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Abstract

This paper is focused on the Co-segmentation problem

[1] – where the objective is to segment a similar object from

a pair of images. The background in the two images may be

arbitrary; therefore, simultaneous segmentation of both im-

ages must be performed with a requirement that the appear-

ance of the two sets of foreground pixels in the respective

images are consistent. Existing approaches [1, 2] cast this

problem as a Markov Random Field (MRF) based segmen-

tation of the image pair with a regularized difference of the

two histograms – assuming a Gaussian prior on the fore-

ground appearance [1] or by calculating the sum of squared

differences [2]. Both are interesting formulations but lead

to difficult optimization problems, due to the presence of the

second (histogram difference) term. The model proposed

here bypasses measurement of the histogram differences in

a direct fashion; we show that this enables obtaining effi-

cient solutions to the underlying optimization model. Our

new algorithm is similar to the existing methods in spirit,

but differs substantially in that it can be solved to optimal-

ity in polynomial time using a maximum flow procedure on

an appropriately constructed graph. We discuss our ideas

and present promising experimental results.

1. Introduction

The idea of co-segmentation, first introduced in [1],

refers to the simultaneous segmentation of two images. The

problem is well illustrated by the example in Fig. 1, where

the same (or similar) object appears in two different images,

and we seek to perform a segmentation of only the similar

regions in both views. This problem was partly motivated in

[1] by the need for computing meaningful similarity mea-

sures between images of the same subject but with differ-

ent (and unrelated) backdrops in image retrieval applica-

tions [3]. A related goal was to facilitate segmentation of an

object (or a region of interest) by providing minimal addi-

tional information (such as just one additional image). The

Figure 1. A similar object in two images in rows 1-2. The his-

togram of the foreground (of row 2 images) is shown in row 3.

idea has been utilized in a number of other concurrent fore-

ground extraction tasks using multiple images [4], images

acquired with/without camera flash [5], image sequences

[6], and for identifying individuals using image collections

[7]. Later in the paper, we discuss how the idea may be

applied for pathology identification problems in biomedical

images. The purpose of this paper, however, is to investi-

gate efficient means of solving (the underlying optimization

problem of) co-segmentation.

The identification of similar objects in more than one im-
age is a fundamental problem in computer vision and has re-
lied on user annotation or construction of models [8, 9]. A
number of recent techniques [1, 10, 11, 12], however, have
preferred an unsupervised (or semi-supervised) approach to
the problem and obtained good overall performance. Co-
segmentation belongs to this second category. The key idea
adopted in [1] was to apply a MRF segmentation on both
images with an additional term that penalizes the variation
in the histograms of the foreground regions in the two im-



ages, see Fig. 1. The energy function is expressed as

min E(x1,x2) = E1(x1,x2) + E
global(ĥ1, ĥ2), (1)

where x1,x2 ∈ {0, 1} are binary variables indicating

the assignment of pixels to the background or foreground,

E1(·, ·) denotes the sum of the image-wise MRF ener-

gies, and Eglobal(ĥ1, ĥ2) measures the difference between

a Gaussian model of the two foreground histograms, ĥ1 and

ĥ2. The authors [1, 2] note that efficient optimization of (1)

is not tractable. Therefore, the proposed procedure initial-

izes the segmentations, and incrementally improves one of

the segmentations keeping the other fixed (and vice-versa)

until no further improvements are possible. In subsequent

work [6], a generative model was proposed for performing

co-segmentation in image sequences, and a locally maxi-

mal marginal log posterior estimate was obtained using an

expectation maximization (EM) algorithm with certain con-

vergence criteria. Later, the authors in [4] extended many of

these ideas further by incorporating local context, i.e., pat-

terns characterizing the local color and edge configurations.

This led to improved results relative to [1, 13]. However, the

technique [4] was focused on the empirical performance,

and less effort was devoted toward better means of optimiz-

ing the co-segmentation cost function in [1]. Recently, [2]

proposes addressing some of these difficulties by replacing

the second term with the squared difference of the two his-

tograms. This approach no longer requires the histograms

to be Gaussian, and leads to a quadratic pseudoboolean op-

timization model [14]. The authors prove that their formula-

tion yields half-integral solutions (i.e., {0, 1
2 , 1}) to the opti-

mization problem. However, the problem still remains hard

(and cannot be solved optimally), and obtaining provably

good quality guarantees in a general case is difficult. On

the practical side, solving the linear program in [2] result-

ing from large images may be computationally intensive.

Carrot or Stick? The simplest interpretation of the co-

segmentation model, as discussed above, is that it en-

courages good and coherent segmentation of both images

with an additional requirement of consistency between fore-

ground histograms. To enforce this requirement, variations

between foreground histograms are penalized in [1, 4, 2],

but this leads to intractable optimization problems. On the

other hand, notice that a similar effect may also be achieved

by rewarding consistency in the two foreground histograms

(rather than explicitly penalizing their difference): the car-

rot or the stick1. While this seems logical once we choose a

suitable measure of histogram consistency, the key question

is: what is the benefit of adopting this second approach? In

the following sections, we will show that this modification

leads to a polynomial time algorithm for co-segmentation.

This is the primary contribution of this paper.

1a mechanism of offering rewards (e.g., carrot) or threatening punish-

ment (e.g., stick) to induce a desired behavior.

2. Preliminaries

In the co-segmentation setting, we are given two images

for segmentation: I(1) and I(2). The images are of the same

size consisting of n pixels each, where the jth pixel in the

qth image is denoted by I
(q)
j , for j = 1, · · · , n and q = 1, 2.

We are also given a classification of each pixel in each im-

age into one of K ‘buckets’ in a histogram for each image.

Let the histogram buckets (each bucket corresponds to an

intensity range) be given as h1, h2, · · · , hK . For each im-

age I(q), q = 1, 2, this may be specified in terms of a matrix

B
(q) of size n × K such that for pixel j and bucket hk,

B
(q)
j,k =

{

1 if I
(q)
j ∈ Hk;

0 otherwise.
(2)

That is, the entry B
(q)
j,k is 1 if the intensity of pixel I

(q)
j falls

in the intensity range of bucket hk, where q refers to either

the first or the second image.
A segmentation of each image will partition the set of

pixels into foreground versus background pixels. Our in-
terest is to ensure that the foreground in the two images are
similar. Toward this goal, the objective is to get (1) the num-
ber of pixels that are in the foreground, and (2) the number
of pixels in Hk, to be approximately similar in both images.
One strategy is to define similarity between all pairs of pix-

els I
(1)
i and I

(2)
j . We can say that the pair i, j is similar if

both belong to Hk and designate a similarity weight sij to
be equal to 1 if that happens. Formally,

sij =



1 if ∃k such that B
(1)
i,k = B

(2)
j,k = 1

0 otherwise.

Let x
(q)
j be a binary variable indicating whether pixel I

(q)
j

is classified in the foreground:

x
(q)
j =

{

1 if I
(q)
j is classified as foreground

0 if I
(q)
j is classified as background.

The number of pixels in the foreground of I(1) that belong

to Hk is denoted by ak =
∑n

j=1 B
(1)
j,kx

(1)
j and the number in

I(2) that belong to Hk is denoted by bk =
∑n

j=1 B
(2)
j,kx

(2)
j .

Let the total number of foreground pixels in I(1) and I(2) be

F1 and F2 respectively. We model a measure of similarity

of the two foreground features as the optimal solution to

max
∑K

k=1 akbk (3)

subject to
∑K

k=1 ak = |F1|
∑K

k=1 bk = |F2|.

Our rationale is that for each pixel p assigned as foreground

in the first image, we offer a reward for also selecting (as

part of the foreground in the second image) a pixel q which

is similar to p. Similarity which is specified by a binary



spq depends on whether p and q belong to the same bucket,

and may be allowed to vary in [0, 1] as a function of the

likelihood of the match (p → q) detected by some feature

extraction method. For |F1|, |F2| fixed, the optimization

process seeks to maximize the number of pixel pairs (one

from each image) with identical histogram buckets. We note

that treating |F1| = |F2| as normalization constants for a

and b resp., this is also similar to Hellinger affinity (see [15],

pg. 24), frequently used in computer vision [16].

3. Problem Statement

Maximizing similarity of histograms as in (3), by itself

is not sufficient to obtain meaningful segmentations. This is

because Co-segmentation must take the spatial homogene-

ity of the images into account also. This may be achieved

by introducing the adjacency relationship between neigh-

boring pixels as an additional bias into the maximization in

(3). Another option, which we adopt here, is to segment

both images while using the similarity in (3) as a bias term.

3.1. MRF segmentation

We formulate the task of segmenting both images as a

binary labeling of Markov Random Field (MRF) on the

graphs corresponding to the input images [17, 18]. That is,

in each image I , we find the assignment of values to every

pixel, as either foreground or background label. This is rep-

resented by a binary variable xj assigned to each pixel j and

is equal to 1 if the pixel is assigned to the foreground. The

assignment is such that the total deviation and separation

penalties are minimized. The deviation (or data) penalty,

dj , is charged for a pixel that is set in the foreground, al-

though there is a-priori information indicating it should be

in the background. The separation or smoothness penalty

wpq measures the cost of assigning different labels to two

neighboring pixels, p ∼ q. As in [7, 4], we give wpq as

exp(−β||p− q||2), where β is a constant. The MRF formu-

lation for one image is then:

min
∑

djxj +
∑

i∼j wijyij (4)

subject to xi − xj ≤ yij

xj − xi ≤ yji.

xi, yij binary for i, j = 1, . . . , n.

3.2. Cosegmentation

Our model attempts to simultaneously minimize the sep-

aration and deviation terms in the MRF model for each im-

age as well as maximize the similarity (rather than minimize

the difference [1, 2]) between the foreground features in the

two images as specified in (3). As these are two conflicting

and incompatible goals, we use a linear combination of the

two objectives (treating the second term as a bias). Let λ

be a coefficient expressing the relative weights of the two

objectives [1, 2]: when the value of λ is high, then similar-

ity is the most important requirement, and when it is low,

the MRF penalties are dominant. Let zij be a variable equal

to 1 if I
(1)
i ∈ F1 and I

(2)
j ∈ F2. Our objective function

minimizes a combination of the penalties incurred by the

MRF optimization in each image, and subtracts the similar-

ity measure of the number of pairs of the same histogram

buckets in the resulting two foreground features. Since we

have a minimization in (4), a high similarity in the fore-

ground features serves as a reward, exactly as desired.

In this formulation, we seek an assignment of the pixel to

the foreground or the background. So we may simplify the

notation: d
(1)
j , d

(2)
j are the deviation penalties charged for

placing pixel j in the foreground of image 1 and 2 respec-

tively. These penalties can be positive or negative. The min-

imization objective includes terms representing the MRF

optimization in both images,

∑

d
(1)
j x

(1)
j +

∑

i∼j

wijy
(1)
ij +

∑

d
(2)
j x

(2)
j +

∑

i∼j

wijy
(2)
ij .

Simultaneously, we also wish to maximize the benefit of

high similarities between corresponding histogram buckets

in both images represented as:

∑

i∈I(1),j∈I(2)

sijzij .

Since sij is equal to 1 only for “matching” histogram buck-

ets, this latter term can also be written as:

K
∑

k=1

∑

i∈I(1)∩Hk,j∈I(2)∩Hk

zij . (5)

Notice that (5) is equivalent to the requirement specified in

(3). Our formulation of the co-segmentation problem is then

a linear combination of the MRF minimization and similar-

ity maximization objectives as follows:

min
∑

d
(1)
j x

(1)
j +

∑

i∼j wijy
(1)
ij +

∑

d
(2)
j x

(2)
j

+
∑

i∼j wijy
(2)
ij − λ

∑K

k=1

∑

i∈I(1)∩Hk,j∈I(2)∩Hk
zij

subject to zij ≤ x
(1)
i for i ∈ I(1)

zij ≤ x
(2)
j for j ∈ I(2)

(Co-seg) x
(q)
i − x

(q)
j ≤ y

(q)
ij for q = 1, 2

x
(q)
j − x

(q)
i ≤ y

(q)
ji for q = 1, 2

x
(q)
i , y

(q)
ij , zij binary for q = 1, 2,

i, j = 1, . . . , n.

Correctness. To verify correctness, observe that the first

set of constraints on zj ensures that the binary variable zj

can be equal to 1 only if both pixels i and j, in the first and

second images respectively, are selected in the foreground.



The second set of constraints is to guarantee that if adjacent

pixels i and j in one of the images are assigned such that one

is in the foreground and the other is in the background, then

the separation penalty for that neighboring pair is charged.

Notice that we make use of the objective that drives zij to

be as large as possible (that is 1) and yij to be as small as

possible (that is 0). It is not difficult to verify that:

Property 3.1 The model of the (Co-seg) problem is defined

on monotone constraints [19] and with a totally unimodular

constraint matrix.

Due to Property 3.1, we can make use of a construction of

an s, t graph G, where the solution to the s, t-cut problem

will provide an optimal solution to the (Co-seg) problem.

4. The graph construction

We now show the construction of the s, t graph G which

will be used to solve (Co-seg): For each of the two images,

the graph contains a grid of nodes, called here pixel-nodes,

one corresponding to each pixel. To achieve only the MRF

segmentation for both images specified as (4), we can use a

graph construction similar to the one described in [17], with

either the 4-neighbor or the 8-neighbor or any other form

of neighborhood topology used to describe the adjacency

relationship between pixel-nodes. But to make it suitable

for co-segmentation, the graph will be modified, details of

which will be described shortly.

We denote the pixel-nodes in the graph by Vx, as each

corresponds to a variable xi. The graph G contains the

“dummy” nodes s and t. Each pixel-node j has a weight

dj associated with it, as shown in (4). If dj > 0, then there

is an arc (j, t) of capacity dj . If dj < 0, then there is an arc

(s, j) of capacity −dj . We partition Vx to Vx+ ∪ Vx− ∪ V0,

where for each node j in Vx+ , dj > 0, and for each node

j in Vx− , dj < 0. For each pair of adjacent nodes i and j

there is a capacity wij on both directed arcs (i, j) and (j, i).
We now outline the key modifications. In addition to the

nodes for the pixels in the two images, there is a similarity

node, or z-node, for each pair (i1k, i2k) so that i1k ∈ I(1)∩Hk

and i2k ∈ I(2) ∩ Hk. This node corresponds to the variable

zi1
k
,i2

k

in the (Co-seg) model. We denote the set of similarity

nodes by Vz , and link each such node to both i1k and i2k with

arcs of infinite capacity. We then link this node to the source

with an arc (s, (i1k, i2k)) of capacity λ (weight of the bias).

The constructed graph is G = (V ∪ {s, t}, A) with V =
Vx ∪Vz and A the set of arcs. The set of arcs A is the union

of: the set of adjacency arcs in I1, A1; the set of adjacency

arcs in I2, A2; the set of arcs (j, t) directed to the sink from

all nodes j ∈ Vx+ ; the set of arcs (s, j) from the source

to all nodes j ∈ Vx− ; one arc (s, z) for each node z ∈ Vz

and two arcs from each z to the respective pixel nodes. An

illustration of the graph is shown in Figure 2.

s t

VZ

i1, i2

λ
∞ ∞

−dj

dj < 0

j
i

di

di > 0

dk

dk > 0

k

I(1) I(2)

j i
−dj

di

wpq

wqp

i1
i2

Figure 2. The construction of the graph G with two dummy nodes,

the set of pixels in the two images I(1) and I(2), and the set of

similarity nodes Vz . Some nodes and arcs are annotated to show

the graph structure.

5. The algorithm (Co-Seg)

For a finite cut (S ∪ {s}, T ∪ {t}) of G, we refer to the

set of nodes in Vx+ ∩ S as Sx+ and we let Sx− = Vx− ∩ S

and Sz = Vz ∩ S. The analogous notation is used for those

sets intersecting T . We can now show the following result.

Theorem 5.1 Let (S ∪ {s}, T ∪ {t}) be the minimum s, t-

cut in the graph G obtained using a max-flow algorithm.

Then the optimal solution to (Co-Seg) is achieved by setting

xi = 1 for each pixel node in the source set S and every

zi1
k
,i2

k

= 1 for each similarity node in the sink set T .

Proof: The graph G has at least one finite capacity cut,

({s}, V ∪ {t}). Let (S ∪ {s}, T ∪ {t}) be a partition of

V ∪ {s, t} forming a finite s, t-cut in G. Such a cut corre-

sponds to a feasible solution since if zi1
k
,i2

k

= 1 then also

xi1
k

= 1 and xi2
k

= 1, as otherwise an infinite capacity arc

will contribute to the capacity of the cut which violates its

finiteness. Other than satisfying this constraint any setting

of the values of the variables x is feasible. The values of the

variables y
(q)
ij are determined so they are = 1 if the respec-

tive arc in the graph is directed from a node in the source

set (S node) to a node in the sink set (T node). Therefore,

the constraints for the y variables are satisfied as well. This

shows that a finite cut corresponds to a feasible solution to

the problem (Co-Seg). We now compute this cut’s capacity:

C(S ∪ {s}, T ∪ {t}) =
∑

i∈S
x+

di +
∑

j∈T
x−

(−dj)

+
∑

i∈Sx,j∈Tx
wij + λ|Tz|.

We note that
X

j∈T
x−

dj =
X

j∈Vx

dj −
X

j∈S
x−

dj



and also λ|Tz| = λ|Vz| −λ|Sz|. Therefore, the cut value is

C(S ∪ {s}, T ∪ {t}) = −
∑

j∈Vx
dj + λ|Vz|+

∑

i∈Sx
di +

∑

i∈Sx,j∈Tx
wij − λ|Sz|.

The first two terms in the sum are constant. Thus, min-

imizing C(S ∪ {s}, T ∪ {t}) is equivalent to minimizing
∑

i∈Sx
di +

∑

i∈Sx,j∈Tx
wij −λ|Sz|, which is precisely the

objective value of the (Co-Seg) problem, when setting the x

and z variables with corresponding nodes in S to 1.

6. Experimental Results

In this section, we discuss our experiments for evaluating

the performance of our algorithm qualitatively and relative

to earlier approaches. Later, we present experiments to as-

sess the running time of the algorithm on standard image

sizes, and look at the dependence of the results on some

user tunable parameters. In the experiments described here,

we used histograms derived from the image intensity values

and Gabor filter based texture features [20]. Our method

is transparent of the underlying appearance model (i.e., pa-

rameterization of its distribution), and other texture repre-

sentations [21] can be used easily, if desired. For compar-

isons with existing techniques, we used an implementation

of the algorithm in [1]: we start with a segmentation of

the two images using graph cuts, and then incrementally

force the foregrounds to be consistent with one another (in

an alternative fashion). This requires solving a sequence

of graph cuts and the process terminates once the algorithm

has converged or the number of iterations have been reached

(number of iterations was set to 10).

6.1. Qualitative and quantitative analysis

We first present results obtained by the proposed algo-

rithm on a set of images from [1] in Figs. 3-4. In the

first pair of images (stone), we see that a graph cuts seg-

mentation works well on the second image but on the first

image the lower part of the stone is not properly segmented.

The two co-segmentation algorithms, however, successfully

distinguish the object from the background in both images.

In the second set of images (banana), graph cuts overseg-

ments the second image. The first image, however, is easier

to segment, and this characteristic is exploited by the co-

segmentation algorithms to significantly reduce the number

of misclassified pixels. Similarly, the first image in the third

pair is particularly difficult to segment because of negli-

gible contrast variation between the object of interest and

the background. As a result, a graph cuts segmentation

does not perform satisfactorily. Co-segmentation exploits

the stronger discontinuity between the object and the back-

ground to correctly segment the first image also. We con-

tinue the results in Fig. 4, where graph cuts oversegments

(and undersegments) in the first (and second) image pair

respectively. Both co-segmentation algorithms can success-

fully identify the region of interest from background. The

performance of the algorithms on the remaining five images

in our dataset was similar. We found that co-segmentation

improves upon the graph-cuts segmentation by 3-8%. Ex-

pectedly, the improvements are more prominent when one

of the images is “easy” – this allows the process to utilize

the additional information to segment an otherwise difficult

second image. While there were small variations in the so-

lution from our algorithm and [1] (see misclassification er-

ror in Figs. 3-4), these differences (w.r.t. accuracy) were

not significant. In general, on image pairs suitable for co-

segmentation the performance of both algorithms is compa-

rable which provides empirical evidence (follow-up to dis-

cussion in §2- 3.2) that the proposed model is suitable for

the problem. A practical advantage offered by our solution

is that it is non-iterative and requires only one max-flow

procedure (discussed in detail in Section 6.3).

Illumination and Scale.

Figure 5 shows a few additional images collected from

image hosting websites (such as Flickr) where co-

segmentation is useful. These examples illustrate that by us-

ing good histogram features, co-segmentation is relatively

invariant to moderate changes in illumination. In addition,

due to our choice of rewarding similarity in histogram fea-

tures (see (5)), small changes in scale of the object (between

images) do not have a significant impact on the empirical

performance of the algorithm.

6.2. Dependencies and variations

Bias magnitude.

In Fig. 6, we illustrate the effect of the final segmentation

as a response to introducing variation in magnitude of the

introduced bias (to favor histogram similarity). For λ too

small, a number of additional pixels are part of the fore-

ground due to a strong influence of the separation penalty.

For a larger λ value (and a large number of z-nodes, see

Fig. 2), the cumulative histogram similarity reward in as-

signing additional pixels to the foreground outweighs the

corresponding MRF penalty. In general, a “sweet spot” for

λ depends less on the specific image, and more on the num-

ber of buckets chosen to specify the histogram (i.e., number

of z-nodes). Therefore, a suitable value can be evaluated us-

ing cross-validation (in our experiments, λ = 0.001 worked

well). We note, however, that it is easy to make this pro-

cedure rigorous if desired. This involves parameterizing λ,

solving a single parametric max-flow procedure [22, 23],

and finding the correlation coefficient of the two foreground

regions for each breakpoint.

Number of histogram buckets.

The number of histogram buckets should be chosen such

that the corresponding similarity nodes (z-nodes) in Fig. 2

are sensitive as well as specific. That is, the number should



Input image pair Graph cuts, err: 3.6%

Co-segmentation [1], err: 1.9% Co-segmentation, err: 1.2%

Input image pair Graph cuts, err: 7.7%

Co-segmentation [1], err: 3.3% Co-segmentation, err: 3.1%

Input image pair Graph cuts, err: 7.9%

Co-segmentation [1], err: 3.7% Co-segmentation, err: 3.0%

Figure 3. The first row shows the input image pair and segmen-

tation obtained using graph cuts on each image. The second row

shows segmentations obtained using the two co-segmentation al-

gorithms: [1] (left) and our solution (right).

not be too large (very similar pixels hash to different buck-

ets), it should also not be too small (arbitrary pixel pairs

hash to the same bucket). We found that 15-30 buckets per

color channel works well. Fig. 7 shows that using very few

buckets leads to oversegmentation. Further, a small number

of buckets yields a large set of z-nodes, which leads to an

increase in running time.

6.3. Running time

We now demonstrate a useful advantage of our algorithm

in terms of running time. Fig. 8 (left) compares the running

time of our algorithm (25 buckets per channel) and one it-

Input image pair Graph cuts, err: 12.5%

Co-segmentation [1], err: 2.2% Co-segmentation, err: 1.8%

Input image pair Graph cuts, err: 14%

Co-segmentation [1], err: 5.3% Co-segmentation, err: 4.0%

Figure 4. The first row shows the input image pair and segmen-

tation obtained using graph cuts on each image. The second row

shows segmentations obtained using the two co-segmentation al-

gorithms: [1] (left) and our solution (right).

Input image pair Co-segmentation, err: 3.5%

Input image pair Co-segmentation, err: 3.9%

Input image pair Co-segmentation, err: 2.9%

Figure 5. Co-segmentation results on images obtained from Flickr

with moderate variations in illumination and scale.

eration of [1] (error bars indicate standard deviation) as a

function of image size, using -O3 flag with g++ compiler

on a GNU/Linux workstation. The plot only includes the

time for computing the maximum flow (not for setting up



λ = 0.01 λ = 0.001 λ = 0.00001

Figure 6. Change in segmentation as a response to variation in the

magnitude of introduced bias, λ.

Figure 7. Varying the number of buckets in the histogram from 10

buckets (top-left) to 30 buckets (bottom-right).

the graphs, reading in images). We see that the computa-

tional burden for one iteration of both algorithms is almost

equivalent. In Fig. 8 (right), we show the running time of

the two algorithms (number of iterations of [1] = 5). Since

the proposed algorithm requires only one iteration, we see

that it offers a noticeable advantage for large image sizes.

Figure 8. (Left) The running time of the proposed algorithm

and one iteration of [1] as a function of the image sizes {64 ×
64, · · · , 256 × 256}. (Right) The running time of the proposed

algorithm and [1] (number of iterations was kept fixed at five).

6.4. Cosegmentation for pathology detection in
brain images

Finally, we discuss an application to the extraction of

pathologies such as lesions from brain image volumes,

important in the study of neurological disorders such as

Alzheimer’s disease (AD). Here, the strategy of using a

standard segmentation followed by extensive post process-

ing may be too dataset specific, where as a large number

of well characterized examples are needed for a supervised

learning approach. Also, standard segmentation methods

are typically designed to extract the distinct regions from

an image, which makes it difficult to adapt them easily for

identifying small pathologies. We observe that the avail-

ability of additional similar images (even if unsegmented)

can be leveraged to identify such pathologies consistently.

In our preliminary experiments, we see that while the size,

intensity, texture, and location of lesions (and pathologies)

vary between subjects, much of the underlying brain struc-

ture remains relatively unchanged from one image to the

next if they are affinely registered to a common ‘template’.

We wish to extract this similarity from multiple images first

(as the foreground), and then view the “residuals” as the

pathology (or lesions). Figure 9 shows some preliminary re-

sults on four pairs of images. The first and second columns

show a 2D slice from the images: while the first image has

no apparent pathologies, one or more lesions can be seen

in the second image. For these experiments, images with

lesions and the set of accompanying images were identified

by an expert. In Fig. 9 (third column), we see that co-

segmentation gives promising preliminary results where the

lesions are accurately identified as the background. While

these results are preliminary, they illustrate a new possible

application of the algorithm.

(a) (b) segmented

Figure 9. Example segmentation of lesions from brain images

where (a) and (b) show the input image pair, and lesions can be

seen in the images in (b). The final “background” segmentation is

shown in the third column.



7. Conclusions

We have proposed an efficient algorithm for the (Co-seg)

problem. Our approach is motivated from the carrot or stick

philosophy – where rather than penalize the difference (dis-

tance) of the two foreground histograms, we reward their

similarity (affinity). We demonstrate that the resultant prob-

lem has a particularly nice structure, and can be solved op-

timally in polynomial time using only one maximum flow

computation. Our solution offers an efficient algorithm

for this important problem. On the experimental side, we

show that our algorithm performs similarly as existing al-

gorithms, but offers running time savings for larger images.

We also show a novel application of co-segmentation to a

neuroimaging segmentation problem where it may prove to

be valuable.
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