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Abstract

We consider a contextual version of multi-armed bandit problem with global knapsack constraints.

In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector,

both dependent on the context, and the global knapsack constraints require the total consumption

for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary

set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who

gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a com-

putationally efficient algorithm for this problem with slightly better regret bounds, by generalizing

the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The compu-

tational time of our algorithm scales logarithmically in the size of the policy space. This answers

the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where

there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the

sum of outcome vectors.

1. Introduction

Multi-armed bandits (e.g., Bubeck and Cesa-Bianchi (2012)) are a classic model for studying the

exploration-exploitation tradeoff faced by a decision-making agent, which learns to maximize cu-

mulative reward through sequential experimentation in an initially unknown environment. The

contextual bandit problem (Langford and Zhang, 2008), also known as associative reinforcement

learning (Barto and Anandan, 1985), generalizes multi-armed bandits by allowing the agent to take

actions based on contextual information: in every round, the agent observes the current context,

takes an action, and observes a reward that is a random variable with distribution conditioned on the

context and the taken action. Despite many recent advances and successful applications of bandits,

one of the major limitations of the standard setting is the lack of “global” constraints that are com-

mon in many important real-world applications. For example, actions taken by a robot arm may

have different levels of power consumption, and the total power consumed by the arm is limited by

the capacity of its battery. In online advertising, each advertiser has her own budget, so that her

advertisement cannot be shown more than a certain number of times. In dynamic pricing, there are

a certain number of objects for sale and the seller offers prices to a sequence of buyers with the goal

of maximizing revenue, but the number of sales is limited by the supply.
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Recently, a few papers started to address this limitation by considering very special cases such

as a single resource with a budget constraint (Ding et al., 2013; Guha and Munagala, 2007; György

et al., 2007; Madani et al., 2004; Tran-Thanh et al., 2010; Tran-Thanh et al., 2012), and application-

specific bandit problems such as the ones motivated by online advertising (Chakrabarti and Vee,

2012; Pandey and Olston, 2006), dynamic pricing (Babaioff et al., 2015; Besbes and Zeevi, 2009)

and crowdsourcing (Badanidiyuru et al., 2012; Singla and Krause, 2013; Slivkins and Vaughan,

2013). Subsequently, Badanidiyuru et al. (2013) introduced a general problem capturing most pre-

vious formulations. In this problem, which they called Bandits with Knapsacks (BwK), there are d
different resources, each with a pre-specified budget. Each action taken by the agent results in a d-

dimensional resource consumption vector, in addition to the regular (scalar) reward. The goal of the

agent is to maximize the total reward, while keeping the cumulative resource consumption below

the budget. The BwK model was further generalized to the BwCR (Bandits with convex Constraints

and concave Rewards) model by Agrawal and Devanur (2014), which allows for arbitrary concave

objective and convex constraints on the sum of the resource consumption vectors in all rounds. Both

papers adapted the popular Upper Confidence Bound (UCB) technique to obtain near-optimal regret

guarantees. However, the focus was on the non-contextual setting.

There has been significant recent progress (Agarwal et al., 2014; Dudı́k et al., 2011) in algo-

rithms for general (instead of linear (Abbasi-yadkori et al., 2012; Chu et al., 2011)) contextual

bandits where the context and reward can have arbitrary correlation, and the algorithm competes

with some arbitrary set of context-dependent policies. Dudı́k et al. (2011) achieved the optimal

regret bound for this remarkably general contextual bandits problem, assuming access to the policy

set only through a linear optimization oracle, instead of explicit enumeration of all policies as in

previous work (Auer et al., 2002; Beygelzimer et al., 2011). However, the algorithm presented in

Dudı́k et al. (2011) was not tractable in practice, as it makes too many calls to the optimization

oracle. Agarwal et al. (2014) presented a simpler and computationally efficient algorithm, with a

running time that scales as the square-root of the logarithm of the policy space size, and achieves

an optimal regret bound.

Combining contexts and resource constraints, Agrawal and Devanur (2014) also considered a

static linear contextual version of BwCR where the expected reward was linear in the context.1 Wu

et al. (2015) considered the special case of random linear contextual bandits with a single budget

constraint, and gave near-optimal regret guarantees for it. Badanidiyuru et al. (2014) extended the

general contextual version of bandits with arbitrary policy sets to allow budget constraints, thus ob-

taining a contextual version of BwK, a problem they called Resourceful Contextual Bandits (RCB).

We will refer to this problem as CBwK (Contextual Bandits with Knapsacks), to be consistent with

the naming of related problems defined in the paper. They gave a computationally inefficient algo-

rithm, based on Dudı́k et al. (2011), with a regret that was optimal in most regimes. Their algorithm

was defined as a mapping from the history and the context to an action, but the computational issue

of finding this mapping was not addressed. They posed an open question of achieving computational

efficiency while maintaining a similar or even a sub-optimal regret.

Main Contributions. In this paper, we present a simple and computationally efficient algorithm

for CBwK/RCB, based on the algorithm of Agarwal et al. (2014). Similar to Agarwal et al. (2014),

the running time of our algorithm scales as the square-root of the logarithm of the size of the policy

1. In particular, each arm is associated with a fixed vector and the resulting outcomes for this arm have expected value

linear in this vector.
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set,2 thus resolving the main open question posed by Badanidiyuru et al. (2014). Our algorithm even

improves the regret bound of Badanidiyuru et al. (2014) by a factor of
√
d. Another improvement

over Badanidiyuru et al. (2014) is that while they need to know the marginal distribution of contexts,

our algorithm does not. A key feature of our techniques is that we need to modify the algorithm in

Agarwal et al. (2014) in a very minimal way — in an almost blackbox fashion — thus retaining the

structural simplicity of the algorithm while obtaining substantially more general results.

We extend our algorithm to a variant of the problem, which we call Contextual Bandits with

concave Rewards (CBwR): in every round, the agent observes a context, takes one ofK actions and

then observes a d-dimensional outcome vector, and the goal is to maximize an arbitrary Lipschitz

concave function of the average of the outcome vectors; there are no constraints. This allows for

many more interesting applications, some of which were discussed in Agrawal and Devanur (2014).

This setting is also substantially more general than the contextual version considered in Agrawal

and Devanur (2014), where the context was fixed and the dependence was assumed to be linear.

Organization. In Section 2, we define the CBwK problem, and state our regret bound as Theorem

2. The algorithm is detailed in Section 3, and an overview of the regret analysis is in Section 4. In

Section 5, we present CBwR, the problem with concave rewards, state the guaranteed regret bounds,

and outline the differences in the algorithm and the analysis. Complete proofs and other details are

provided in the full version of the paper (Agrawal et al., 2016).

2. Preliminaries and Main Results

CBwK. The CBwK problem was introduced by Badanidiyuru et al. (2014), under the name of

Resourceful Contextual Bandits (RCB). We now define this problem.

LetA be a finite set ofK actions andX be a space of possible contexts (the analogue of a feature

space in supervised learning). To begin with, the algorithm is given a budget B ∈ ℜ+. We then

proceed in rounds: in every round t ∈ [T ], the algorithm observes context xt ∈ X , chooses an action

at ∈ A, and observes a reward rt(at) ∈ [0, 1] and a d-dimensional consumption vector vt(at) ∈
[0, 1]d. The objective is to take actions that maximize the total reward,

∑T
t=1 rt(at), while making

sure that the consumption does not exceed the budget, i.e.,
∑T

t=1 vt(at) ≤ B1.3 The algorithm

stops either after T rounds or when the budget is exceeded in one of the dimensions, whichever

occurs first. We assume that one of the actions is a “no-op” action, i.e., it always gives a reward of 0

and a consumption vector of all 0s. Furthermore, we make a stochastic assumption that the context,

the reward, and the consumption vectors (xt, {rt(a),vt(a) : a ∈ A}) for t = 1, 2, . . . , T are drawn

i.i.d. (independent and identically distributed) from a distribution D over X × [0, 1]A × [0, 1]d×A.

The distribution D is unknown to the algorithm.

Policy Set. Following previous work (Agarwal et al., 2014; Badanidiyuru et al., 2014; Dudı́k

et al., 2011), our algorithms compete with an arbitrary set of policies. Let Π ⊆ AX be a finite set of

policies4 that map contexts x ∈ X to actions a ∈ A. We assume that the policy set contains a “no-

op” policy that always selects the no-op action regardless of the context. With global constraints,

2. Access to the policy set is via an “arg max oracle”, as in Agarwal et al. (2014).

3. More generally, different dimensions could have different budgets, but this formulation is without loss of generality:

scale the units of all dimensions so that all the budgets are equal to the smallest one. This preserves the requirement

that the vectors are in [0, 1]d.

4. The policies may be randomized in general, but for our results, we may assume without loss of generality that they

are deterministic. As observed by Badanidiyuru et al. (2014), we may replace randomized policies with deterministic
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distributions over policies in Π could be strictly more powerful than any policy in Π itself.5 Our

algorithms compete with this more powerful set, which is a stronger guarantee than simply compet-

ing with fixed policies in Π. For this purpose, define C(Π) := {P ∈ [0, 1]Π :
∑

π∈Π P (π) = 1}
as the set of all convex combinations of policies in Π. For a context x ∈ X , choosing actions with

P ∈ C(Π) is equivalent to following a randomized policy that selects action a ∈ A with probability

P (a|x) =
∑

π∈Π:π(x)=a P (π); we therefore also refer to P as a (mixed) policy. Similarly, define

C0(Π) := {P ∈ [0, 1]Π :
∑

π∈Π P (π) ≤ 1} as the set of all non-negative weights over Π, which

sum to at most 1. Clearly, C(Π) ⊂ C0(Π).
Benchmark and Regret. The benchmark for this problem is an optimal static mixed policy, where

the budgets are required to be satisfied in expectation only. LetR(P ) := E(x,r,v)∼D[Eπ∼P [r(π(x))]]
and V(P ) := E(x,r,v)∼D[Eπ∼P [v(π(x))]] denote respectively the expected reward and consump-

tion vector for policy P ∈ C(Π). We call a policy P ∈ C(Π) a feasible policy if TV(P ) ≤ B1.

Note that there always exists a feasible policy in C(Π), because of the no-op policy. Define an

optimal policy P ∗ ∈ C(Π) as a feasible policy that maximizes the expected reward:

P ∗ = argmaxP∈C(Π) TR(P ) s.t. TV(P ) ≤ B1. (1)

The reward of this optimal policy is denoted by OPT := TR(P ∗). We are interested in minimizing

the regret, defined as

regret(T ) := OPT −
∑T

t=1 rt(at). (2)

AMO. Since the policy set Π is extremely large in most interesting applications, accessing it by

explicit enumeration is impractical. For the purpose of efficient implementation, we instead only

access Π via a maximization oracle. Employing such an oracle is common when considering con-

textual bandits with an arbitrary set of policies (Agarwal et al., 2014; Dudı́k et al., 2011; Langford

and Zhang, 2008). Following previous work, we call this oracle an “arg max oracle”, or AMO.

Definition 1 For a set of policies Π, the arg max oracle (AMO) is an algorithm, which for any

sequence of contexts and rewards, (x1, r1), . . . , (xt, rt) ∈ X × [0, 1]A, returns

argmaxπ∈Π
∑t

τ=1 rτ (π(xτ )) (3)

Main Results. Our main result is a computationally efficient low-regret algorithm for CBwK.

Furthermore, we improve the regret bound of Badanidiyuru et al. (2014) by a
√
d factor; they

present a detailed discussion on the optimality of the dependence on K and T in this bound.

Theorem 2 For the CBwK problem, ∀δ > 0, there is a polynomial-time algorithm that makes

Õ(d
√
KT ln(|Π|)) calls to AMO, and with probability at least 1− δ has regret

regret(T ) = O
(

OPT
B

+ 1
)√

KT ln(dT |Π|/δ).

Note that the above regret bound is meaningful only for B > Ω(
√
KT ln(dT |Π|/δ)), therefore in

the rest of the paper we assume that B > c′
√
KT ln(dT |Π|/δ)) for some large enough constant c′.

We also extend our results to a version with a concave reward function, as outlined in Section 5. For

the rest of the paper, we treat δ > 0 as fixed, and define quantities that depend on δ.

policies by appending a random seed to the context. This blows up the size of the context space which does not

appear in our regret bounds.

5. E.g., consider two policies that both give reward 1, but each consume 1 unit of a different resource. The optimum

solution is to mix uniformly between the two, which does twice as well as using any single policy.
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3. Algorithm for the CBwK problem

From previous work on multi-armed bandits, we know that the key challenges in finding the “right”

policy are that (1) it should concentrate fast enough on the empirically best policy (based on data

observed so far), (2) the probability of choosing an action must be large enough to enable sufficient

exploration, and (3) it should be efficiently computable. Agarwal et al. (2014) show that all these

can be addressed by solving a properly defined optimization problem, with help of an AMO. We

have the additional technical challenge of dealing with global constraints. As mentioned earlier,

one complication that arises right away is that due to the knapsack constraints, the algorithm has to

compete against the best mixed policy in Π, rather than the best pure policy. In the following, we

will highlight the main technical difficulties we encounter, and our solution to these difficulties.

Some definitions are in place before we describe the algorithm. Let Ht denote the his-

tory of chosen actions and observations before time t, consisting of records of the form

(xτ , aτ , rτ (aτ ),vτ (aτ ), pτ (aτ )), where xτ , aτ , rτ (aτ ),vτ (aτ ) denote, respectively, the context, ac-

tion taken, reward and consumption vector observed at time τ , and pτ (aτ ) denotes the probability

at which action aτ was taken. (Recall that our algorithm selects actions in a randomized way using

a mixed policy.) Although Ht contains observation vectors only for chosen actions, it can be “com-

pleted” using the trick of importance sampling: for every (xτ , aτ , rτ (aτ ),vτ (aτ ), pτ (aτ )) ∈ Ht,

define the fictitious observation vectors r̂τ ∈ [0, 1]A, v̂τ ∈ [0, 1]d×A by:

r̂τ (a) :=
rτ (aτ )

pτ (aτ )
I {aτ = a} ,

v̂τ (a) :=
vτ (aτ )

pτ (aτ )
I {aτ = a} .

Clearly, r̂τ , v̂τ are unbiased estimator of rτ ,vτ : for every a, Eaτ [r̂τ (a)] = rτ (a),Eaτ [v̂τ (a)] =
vτ (a), where the expectations are over randomization in selecting aτ .

With the “completed” history, it is straightforward to obtain an unbiased estimate of expected

reward vector and expected consumption vector for every policy P ∈ C(Π):

R̂t(P ) := Eτ∼[t],π∼P [r̂τ (π(xτ ))] ,

V̂t(P ) := Eτ∼[t],π∼P [v̂τ (π(xτ ))] .

The convenient notation τ ∼ [t] above, indicating that τ is drawn uniformly at random from the set

of integers {1, 2, . . . , t}, simply means averaging over time up to step t. It is easy to verify that

E[R̂t(P )] = R(P ), and E[V̂t(P )] = V(P ).
Given these estimates, we construct an optimization problem (OP) which aims to find a mixed

policy that has a small “empirical regret”, and at the same time provides sufficient exploration over

“good” policies. The optimization problem uses a quantity R̂egt(P ), “the empirical regret of policy

P ”, to characterize good policies. Agarwal et al. (2014) define R̂egt(P ) as simply the difference

between the empirical reward estimate of policy P and that of the policy with the highest empirical

reward. Thus, good policies were characterized as those with high reward. For our problem, how-

ever, a policy could have a high reward while its consumption violates the knapsack constraints by

a large margin. Such a policy should not be considered a good policy. A key challenge in this prob-

lem is therefore to define a single quantity that captures the “goodness” of a policy by appropriately

combining rewards and consumption vectors.
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We define quantities Reg(P ) (and the corresponding empirical estimate R̂egt(P ) up to round t)
of P ∈ C(Π) by combining the regret in reward and constraint violation using a multiplier “Z”. The

multiplier captures the sensitivity of the problem to violation in knapsack constraints. It is easy to

observe from (1) that increasing the knapsack size from B to (1 + ǫ)B can increase the optimal to

atmost (1 + ǫ)OPT. It follows that if a policy violates any knapsack constraint by γ, it can achieve

at most OPT
B
γ more reward than OPT. More precisely,

Lemma 3 For any b, let OPT(b) denote the value of an optimal solution of (1) when the budget is

set as b. Then, for any b ≥ 0, γ ≥ 0,

OPT(b+ γ) ≤ OPT(b) + OPT(b)
b

γ . (4)

We use this observation to set Z as an estimate of OPT
B

. We do this by using the outcomes of the first

T0 :=
12KT
B

ln d|Π|
δ

rounds, during which we do pure exploration (i.e., play an action inA uniformly at random). For no-

tational convenience, in our algorithm description we will index these initial T0 exploration rounds

as t = −(T0 − 1),−(T0 − 2), . . . , 0, so that the major component of the algorithm can be started

from t = 1 and runs until t = T − T0. The following lemma provides a bound on the Z that we

estimate. Its proof appears in the full version of the paper (Agrawal et al., 2016).

Lemma 4 For any B, using the first T0 = 12KT
B

ln d|Π|
δ

rounds of pure exploration, one can

compute a quantity Z such that with probability at least 1− δ,

max{4OPT
B

, 1} ≤ Z ≤ 24OPT
B

+ 8.

Now, to define Reg(P ) and R̂egt(P ), we combine regret in reward and constraint violation using

the constant Z as computed above. In these definitions, we use a smaller budget amount

B′ := B − T0 − c
√
KT ln(T |Π|/δ),

for a large enough constant c to be specified later. Here, the budget needed to be decreased by T0
to account for budget consumed in the first T0 exploration rounds. We use a further smaller budget

amount to ensure that with high probability (1 − δ) our algorithm will not abort before the end of

time horizon (T − T0), due to budget violation. For any vector v ∈ R
d, let φ(v, B′) denote the

amount by which the vector v violates the budget B′, i.e.,

φ(v, B′) := maxj=1,...,d

(
vj − B′

T

)+
.

Let P ′ denote the optimal policy when budget amount is B′, i.e.,

P ′ := argmaxP∈C(Π) TR(P ) s.t. TV(P ) ≤ B′1.

And, let Pt denote the empirically optimal policy for the combination of reward and budget viola-

tion, defined as:

Pt := argmaxP∈C(Π) R̂t(P )− Zφ(V̂t(P ), B
′). (5)

6
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We define

Reg(P ) := 1
Z+1(R(P

′)−R(P ) + Zφ(V(P ), B′)),

R̂egt(P ) :=
1

(Z+1)

[
R̂t(Pt)− Zφ(V̂t(Pt), B

′)−
(
R̂t(P )− Zφ(V̂t(P ), B

′)
)]
.

Note that Reg(P ′) = 0 and R̂egt(Pt) = 0 by definition.

We are now ready to describe the optimization problem, (OP). This is essentially the same as

the optimization problem solved in Agarwal et al. (2014), except for the new definition of R̂egt(P ),
which was described above. It aims to find a mixed policy Q ∈ C0(Π). This is equivalent to finding

a Q′ ∈ C(Π) and α ∈ [0, 1], and returning Q = αQ′. Let Qµ denote a smoothed projection of Q,

assigning minimum probability µ to every action: Qµ(a|x) := (1−Kµ)Q(a|x)+µ. (OP) depends

on the history up to some time t, and a parameter µm that will be set by the algorithm. In the rest of

the paper, for convenience, we define a constant ψ := 100.

Optimization Problem (OP)

Given: Ht, µm, and ψ.

Let bP :=
R̂eg

t
(P )

ψµm
, ∀P ∈ C(Π).

Find a Q′ ∈ C(Π), and an α ∈ [0, 1], such that the following inequalities hold. Let

Q = αQ′.
α · bQ′ ≤ 2K,

∀P ∈ C(Π) : Eτ∼[t]Eπ∼P

[
1

Qµm(π(xτ )|xτ )

]
≤ bP + 2K.

The first constraint in (OP) is to ensure that, under Q, R̂egt is “small”. In the second con-

straint, the left-hand side, as shown in the analysis, is an upper bound on the variance of estimates

R̂t(P ), V̂t(P ). These two constraints are critical for deriving the regret bound in Section 4. We

give an algorithm that efficiently finds a feasible solution to (OP) (and also shows that a feasible

solution always exists).

We are now ready to describe the full algorithm, which is summarized in Algorithm 1. The

main body of the algorithm shares the same structure as the ILOVETOCONBANDITS algorithm

for contextual bandits (Agarwal et al., 2014), with important changes necessary to deal with the

knapsack constraints. We use the first T0 rounds to do pure exploration and calculate Z as given

by Lemma 4. (These time steps are indexed from −(T0 − 1) to 0.) The algorithm then proceeds

in epochs with pre-defined lengths; epoch m consists of time steps indexed from τm−1 + 1 to τm,

inclusively. The algorithm can work with any epoch schedule that satisfies τm < τm+1 ≤ 2τm. Our

results hold for the schedule where τm = 2m. However, the algorithm can choose to solve (OP)

more frequently than what we use here to get a lower regret (but still within constant factors), at the

cost of higher computational time. At the end of an epoch m, it computes a mixed policy in Qm ∈
C0(Π) by solving an instance of OP, which is then used for the entire next epoch. Additionally, at

the end of every epoch m, the algorithm computes the empirically best policy Pτm as defined in

Equation (5), which the algorithm uses as the default policy in the sampling process defined below.

P0 can be chosen arbitrarily, e.g., as uniform policy.

The sampling process, Sample(x,Q, P, µ) in Step 8, samples an action from the computed

mixed policy. It takes the following as input: x (context), Q ∈ C0(Π) (mixed policy returned by the

7
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optimization problem (OP) for the current epoch), P (default mixed policy), and µ > 0 (a scalar

for minimum action-selection probability). Since Q may not be a proper distribution (as its weights

may sum to a number less than 1), Sample first computes Q̃ ∈ C(Π), by assigning any remaining

mass (from Q) to the default policy P . Then, it picks an action from the smoothed projection Q̃µ of

this distribution defined as: Q̃µ(a|x) = (1−Kµ)Q̃(a|x) + µ, ∀a ∈ A.

The algorithm aborts (in Step 10) if the budget B is consumed for any resource.

Algorithm 1 (Adapted from ILOVETOCONBANDITS of Agarwal et al. (2014))

Input Epoch schedule 0 = τ0 < τ1 < τ2 < · · · such that τm < τm+1 ≤ 2τm, allowed failure

probability δ ∈ (0, 1).
1: Initialize weights Q0 := 0 ∈ C0(Π), P0 ∈ C(Π) and epoch m := 1.

Define µm := min{ 1
2K ,

√
ln(16τ2m(d+ 1)|Π|/δ)/(Kτm)} for all m ≥ 0 .

2: for round t = −(T0 − 1), . . . , 0 do

3: Select action at uniformly at random from the set of all arms.

4: end for

5: Compute Z as in Lemma 4.

6: for round t = 1, 2, . . . do

7: Observe context xt ∈ X .

8: (at, pt(at)) := Sample(xt, Qm−1, Pτm−1 , µm−1).
9: Select action at and observe reward rt(at) ∈ [0, 1] and consumption vt(at).

10: Abort unless
∑t

τ=−(T0−1) vτ (aτ ) < B1.

11: if t = τm then

12: Let Qm be a solution to (OP) with history Ht and minimum probability µm.

13: m := m+ 1.

14: end if

15: end for

3.1. Computation complexity: Solving (OP) using AMO

Algorithm 1 requires solving (OP) at the end of every epoch. Agarwal et al. (2014) gave an algo-

rithm that solves (OP) using access to the AMO. We use a similar algorithm, except that calls to the

AMO are now replaced by calls to a knapsack constrained optimization problem over the empirical

distribution. This optimization problem is identical in structure to the optimization problem defin-

ing Pt in (5), which we need to solve also. We can solve both of these problems using AMO, as

outlined below.

We rewrite (5) as a linear optimization problem where the domain is the intersection of two

polytopes. The domain is [0, 1]d+2; we represent a point in this domain as (x,y, λ), where x and λ
are scalars and y is a vector in d dimensions. Let

K1 := {(x,y, λ) : x = R̂t(P ),y = V̂t(P ) for some P ∈ C(Π), λ ∈ [0, 1]},

be the set of all reward, consumption vectors achievable on the empirical outcomes upto time t,
through some policy in C(Π). Let

K2 := {(x,y, λ) : y ≤ (B′/T + λ)1} ∩ [0, 1]d+2,

8
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be the constraint set, given by relaxaing the knapsack constraints by λ. Now (5) is equivalent to

maxx− Zλ such that (x,y, λ) ∈ K1 ∩K2. (6)

Recently, Lee et al. (2015, Theorem 49) gave a fast algorithm to solve problems of the kind above,

given access to oracles that solve linear optimization problems over K1 and K2.6 The algorithm

makes Õ(d) calls to these oracles, and takes an additional Õ(d3) running time.7 A linear optimiza-

tion problem over K1 is equivalent to the AMO; the linear function defines the “rewards” that the

AMO optimizes for.8 A linear optimization problem over K2 is trivial to solve. As an aside, a

solution Q ∈ C0(Π) output by this algorithm has support equal to the policies output by the AMO

during the run of the algorithm, and hence has size Õ(d).
Using this, (OP) can be solved using O(d

√
KT ln(|Π|)) calls to the AMO at the end of every

epoch, and (5) can be solved using O(d) calls, giving a total of Õ(d
√
KT ln(|Π|)) calls to AMO.

The complete algorithm to solve (OP) is in full version of the paper Agrawal et al. (2016).

4. Regret Analysis

This section provides an outline of the proof of Theorem 2, which provides a bound on the regret of

Algorithm 1. (A complete proof is given in full version of the paper (Agrawal et al., 2016). ) The

proof structure is similar to the proof of Agarwal et al. (2014, Theorem 2), with major differences

coming from the changes necessary to deal with mixed policies and constraint violations. We de-

fined the algorithm to minimize R̂eg (through the first constraint in the optimization problem (OP)),

and the first step is to show that this implies a bound on Reg as well. The alternate definitions of

Reg and R̂eg require a different analysis than what was in Agarwal et al. (2014), and this difference

is highlighted in the proof outline of Lemma 6 below. Once we have a bound on Reg, we show that

this implies a bound on the actual reward R, as well as the probability of violating the knapsack

constraints.

We start by proving that the empirical average reward R̂t(P ) and consumption vector V̂t(P )
for any mixed policy P are close to the true averages R(P ) and V(P ) respectively. We define m0

such that for initial epochs m < m0, µm = 1
2K . Recall that µm is the minimum probability of

playing any action in epoch m + 1, defined in Step 1 of Algorithm 1. Therefore, for these initial

epochs the variance of importance sampling estimates is small, and we can obtain a stronger bound

on estimation error. For subsequent epochs, µm decreases, and we get error bounds in terms of max

variance of the estimates for policy P across all epochs before time t, defined as Vt(P ). In fact, the

second constraint in the optimization problem (OP) seeks to bound this variance.

The precise definitions of above-mentioned quantities are provided in Appendix D of (Agrawal

et al., 2016).

Lemma 5 With probability 1− δ
2 , for all policies P ∈ C(Π),

max{|R̂t(P )−Rt(P )|, ‖V̂t(P )−V(P )‖∞} ≤
{ √

8Kdt
t

t ∈ epoch m0, t ≥ t0

Vt(P )µm−1 +
dt

tµm−1
, t ∈ epoch m,m > m0

6. Alternately, one could use the algorithms of Vaidya (1989a,b) to solve the same problem, with a slightly weaker

polynomial running time.

7. Here, Õ hides terms of the order logO(1) (d/ǫ), where ǫ is the accuracy needed of the solution.

8. These rewards may not lie in [0, 1] but an affine transformation of the rewards can bring them into [0, 1] without

changing the solution.
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Here, dt = ln(16t2|Π|(d+1)/δ), t0 := min{t ∈ N : dt
t
≤ 1

4K }, m0 := min{m ∈ N : dτm
τm

≤ 1
4K }.

Now suppose the error bounds in above lemma hold. A major step is to show that, for every

P ∈ C(Π), the empirical regret R̂egt(P ) and the actual regret Reg(P ) are close in a particular sense.

Lemma 6 Assume that the events in Lemma 5 hold. Then, for all epochs m ≥ m0, all rounds

t ≥ t0 in epoch m, and all policies P ∈ C(Π),

Reg(P ) ≤ 2R̂egt(P ) + c0Kµm, and R̂egt(P ) ≤ 2Regt(P ) + c0Kµm,

for Reg(P ), R̂egt(P ) as defined in Section 3, and c0 being a constant smaller than 150.

Proof [Proof Outline] The proof of above lemma is by induction, using the second constraint in

(OP) to bound the variance Vt(P ). Below, we prove the base case. This proof demonstrates the

importance of appropriately chosing Z. Consider m = m0, and t ≥ t0 in epoch m. For all

P ∈ C(Π),

(Z + 1)(R̂egt(P )− Reg(P )) = R̂t(Pt)− R̂t(P )−R(P ′) +R(P ) (7)

−Z[φ(V̂t(Pt), B
′)− φ(V̂t(P ), B

′) + φ(V(P ), B′)].

We can assume that B ≥ c′
√
KT ln(dT |Π|/δ) for any constant c′ (otherwise the regret guarantees

in Theorem 2 are meaningless). Then, we have that B ≥ 2T0 + 2c
√
KT ln(T |Π|/δ) = 2(B −B′)

implying B′ ≥ B
2 . Also, observe that since B ≥ B′, OPT(B) ≥ OPT(B′). Then, by Lemma 3 and

choice of Z as specified by Lemma 4, we have that for any γ ≥ 0

OPT(B′ + γ) ≤ OPT(B′) + Z
2 γ. (8)

Now, since P ′ is defined as the optimal policy for budget B′, we obtain that R(P ′) = OPT(B′).
Also, by definition of φ(V(Pt), B

′), we have thatR(Pt) ≤ OPT(B′+φ(V(Pt), B
′)), and therefore,

R(P ′) ≥ R(Pt))− Z
2 φ(V(Pt), B

′) ≥ R(Pt))− Zφ(V(Pt), B
′).

Substituting in (7), we can upper bound (Z + 1)(R̂egt(P )− Reg(P )) by

R̂t(Pt)− R̂t(P )−R(Pt) + Zφ(V(Pt), B
′) +R(P )

−Z[φ(V̂t(Pt), B
′)− φ(V̂t(P ), B

′) + φ(V(P ), B′)]

≤ |R̂t(Pt)−R(Pt)|+ |R̂t(P )−R(P )|+ Z‖V̂t(Pt)−V(Pt)‖∞ + Z‖V̂t(P )−V(P )‖∞

For the other side, by definition of Pt, we have that R̂(Pt)) − Zφ(V̂(Pt), B
′) ≥ R̂(P ) −

Zφ(V̂(P ), B′). Substituting in (7) as above, and using that φ(V(P ′), B′) = 0, we get a similar

upper bound on (Z +1)(Reg(P )− R̂egt(P )). Now substituting bounds from Lemma 5, we obtain,

|R̂egt(P )− Reg(P )| ≤ 4
√

8Kdt
t

≤ c0Kµm.

This completes the base case. The remaining proof is by induction, using the bounds provided

by Lemma 5 for epochs m > m0 in terms of variance Vt(·), and bound on variance provided by

the second constraint in (OP). The second constraint in (OP) provides a bound on the variance of

any policy P in any past epoch, in terms of R̂egτ (P ) for τ in that epoch; the inductive hypothesis

10
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is used in the proof to obtain those bounds in terms of Reg(P ).

Given the above lemma, the first constraint in (OP) which bounds the estimated regret R̂egt(Q)
for the chosen mixed policy Q, directly implies an upper bound on Reg(Q) for this mixed policy.

Specifically, we get that for every epoch m, for mixed policy Qm that solves (OP),

Reg(Qm) ≤ (c0 + 2)Kψµm.

Next, we bound the regret in epoch m using above bound on Reg(Qm−1). For simplicity of dis-

cussion, here we outline the steps for bounding regret for rewards sampled from policy Qm−1 in

epoch m. Note that this is not precise in following ways. First, Qm−1 ∈ C0(Π) may not be in

C(Π) and therefore may not be a proper distribution (the actual sampling process puts the remain-

ing probability on default policy Pt to obtain Q̃t at time t in epoch m). Second, the actual sampling

process picks an action from smoothed projection Q̃
µm−1

t of Q̃t. However, we ignore these techni-

calities here in order to get across the intuition behind the proof; these technicalities are dealt with

rigorously in the complete proof provided in (Agrawal et al., 2016).

The first step is to use the above bound on Reg(Qm−1) to show that expected reward R(Qm−1)
in epoch m is close to optimal reward R(P ∗). Since φ(·, B′) is always non-negative, by definition

of Reg(Q), for any Q

(Z + 1)Reg(Q) ≥ R(P ′)−R(Q) ≥ R(P ∗)−R(Q)− OPT
B

(B−B′)
T

,

where we used Lemma 3 to get the last inequality. If the algorithm never aborted due to constraint

violation in Step 10, the above observation would bound the regret of the algorithm by

∑

m

(R(P ∗)−R(Qm−1))(τm−τm−1) ≤
∑

m

(Z+1)(c0+2)Kψµm−1(τm−τm−1)+
OPT

B
(B−B′).

Then, using that Z ≤ O(OPT
B

), B − B′ = O(
√
KT ln(dT |Π|/δ), and properly chosen scaling

factors (ψ and µm) result in the desired bound of O(OPT
B

√
KT ln(dT |Π|/δ)) for expected regret.

An application of Azuma-Hoeffding inequality obtains the high probability regret bound as stated

in Theorem 2.

To complete the proof, we show that in fact, with probability 1− δ
2 , the algorithm is not aborted

in Step 10 due to constraint violation. This involves showing that with high probability, the algo-

rithm’s consumption (in steps t = 1, . . . , T0) above B′ is bounded above by c
√
KT ln(|Π|/δ), and

since B′ + c
√
KT ln(|Π|/δ) + T0 = B, we obtain that the algorithm will satisfy the knapsack

constraint with high probability. This also explains why we started with a smaller budget. More

precisely, we show that for every m,

φ(V(Qm), B
′) ≤ 4(c0 + 2)Kψµm (9)

Recall that φ(V(P ), B′) was defined as the maximum violation of budget B
′

T
by vector V(P ). To

prove the above, we observe that due to our choice of Z, φ(V(P ), B′) is bounded by Reg(P ) as

follows. By Equation (8), for all P ∈ C(Π), R(P ′) ≥ R(P )− Z
2 φ(V(P ), B′), so that

(Z + 1) Reg(P ) = R(P ′)−R(P ) + Zφ(V(P ), B′) ≥ Z
2 φ(V(P ), S).

11
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Then, using the bound of Reg(Qm) ≤ (c0 + 2)Kψµm, we obtain the bound in Equation (9). Sum-

ming this bound over all epochs m, and using Jensen’s inequality and convexity of φ(·, B′), we

obtain a bound on the max violation of budget constraint B
′

T
by the algorithm’s expected consump-

tion vector 1
T

∑
mV(Qm−1)(τm − τm−1). This is converted to a high probability bound using

Azuma-Hoeffding inequality.

5. The CBwR problem

In this section, we consider a version of the problem with a concave objective function, and show

how to get an efficient algorithm for it. The CBwR problem is identical to the CBwK problem,

except for the following. The outcome in a round is simply the vector v, and the goal of the

algorithm is to maximize f( 1
T

∑
t=1 vt(at)), for some concave function f defined on the domain

[0, 1]d, and given to the algorithm ahead of time. The optimum mixed policy is now defined as

P ∗ = arg max
P∈C(Π)

f(V(P )). (10)

The optimum value is OPT = f(V(P ∗)) and we bound the average regret, which is

avg-regret := OPT − f
(

1
T

∑T
t=1 vt(at)

)
.

The main result of this section is an O(1/
√
T ) regret bound for this problem. Note that the

regret scales as 1/
√
T rather than

√
T since the problem is defined in terms of the average of the

vectors rather than the sum. We assume that f is represented in such a way that we can solve

optimization problems of the following form in polynomial time.9 For any given a ∈ ℜd,

max f(x) + a · x : x ∈ [0, 1]d.

Theorem 7 For the CBwR problem, if f is L-Lipschitz w.r.t. norm ‖ · ‖, then there is a polynomial

time algorithm that makes Õ(d
√
KT ln(|Π|)) calls to AMO, and with probability at least 1− δ has

regret

avg-regret(T ) = O
(
‖1d‖L√

T

(√
K ln(T |Π|/δ) +

√
ln(d/δ)

))
.

Remark 8 A special case of this problem is when there are only constraints, in which case f could

be defined as the negative of the distance from the constraint set. Further, one could handle both

concave objective function and convex constraints as follows. Suppose that we wish to maximize

h( 1
T

∑
t=1 vt(at)), subject to the constraint that 1

T

∑
t=1 vt(at) ∈ S, for some L-Lipschitz concave

function h and a convex set S. Further, suppose that we had a good estimate of the optimum

achieved by a static mixed policy, i.e.,

OPT′ := max
P∈C(Π)

h(V(P )) s.t. V(P ) ∈ S. (11)

For some distance function d(·, S) measuring distance of a point from set S, define

f(v) := min
{
h(v)− OPT′,−Ld(v, S)

}
.

9. This problem has nothing to do with contexts and policies, and only depends on the function f .
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5.1. Algorithm

Since we don’t have any hard constraints and don’t need to estimate Z as in the case of CBwK, we

can drop Steps 2–5 and Step 10 in Algorithm 1, and set T0 = 0. The optimization problem (OP) is

also the same, but with new definitions of Reg(P ), Pt and R̂egt(P ) as below. Recall that P ∗ is the

optimal policy as given by Equation (10), and L is the Lipschitz factor for f with respect to norm

‖ · ‖. We now define the regret of policy P ∈ C(Π) as

Reg(P ) := 1
‖1d‖L (f(V(P ∗))− f(V(P ))) .

The best empirical policy is now given by

Pt := argmaxP∈C(Π) f(V̂t(P )), (12)

and an estimate of the regret of policy P ∈ C(Π) at time t is

R̂egt(P ) :=
1

‖1d‖L(f(V̂t(Pt))− f(V̂t(P ))).

Another difference is that we need to solve a convex optimization problem to find Pt (as defined

in (12)) once every epoch. A similar convex optimization problem needs to be solved in every

iteration of a coordinate descent algorithm for solving (OP). In both cases, the problems can be cast

in the form

min g(x) : x ∈ C,

where g is a convex function, C is a convex set, and we are given access to a linear optimization

oracle, that solves a problem of the form min c · x : x ∈ C. In (12) for instance, C is the set of all

V̂t(P ) for all P ∈ C(Π). A linear optimization oracle over this C is just an AMO as in Definition 1.

We show how to efficiently solve such a convex optimization problem using cutting plane methods

(Vaidya, 1989a; Lee et al., 2015), while making only Õ(d) calls to the oracle.

The details are provided in the full version of the paper (Agrawal et al., 2016).

5.2. Regret Analysis: Proof of Theorem 7

We prove that Algorithm 1 and (OP) with the above new definition of R̂egt(P ) achieves regret

bounds of Theorem 7 for the CBwR problem. A complete proof of this theorem is given in the full

version of the paper (Agrawal et al., 2016). Here, we sketch some key steps.

The first step of the proof is to use constraints in (OP) to prove a lemma akin to Lemma 6

showing that the empirical regret R̂egt(P ) and actual regret Reg(P ) are close for every P ∈ C(Π).

Therefore, the first constraint in (OP) that bounds the empirical regret R̂egt(Qm) of the computed

policy implies a bound on the actual regret Reg(Qm) =
1

L‖1d‖(f(V(P ∗))− f(V(Qm))). Ignoring

the technicalities of sampling process (which are dealt with in the complete proof), and assuming

that Qm−1 is the policy used in epoch m, this provides a bound on regret in every epoch. Regret

across epochs can be combined using Jensen’s inequality which bounds the regret in expectation.

Using Azuma-Hoeffding’s inequality to bound deviation of expected reward vector from the actual

reward vector, we obtain the high probability regret bound stated in Theorem 7.
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