. MICCAI 2012 Challenge on Multimodal Brain Tumor Segmenta-
tion, www2.imm.dtu.dk/projects/BRATS2012

3. National Library of Medicine Insight Segmentation and Registra-
tion Toolkit www.itk.org
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The aim is to simulate real cases with larger grids such as
whole body volumes [17]. To this end, we increased both
the grid size and the set size. This was done by multiple
copying of randomly selected volumes into larger grids:
instead of 250 
 250 
 250, we used 350 
 350 
 350 voxels
which means a total number of 43 Million voxels including
background. The resulting volumes span a set size range
from 200 k to 950 k voxels. None of the pairs was compared
successfully by the ITK algorithm, because in each pair the
ITK algorithm broke down with a memory allocation error.
On the contrary, the proposed algorithm computed all pairs
successfully in an average time of 1.7 seconds as shown in
Fig. 10.

The result of this experiment can be explained by the fact
that distance transform based algorithms are sensitive to
increasing grid size because all the background voxels
should be labeled. On the contrary, the proposed algorithm
is not sensitive to grid size increase because the background
is not involved in the computation at all.

The results of all experiments with MRI segmentations
against the ITK HD algorithm are summarized in Table 1.

4.5 Testing the Effect of Random Sampling

This experiment is to show the contribution of the random
sampling to the efficiency of the proposed algorithm. The
same data and configuration of the experiment in Section 4.1
is used except that the random sampling is replaced by
direct scanning. In particular, Lines 3 and 4 in Algorithm 2
are omitted and the sets E and B are used instead of the
sets Er and Br respectively. The results in Fig. 11 show that
the random sampling is strongly related with the perfor-
mance of the algorithm and has a significant contribution to

the efficiency. Note that 8 instances are removed to improve
the visibility of the plot because they have an execution
time exceeding 100 seconds with direct scanning. The
contribution of the random sampling is a factor of 36.8 mea-
sured as the ratio between the two execution times averaged
over all pairs.

4.6 Testing with Random Gaussians

To rule out that the efficiency is dependent on the point dis-
tribution of medical volumes, the proposed algorithm was
tested against random Gaussians. 300 point clouds were
generated; each of them consisting of 50 thousand to
0.5 million points; the points in each cloud are normally dis-
tributed and satisfy a random Gaussian (i.e., the point coor-
dinates x, y and z are generated according to three different
Gaussians each with a random m and a random s) selected
so that the points fit in a grid of 250 
 250 
 250 voxels.
From these point clouds, 300 pairs were randomly selected.
The HD distance between the point sets in each pair was
measured by the proposed algorithm and the ITK algo-
rithm. The results in Fig. 12 show that the proposed algo-
rithm still outperforms the ITK algorithm with a factor of
about 4.35. The experiment shows that the proposed algo-
rithm replicates its performance with normally distributed
point sets.

We analysed the few data points in Fig. 12 where the pro-
posed algorithm required a computation time of more than
4 seconds. We found that the relatively long runtime is not
related to a particular point set, but rather to a combination
between two particular point set configurations. This obser-
vation conforms to the runtime analysis in Section 3.4, i.e.,
that the runtime is dependent on the value of the HD

Fig. 9. Performance comparison between the proposed algorithm and
the ITK algorithm in comparing enlarged volumes. The set size in kilo
voxels is on the horizontal axis and the runtime in seconds on the vertical
axis. All volumes have a unified grid size of 250 
250 
 250 voxels.

Fig. 10. The performance of the proposed algorithm in comparing
volumes with grid size increased to 350 
 350 
 350 voxels. No runtime
plot is shown for the ITK algorithm because it failed in all cases with a
memory allocation error.

TABLE 1
Result Summary for Experiments on Medical Images of Varying Sizes and Characteristics Where n1...n2 Is the
Size Range of the Compared Point Sets, L, B, H Are the Grid Dimensions for Medical Volumes and the Time

Values Are the Average Execution Time for Calculating the HD

Testing with .. L 
 B 
H (grid size) n1..n2 (set size) proposed algorithm ITK algorithm

ground truth 125 to 250 2 k..350 k 0.26 sec. 2.09 sec.
non-overlapping point sets 250 
 250 
 250 2 k..350 k 0.51 sec. 3.82 sec.
merged volumes 250 
 250 
 250 207 k..1,100 k 0.93 sec. 3.45 sec.
increased grid size 350 
 350 
 350 280 k..1,470 k 1.70 sec. allocation Error
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relative to the distribution of the pairwise distances between
the compared point sets, as illustrated in Fig. 3.

4.7 Testing Against Incremental Hausdorff Distance

In this experiment, the proposed method was tested against
the incremental Hausdorff distance calculation algorithm
(INC) proposed by Nutanong et al. [21]. To this end, we
tested the proposed algorithm with the same data, the same
setting, and on hardware of identical specification as
described in [21], Section 7.1 (Hausdorff Distance Calcula-
tion). As point sets, we used trajectories generated from the
Oldenburg (OL) road network4 so that each trajectory is
the shortest path between two randomly selected points in
the network with a length of 2,000 units. The points on each
trajectory were sampled in different resolutions, i.e., the
path was truncated into chunks with different lengths. Five

groups of trajectories (G1 .. G5) were constructed so that
each group contains trajectories sampled in a different reso-
lution. G1, G2, G3, G4, G5 have 400, 800, 1,200, 1,600, 2,000
sampled points respectively. The HD(X,Y) was calculated
between trajectories by varying the point set size, i.e., select-
ing trajectories from different groups. In a first experiment
set, the size of X was fixed and the size of Y was varied, and
in a second experiment set the size of Y was fixed and the
size of X was varied. The execution times of these experi-
ments are compared with the execution times published in
[21], Section 7.1, Fig. 8. Fig. 13 shows the execution time
where each data point is the average of 200 different pairs
of trajectories. The results show that the proposed algorithm
outperforms the INC algorithm by about 30 times.

5 CONCLUSION

We propose an efficient algorithm for computing the exact
Hausdorff distance. We formally show that the proposed
algorithm has a nearly-linear runtime in the average case.
The proposed algorithm combines early breaking and ran-
domization optimizations to achieve a significant increase
in speed over other algorithms that do not use this combina-
tion. The proposed algorithm does not impose any restric-
tions on the input data, and is hence generalizable to all
applications. Moreover, it does not require a complex setup
phase needing high computational effort and extensive
storage space.

We experimentally show a 36-fold increase in speed over
an HD algorithm with only early breaking included i.e.,
without using the randomization. We also show experimen-
tally that the proposed algorithm significantly outperforms
in terms of speed the standard HD algorithm of the ITK
Library in comparing medical volumes and the incremental
HD algorithm in comparing trajectories generated from a
road network. Moreover, the proposed algorithm is shown
to work even when comparing volumes with extremely
high dimensions (grid size). An implementation of the pro-
posed algorithm is available as part of the EvaluateSegmen-
tation software.5

Fig. 11. Contribution of random sampling: Comparison between the effi-
ciency of the proposed algorithm when using random sampling and
direct scanning. The same data as in the experiment in Section 4.1 is
used. The size of the compared images in kilo voxel is on the x-axis and
the execution time in seconds, scaled logarithmically, is on the y-axis.

Fig. 12. Comparison between the performance of the proposed algo-
rithm and the ITK algorithm in measuring the HD of 300 pairs of
Gaussians generated by randomly selected means and standard devia-
tions for each of the three dimensions. The size of the compared point
sets in kilo voxels is on the x-axis and the execution time in seconds is
on the y-axis.

Fig. 13. Comparison of the execution time of calculating the Hausdorff
distance HD(X,Y) by the proposed algorithm and the incremental
Hausdorff calculation (INC) [21]. In A, the size of X is fixed and the size
of Y varies and conversely in B. Each data point is the average of
200 pairs of trajectories. The size of the point set is on x-axis and the
execution time in milliseconds on the y-axis.

4. City of Oldenburg Road Network http://www.cs.fsu.edu/ lifei-
fei/SpatialDataset.htm

5. EvaluateSegmentation is an open source project for evaluating
medical volume segmentations available for download from http://
github/codalab/EvaluateSegmentation
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