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Abstract 

A fast algorithm for computing the two-dimensional discrete 
cosine transform (2-D DCT) is proposed. In this algorithm 
the 2-D DCT is converted into a form of 2-D DFT which is 
called the odd DFT(ODFT). The odd DFT can be calculated 
by a DFT followed by post-multiplications. The DFT part of 
odd DFT is calculated by the fast discrete Radon transform. 

A brief description of the Gertner method [5] for computing 
the 2-D FFT is presented in section 2, together with the radix- 
2 fast discrete Radon transfrom (FDRT). The mapping used 
in converting the DCT into an odd DFT, and the 2-D DCT 
algorithm by using the FDRT are described in section 3. A 
discussion on the computational complexity of the algorithm 
is presented in section 4. 

The complexity of the proposed algorithm is comparable to  the 
polynomial transform approach. This new algorithm produces Computing Of the 2-D DFT 
a regular structure which makes it attractive for VLSI imple- 
mentation. Furthermore, the computation can be performed 
in parallel. 

1 Introduction 

Since its introduction in 1974, the discrete cosine transform 
[l] has found many applications in image processing, and data 
compression; due t o  its ability to  closely approximate the op- 
timal Karhunen-Loeve transform (KLT) and its suitability for 
implementation by a fast algorithm. Recently, it has been 
adopted by the CCITT as part of the video coding standard. 

In image coding, a 2-D DCT is used. The usual way of 
computing the 2-D DCT has been the row-column approach, 
where a 2-D DCT of an (NxN) block is decomposed into N 
DCTs for the N rows and N DCTs for the N columns. Recent 
studies [7] [4] have shown that direct 2-D techniques are more 
efficient than row-column approaches. 

Most of the direct 2-D methods for computing 2-D DCT are 
based on polynomial transform [4] [7]. In [4] , the polynomial 
transform is used to  calculated the 2-D FFT and a rotation 
stage is used to  perform the complex multiplications. In a 
recent paper [7], the polynomial transform is performed on the 
W$kl term. The latter reduces the computational complexity 
a t  the expense of a more complex algorithm and flowgraph 
structure. 

In this paper, a 2-D direct computation of the 2-D DCT is 
proposed. The method is based on the geometric relationship 
between points on a 2-D grid. The 2-D DCT is first formu- 
lated as a two-dimensional odd DFT (2-D ODFT). The newly 
formed 2-D ODFT can be calculated by a 2-D DFT and post- 
multiplications. 

In this section, we briefly describe the discrete Radon trans- 
form (DRT) for computing a 2-D DFT proposed by Gertner 
[ 5 ] ,  in order to  understand the computation of the 2-D DCT. 
A 2-D DFT is defined as 

i=o j=o 

where WN = e-3zrr/N, and k ,  1 = 0, .  . . , N - 1. 

Gertner [5]  has shown that an (NxN) point 2-D DFT can 
be computed by taking a number of N-point 1-D DFTs, where 
this number is equal to the number of linear congruences of the 
(NxN) grid. For N = 2n, the number of linear congruences on 
the (NxN) grid is 3N/2. 

The 2-D DFT can now be calculated using the following 
equations: 

N-1  

X(< N - ml > ~ , 1 )  = Rl(m,d)WE (2a )  
d=O 

m =  0,1, . . . ,N - 1 1 = 0, I , . . . ,  N - 1 

N-1 
X ( k ,  < N - 2sk > N )  = R2(s,d)Wkd (26) 

d=O 

s = 0, l , . . . ,  N/2 - 1 k = 0,1, ’”, N - 1 

where R1 and Rz are the DRTs on the input array z( i , j ) ,  
which are defined as: 

Rl(m,d) = N-1 z ( i ,  < d t mi > N )  

d,m = O , . . . ,  N - 1 
i=O 
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N-1 

R ~ ( s ,  d )  = x(< d t 2si > N ,  i )  (3b) 
i=O 

d = O,... ,N - 1 s = O , . . . ,  N / 2  - 1 

Normally, the DRT requires i ( N  - 1 ) N 2  additions. A 
radix-2 algorithm is used to reduce the number of additions 
for computing the DRT [6]. Let 

2'-1 

Rf) ( i ,  m, d )  = ~ ( j 2 ~ - ~  + i ,  < d + m(j2n-' + i )  >N) ( 4 ~ )  
j=O 

2t-1 

R f ) ( i , s , d )  = z(< d + 2s(j2n-t + i) > ~ , j 2 ~ - ~  + i) (4b) 

for i = 0,. . . ,2n-t - 1. The DRT can be computed in n stages. 
At each stage 1, 

j=O 

RE(i ,m,d)  = Rr- ' ) ( i ,m,d)+ R:-"(i+ 2n-t,m,d) 

Ri(i,  s, d )  = R:-')(i, s ,  d )  + R!-')(i + 2n-t, s, d )  

(5a )  

(5b) 
where 

Ry)( i ,  m, d )  = ~ ( i ,  < d + mi > N )  

R P ) ( i , s , d ) =  x ( < d + 2 s i > ~ , i )  ( 6 b )  

R l ( m ,  d )  = Rp)(O, m, d)  

R2(s, d )  = Rp)(O, s ,  d )  

( s a )  

and 
( 7a)  

(7a )  

By using the following properties: 

RF'(i, m + # , d )  = R f ) ( i ,  m, < d + iq2t > N )  ( s a )  

( 8 h )  RF)(i, s t $?-', d )  = R f ) ( i , s ,  < d + i# > N )  

the ranges of m and s in each stage t ,  reduces to  m = 0, .  . . , 2t - 1 
and s = 0,. , , , 2t-1 - 1. Hence, the number of additions re- 
quired to compute the DRT for an (NxN) array, where N = 2n, 
is 4 log(N)N2.  The flowgraph of FDRT for an ( 8  x 8) array 
is shown in Figures 2 and 3, for RI and R2 respectively. Note 
that the second stage for R2 is the same as the two blocks 
in the second stage of RI. As we can see, the structure of 
the flowgraph is very regular. This feature makes the FDRT 
approach for computing 2-D FFT easily adaptable for VLSI 
implementation. 

3 Computing 2-D DCT using FDRT 

In this section, we describe the mapping that enables the com- 
putation of a DCT via a DFT. A 1-D DCT is defined as follows: 

2 4 %  +- 1)k 
4N 

N - l  
X ( k )  = x(i)cos 

i=O 
(9) 

k = 0,1 , . . . ,N  - 1 

By using the classical mapping [2], [3] 

the DCT becomes 

k = O,l , . . . ,N - 1 

Using a trigonometric identity, the expression for X ( N  - k) is 
similar t o  the above equation except that  the cosine function is 
replaced by a sine function. Hence we can define a transform 
U ( k )  as follows: 

N-1 

(12) U ( k )  = X ( k )  + j X ( N  - k) = y( i )W4,  (4i+l)k 
i=O 

Note that we only need to  evaluate k such that the set {k, N - 
k }  = (0,. . . , N - 1). 

For the 2-D case, the 2-D DCT is defined as: 

k,Z = 0 , .  . ., N - 1 

By analogy with the 1-D case, it is easy to  recognize that 
the 2-D DCT coefficients can be obtained from U ( k ,  1 )  by the 
following set of equations : 

X(k,Z)  = Re[U(k ,Z)+jU(N - k,Z)] 

(14) 
X ( k , N - Z ) =  - I m [ U ( k , Z ) $ j U ( N - k , 1 ) ]  
X ( N  - k,Z) = - I m [ U ( k , Z ) - j U ( N  - k,1) ]  

X ( N - k , N - l ) =  - R e [ U ( k , l ) - j U ( N - k , Z ) ]  

~ 

i=O j = O  

and y ( i , j )  is the 2-D extension of the mapping described in 
equation (10). [4] 

i = 0, .  . ., N / 2  - 1 
j = 0,. . ., N / 2  - 1 
i =  N / 2 ,  ..., N - 1 

i = O ,  ..., N / 2 - 1  
j = N / 2 ,  ..., N - 1 

x(2N - 2i - l , 2 j )  

x (2 i ,  2N - 2j - 1 )  

j = 0,. . ., N / 2  - 1 
Y(i,j)  = 

(16) 
Note that eqn (14) requires U ( k , l )  to  be computed for all k, 
and only a subset of Z such that {Z, N - Z} cover all possible 
values of 1.  

We can rewrite U ( k ,  1 )  as follows: 

i = O  j = O  

We observe that the summation in the above equation is 
identical to  that for the 2-D DFT. This can be calculated us- 
ing the FDRT approach, the post-multiplication stage can be 
implemented as suggested in 141: 
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1 0  ck+l X ( k ,  4 

X ( N  - 6 ,  N - 1) 
[ $2;; j = [ -; i -; ; j [ ""0" 0 

where C' = cos(2?r(i)/4N) and S' = sin(2x(i)/4N) . 

4 Arithmetic Complexity 

Let the M[.] and A[.] denote the number of multiplications 
and additions needed to  compute [.] respectively. Since the 
algorithm can be divided into two stages, the DFT and post- 
multiplications. The number of multiplications and additions 
required for the FDRT-based 2-D DFT for real (N  x N )  array 
are respectively: 

7 
6 

M[DFT(N x N)] = 1og(N)N2/2 - - N 2  t 8/3 

A[DFT(N x N)] = 310g(N)N2 - 2N2 + 18 

The number of multiplication and addition for the post multi- 
plication stage are (3N2-2N) and (5N2-6N+2) respectively. 
Hence, the number of multiplications and additions required 
for 2-D DCT of a ( N  x N )  array are: 

11 
6 

M[DCT(N x N)] = 1og(N)N2/2 + -N2 - 2N t 8/3 

A[DCT(N x N)] = 310g(N)N2 + 3N2 - 6N + 20 

The measure of computation complexity of the proposed al- 
gorithm is shown in Table 1 together with that of other algo- 
rithms for comparison. The complexity of the proposed ap- 
proach is comparable with the current polynomial transform 
methods. The number of multiplications is the same as for 
the Vetterli approach, and greater than that for the Duhamel- 
Guillemot. The number of additions are generally slightly more 
than that of the polynomial transform methods. A reduc- 
tion in the number of additions can be achieved by examining 

In this paper we proposed a new method for computing the 
2-D DCT using a number of 1-D DFTs which is less than 2N. 
The measure of arithmetic complexity is comparable with the 
other approaches in the current literature. Research in this 
area should be able to reduce the complexity even further. 
The flowgraph of the proposed algorithm has regular struc- 
ture which can be easily implemented using VLSI. Finally, the 
algorithm is well suited for parallel implementation. 
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the redundancies in the computing of the FDRT, for example, 
Rz(0,O) = Rl(0,O). 

N-FFT 

N-FFT Back Mapping 

Figure 1: The Decomposition of 2-D DCT using FDRT 
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Figure 3: The Flowchart computing R2 of a 8 x 8 FDRT 

Polynomial Polynoiiiial Proposed 
N Transform [7] Transform [4] Algorithm 

Mult. Add. Mult. Add. Mult. Add. 
8 96 484 104 462 104 580 

16 512 2531 568 2558 568 3124 
32 2560 12578 2840 12950 2840 15700 
64 12288 60578 13528 62442 13528 75412 

Figure 2: The flowchart for computing R1 of a 8x8 fast discrete 
Radon transform 

row-col 
F F C T  [3] 

Mult. Add. 
192 464 

1024 2592 
5120 13376 

24576 65664 

Table 1: Arithmetic coinplexity of NxN 2-D DCT algorithms. 
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