
Discrete Comput Geom 18:377–383 (1997) Discrete & Computational

Geometry
© 1997 Springer-Verlag New York Inc.

An Efficient Algorithm for Euclidean Shortest Paths
Among Polygonal Obstacles in the Plane

S. Kapoor,1 S. N. Maheshwari,1 and J. S. B. Mitchell2

1Department of Computer Science and Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi, India
{skapoor, snm}@cse.iitd.ernet.in

2Department of Applied Mathematics and Statistics, State University of New York,
Stony Brook, NY 11794–3600, USA
jsbm@ams.sunysb.edu

Abstract. We give an algorithm to compute a (Euclidean) shortest path in a polygon with
h holes and a total ofn vertices. The algorithm usesO(n) space and requiresO(n+h2 logn)
time.

1. Introduction

Let P denote a (multiply connected, closed) polygon in the plane havingh holes (“ob-
stacles”) and a total ofn vertices. The problem of computing a shortest (“geodesic”) path
from a points ∈ P to a pointt ∈ P has been well studied in computational geometry; see
[1], [4], [6], [8], [10], [13], [14], [17], and [21]–[23], as well as the recent survey chapter
by Mitchell [15]. In the case thath = 0, the shortest path can be computed inO(n)
time [6], [12]. In the case thath > 0, the complexity of the problem has been worst-case
quadratic(O(n2)), until the recentO(n1.5+ε) algorithm of Mitchell [14], which develops
the “continuous Dijkstra” paradigm, and its improvement by Hershberger and Suri [7],
[8], which results in an algorithm whose running time isO(n logn).

A lower bound ofÄ(n+ h logh) is easy to establish (from sorting or convex hulls),
but, to date, there is no matching upper bound. In fact, no upper bounds of the form
O(n+ f (h)), havinglinear dependence onn, have previously been published.

Here, we offer a simple algorithm whose dependence onn is linear, both in time and
space. The time dependence onh, however, is slightly worse than quadratic:O(n +
h2 logn). Thus, while our algorithm is optimal for values ofh that are roughlyO(

√
n), it

is inferior to the best known methods in cases in whichh is not relatively small compared



378 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

with n. In many applications (e.g., geographic problems), though,h may be expected to
be small compared withn.

Our approach is to construct a relevant subgraph of the visibility graph ofP, aug-
mented with path information obtained from the “corridor” structure ofP. We search
the graph using Dijkstra’s algorithm, constructing edges as the algorithm proceeds, in
order to keep the space complexity toO(n).

A preliminary version of this paper appeared in part in [10]. Here, we give a somewhat
simplified variation of the original methods of [10]. Full details of the original approach,
which leads to some slightly improved time bounds (see the remarks after Theorem 1),
can be found in [11].

2. The Algorithm

We assume thatP is a closed, connected set, whose boundary consists ofn line segments,
havingh + 1 connected components: theouter boundary, plus the boundaries of each
of theh polygonal holes (obstacles) of P. Without loss of generality,P is bounded, and
we assume thats andt are interior toP.

We triangulateP; this can be done in timeO(n+h log1+ε h) [2]. We then incorporate
s andt into the triangulation by linkings (resp.t) to the three corners of the triangle,τs

(resp.τt ), that contains it. (We assume thatτs 6= τt ; otherwise, the shortest path froms
to t is simply the line segment joining them.) LetT denote the resulting triangulation,
and letGT denote the graph-theoretic dual ofT . Note thatGT is a planar graph having
O(n) nodes,O(n) arcs, andh+ 1 faces, and that at least one of the three nodes dual to
the triangles incident on each ofs andt has degree 3.

Kapoor and Maheshwari [10] and Mitchell and Suri [16] have shown how contraction
of GT naturally leads to a decomposition ofP into “corridors,” as follows: First, we take
any degree-1 node ofGT and delete it, along with its incident edge; we repeat until there
are no degree-1 nodes. Now,GT hash+1 faces and all nodes are of degree 2 or 3. Assume
now thath ≥ 2; then not all nodes are of degree 2, implying that there are at least two
degree-3 nodes (since there must always be an even number of odd-degree vertices in a
graph). Next, for each degree-2 node, we delete it and replace its two incident edges with
a single edge. The resulting graph, call itG, is a 3-regular planar graph, possibly with
loops and possibly with multiedges (two edges joining the same pair of nodes). Further,
G hash + 1 faces, 2h − 2 nodes, and 3h − 3 arcs (by Euler’s formula). Each node of
G corresponds to a triangle inT ; we call theseO(h) triangles thejunction triangles.
Removal of the junction triangles fromP results in a set of simple polygons, one for each
arc ofG, which we refer to as thecorridors of P. (That corridors are simply connected
follows immediately from the contraction process.) Refer to Fig. 1.

The boundary of a corridorC consists of four pieces: (1) a polygonal chain along
the boundary of an obstacleO1, from a vertexa to a vertexb; (2) a diagonal (junction
triangle) edge fromb to a vertexc (possiblyO2 = O1); (3) a polygonal chain along the
boundary ofO2, from c to a vertexd; and (4) a diagonal (junction triangle) edge from
d back toa. The segmentsad andbc are thedoorsof C. (Note thata may equalb, or
c may equald, if C corresponds to a loop inGT .) If we replace the paths froma to b
and fromc to d with their geodesic paths,πab andπcd, within C (imagine pulling “taut”



An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 379

Fig. 1. A polygon P having two holes. There are two junction triangles (shown with small circles in them),
linked by three arcs ofG (shown with dashed curves). Removal of the two junction triangles results in three
corridors.

the paths), then we obtain a region, called anhourglass, H ⊆ C, with the boundary
consisting ofπab, πcd, and the doorsad andbc; see [5], [6], and [12].H is called an
open hourglassif πab ∩ πcd = ∅ (i.e., if there exists a line segment joining the doors of
C, separatingO1 andO2); H is called aclosed hourglassotherwise. Refer to Fig. 2. If
H is open, then the pathsπab andπcd are concave with respect toH ; i.e., each vertex
of these paths has an internal angle greater than 180◦. If H is closed, then it consists of
two “funnels,” with apicesx andy, and a geodesic path,πC = πab∩ πcd, joining x and
y; we callπC thecorridor pathfor C. By the results of [6] and [12], we can computeH
from C in linear time, by computing the pathsπab andπcd; doing this for all corridors
requires onlyO(n) time.

Let Q ⊆ P denote the union of the junction triangles and the hourglasses ofP. Thus,
Q consists of junction triangles, open hourglasses, funnels, and corridor paths. LetQ′

denote the setQ, minus the corridor paths. (Note thatQ′may be disconnected.) There are
only O(h) junction triangles andO(h) funnel apices. Thus, the boundary ofQ′ consists
of O(h) convex vertices andO(h) reflex chains.

Letπ∗ be a shortests-t path inP. If π∗ intersects a corridorC, it must intersect both
doors ofC (if it enters and leaves through the same door, it could be shortened), and stay
within the corresponding hourglass (again, by local optimality). Furthermore,s, t ∈ Q,
since, by construction ofT , at least one of the three triangles incident on each ofs andt
has degree 3 inGT , and so must be a junction triangle, which survives after contraction.
We conclude:

Lemma 1. π∗ ⊂ Q.

LetVG(Q′) denote thevisibility graphof Q′, whose node set consists of all vertices of
Q′ and whose edge set corresponds to pairs of vertices for which the connecting (open)



380 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

Fig. 2. An example of an open hourglass (left) and a closed hourglass (right), having a corridor path,πC ,
linking the apicesx andy.

line segment lies within the interior ofQ′. We say that an edge ofVG(Q′) is relevantif
it is locally tangent to the boundary ofQ′ at each of its endpoints. (By definition, each
edge on the boundary ofQ′ is not a relevant visibility graph edge.) By standard local
optimality arguments, we see thatπ∗∩Q′must consist of relevant visibility graph edges,
together with convex chains on the boundary ofQ′. Thus, we are motivated to compute
the relevant visibility graph edges forQ′.

Now, the boundary ofQ′ consists ofO(h) vertices that are convex with respect toQ′,
andO(h) reflex (with respect toQ′) chains. This means that the complementary region,
R = R2\Q′, consists of a set of polygons having a total ofO(h) reflexvertices, and
O(h) convexchains. Thus,R can be partitioned intoO(h) convex polygons (e.g., by
extending an angle-bisecting segment inward from each reflex vertex, as done by Hertel
and Mehlhorn [9]). These convex polygons have pairwise-disjoint interiors.

We devise a method of computing the relevant visibility graph edges based on the
methods of Rohnert [19], [20], who studied the problem of computing shortest paths
among convex polygonal obstacles. Indeed, other than the presence of corridor paths,
we have reduced the general shortest-path problem to that of shortest paths among convex
obstacles.

First, note that for any pair of convex polygonal obstacles, there are four tangent
(supporting) segments, which can be computed in timeO(logn). For any one convex
polygon, there areO(h) incident tangent segments. Those tangent segments that are
“visible” (not penetrating any obstacle) can be identified by a simple sweep (by slope)
in time O(h logh); the O(h) tangent segment endpoints partition the boundary of the
convex polygon intoO(h) pieces (convex chains), the lengths of which are easily tabu-
lated within the sameO(h logh) time bound. (These pieces can be considered as single
“edges” for purposes of computing shortest paths.) If we were to compute all ofVG′(Q′)
at once, this would requireO(n+ h2 logn) time andO(h2 + n) space; we can reduce



An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 381

the space requirement toO(n) by computing the segments ofVG′(Q′) as they become
needed in an execution of Dijkstra’s shortest-path algorithm(from source points), as is
done in [20].

The lengths of the corridor paths are all computed within total timeO(n). Each corri-
dor path can be treated as a single “edge” during the execution of Dijkstra’s algorithm. In
all, there areO(h2) edges ofVG′(Q′), O(h2) pieces of obstacle boundaries (induced by
the endpoints of theVG′(Q′) edges), andO(h) corridor edges. The resulting graph that is
searched therefore hasO(h2) edges andO(h2) nodes, and thus can be searched in time
O(h2 logh) using Fredman and Tarjan’s implementation of Dijkstra’s algorithm [3]. In
addition to this time complexity is theO(n+ h2 logn) overhead in the construction of
VG′(Q′) and theO(n+ h log1+ε h) time for triangulatingP. In conclusion:

Theorem 1. A Euclidean shortest path in a polygon having n vertices and h holes can
be computed in time O(n+ h2 logn), using O(n) space.

Remarks. 1. The time spent finding tangents in the above algorithm can be reduced to
O(h2 log(n/h)) by a simple observation, pointed out by a referee: then vertices of the
polygon are partitioned among theO(h) convex chains, so the time required to compute
a common tangent is not justO(logn), but is O(logni + lognj ), whereni andnj are
the chain sizes. The total time spent computing all tangents is then

O

(∑
i 6= j

logni + lognj

)
= O

(
h
∑

i

logni

)
≤ O(h2 log(n/h)).

Since we sort the tangents, the overall time for computing the relevant visibility graph is
still O(n+ h2 log(h+ n/h)) = 2(n+ h2 logn). However, this sorting step can also be
eliminated, at the expense of increased space complexity (equal to the number of edges
of the visibility graph), by using the “visibility complex,” as introduced by Pocchiola and
Vegter [18]. This reduces the visibility graph construction time toO(n+ h2 log(n/h)).
In fact, it may be possible to use the visibility complex to reduce the construction time to
O(n+e logn), wheree is the size of the relevant visibility graph. We leave this question
open. Note, however, this approach would sacrifice some of the simplicity of the method
we have proposed here.

2. An alternative improvement has been obtained by Kapoor and Maheshwari [11],
who obtain a time bound ofO(n+ e loge+ h2 log(e/h) + h2 log(n/h)), based on an
algorithm that propagates visibility information through corridors and across junctions;
refer to the brief outline below, and see the full paper [11] for details. Their time bound
is sensitive to the number,e, of edges in the relevant visibility graph,VG′(Q′). Their
algorithm uses onlyO(n) space. Note thate= O(h2).

A Visibility Propagation Algorithm

Here, we briefly outline the visibility propagation algorithm detailed in [10] and [11] for
computing the relevant visibility graph.



382 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

The input to the algorithm is the set of corridors, which have been identified as
previously described. The goal now is to identify the (visible) common tangents between
pairs of convex chains that bound the hourglasses corresponding to corridors. For each
convex chainC, visible tangents to other convex chains are constructed by a propagation
algorithm that maintains sectors of visible regions—“visibility ranges,” each determined
by two tangents between the chainC and other convex chains. The visibility range
represents the region from which a visible tangent may be drawn to the chainC. As
we sweep outward from the initial convex chainC, we traverse corridors and junctions
and the visibility ranges change accordingly. To help in processing, the ranges for a
chainC are maintained in sorted order in a balanced tree which allows for deletion,
insertion, and merges of ranges along with updates and searches. (Since the chainC is
convex the tangents incident onto it can be sorted in order of the vertices of the chain
to which they are incident.) At each step of the algorithm, the visibility ranges present
at a door of a corridor are propagated according to two cases: (1) propagation through a
corridor, which breaks into subcases according to whether the corresponding hourglass
is open or closed; and (2) propagation across a junction triangle, which results in either
a split of a set of ranges or a merging of two sets of visibility ranges. Since there are
only O(h) corridors and junction triangles, and each operation on a set of ranges can
be accomplished inO(logn) time, the resulting algorithm yields the relevant visibility
graph in timeO(h2 logn). As mentioned above, with some further care, it is possible to
modify the propagation algorithm to be sensitive to the size,e, of the resulting visibility
graph; see [11].

3. Conclusion

We leave as a challenging open problem the question of whether or not shortest paths
can be computed in timeO(n+ h logh), usingO(n) space.

Acknowledgments

We thank the referees for several useful suggestions that improved this paper.

References

1. T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibility of disjoint polygons,Algorithmica
1 (1986), 49–63.

2. R. Bar-Yehuda and B. Chazelle, Triangulating disjoint Jordan chains,Internat. J. Comput. Geom. Appl. 4
(1994), 475–481.

3. M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization problems,
J. Assoc. Comput. Mach. 34 (1987), 596–615.

4. S.K. Ghosh and D.M. Mount, An output-sensitive algorithm for computing visibility graphs,SIAM J.
Comput. 20 (1991), 888–910.

5. L.J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon,J. Comput. System Sci.
39 (1989), 126–152.



An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 383

6. L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms for visibility and
shortest path problems inside triangulated simple polygons,Algorithmica2 (1987), 209–233.

7. J. Hershberger and S. Suri, On computing Euclidean shortest paths in the plane,Proc. 34th Annual IEEE
Symposium on Foundations of Computer Science, 1993, pp. 508–517.

8. J. Hershberger and S. Suri, An optimal-time algorithm for Euclidean shortest paths in the plane, Manuscript,
Washington University, 1995.

9. S. Hertel and K. Mehlhorn, Fast triangulation of the plane with respect to simple polygons,Inform. Control
64 (1985), 52–76.

10. S. Kapoor and S.N. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility problems
with polygonal obstacles,Proc. Fourth Annual ACM Symposium on Computational Geometry, 1988,
pp. 172–182.

11. S. Kapoor and S.N. Maheshwari, An efficient algorithm for Euclidean shortest path with polygonal
obstacles, Technical Report, Dept. of Computer Science and Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi, 1994.

12. D.T. Lee and F.P. Preparata, Euclidean shortest paths in the presence of rectilinear boundaries,Networks
14 (1984), 393–410.

13. J.S.B. Mitchell, A new algorithm for shortest paths among obstacles in the plane,Ann. Math. Artificial
Intel. 3 (1991), 83–106.

14. J.S.B. Mitchell, Shortest paths among obstacles in the plane,Internat. J. Comput. Geom. Appl. 6 (1996),
309–332.

15. J.S.B. Mitchell, Shortest paths and networks, inCRC Handbook of Discrete and Computational Geometry
(E. Goodman and J. O’Rourke, eds.), CRC Press, Boca Raton, FL, 1997, pp. 445–466.

16. J.S.B. Mitchell and S. Suri, Separation and approximation of polyhedral surfaces,Comput. Geom. Theory
Appl. 5 (1995), 95–114.

17. M.H. Overmars and E. Welzl, New methods for computing visibility graphs,Proc. Fourth Annual ACM
Symposium on Computational Geometry, 1988, pp. 164–171.

18. M. Pocchiola and G. Vegter, The visibility complex,Internat. J. Comput. Geom. Appl. 6 (1996), 279–308.
19. H. Rohnert, Shortest paths in the plane with convex polygonal obstacles,Inform. Process. Lett. 23(1986),

71–76.
20. H. Rohnert, A new algorithm for shortest paths avoiding convex polygonal obstacles, Report A86/02,

Fachber. Inform., Univ. Saarlandes, Saarbr¨ucken, 1986.
21. M. Sharir and A. Schorr, On shortest paths in polyhedral spaces,SIAM J. Comput. 1 (1986), 193–215.
22. J.A. Storer and J.H. Reif, Shortest paths in the plane with polygonal obstacles,J. Assoc. Comput. Mach.

41 (1994), 982–1012.
23. E. Welzl, Constructing the visibility graph forn line segments inO(n2) time, Inform. Process. Lett. 20

(1985), 167–171.

Received March30, 1993,and in revised form August26, 1994,and May1, 1997.


