Discrete Comput Geom 18:377-383 (1997)

Geometry

© 1997 Springer-Verlag New York Inc.

An Efficient Algorithm for Euclidean Shortest Paths
Among Polygonal Obstacles in the Plane

S. Kapoor: S. N. Maheshwart,and J. S. B. Mitchefl

1Department of Computer Science and Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi, India
{skapoor, sn@cse.iitd.ernet.in

2Department of Applied Mathematics and Statistics, State University of New York,
Stony Brook, NY 11794-3600, USA
jsbm@ams.sunysb.edu

Abstract. We give an algorithm to compute a (Euclidean) shortest path in a polygon with
h holes and a total af vertices. The algorithm us€(n) space and require®(n+-h? logn)
time.

1. Introduction

Let P denote a (multiply connected, closed) polygon in the plane havimgles (“ob-
stacles”) and a total af vertices. The problem of computing a shortest (“geodesic”) path
froma points € P toapointt € P has been well studied in computational geometry; see
[11, [4], [6], [8], [10], [13], [14], [17], and [21]-[23], as well as the recent survey chapter
by Mitchell [15]. In the case that = 0, the shortest path can be computeddim)

time [6], [12]. In the case thdt > 0, the complexity of the problem has been worst-case
quadratiq O(n?)), until the recenD (n*>+¢) algorithm of Mitchell [14], which develops

the “continuous Dijkstra” paradigm, and its improvement by Hershberger and Suri [7],
[8], which results in an algorithm whose running timedgn logn).

A lower bound of©2 (n 4+ hlogh) is easy to establish (from sorting or convex hulls),
but, to date, there is no matching upper bound. In fact, no upper bounds of the form
O(n + f(h)), havinglinear dependence on, have previously been published.

Here, we offer a simple algorithm whose dependence isfinear, both in time and
space. The time dependence lpnhowever, is slightly worse than quadratio(n +
h?logn). Thus, while our algorithm is optimal for valuestothat are roughlyD (,/n), it
is inferior to the best known methods in cases in wiichnot relatively small compared

378 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

with n. In many applications (e.g., geographic problems), thohghay be expected to
be small compared with.

Our approach is to construct a relevant subgraph of the visibility gragh, afug-
mented with path information obtained from the “corridor” structurdPofWe search
the graph using Dijkstra’s algorithm, constructing edges as the algorithm proceeds, in
order to keep the space complexity@gn).

A preliminary version of this paper appeared in part in [10]. Here, we give a somewhat
simplified variation of the original methods of [10]. Full details of the original approach,
which leads to some slightly improved time bounds (see the remarks after Theorem 1),
can be found in [11].

2. The Algorithm

We assume tha is a closed, connected set, whose boundary consistaef segments,
havingh + 1 connected components: thater boundaryplus the boundaries of each
of theh polygonal holesdbstacle}of P. Without loss of generality? is bounded, and
we assume thatandt are interior toP.

We triangulateP; this can be done in tim@® (n+hlog'** h) [2]. We then incorporate
s andt into the triangulation by linking (resp.t) to the three corners of the triangig,
(resp.t;), that contains it. (We assume that# 1;; otherwise, the shortest path fram
tot is simply the line segment joining them.) L&tdenote the resulting triangulation,
and letG denote the graph-theoretic dualdf Note thatG; is a planar graph having
O(n) nodes,O(n) arcs, anch + 1 faces, and that at least one of the three nodes dual to
the triangles incident on each ®&ndt has degree 3.

Kapoor and Maheshwari [10] and Mitchell and Suri [16] have shown how contraction
of G naturally leads to a decomposition®finto “corridors,” as follows: First, we take
any degree-1 node ¢f; and delete it, along with its incident edge; we repeat until there
are no degree-1 nodes. Na#y; hash+1 faces and all nodes are of degree 2 or 3. Assume
now thath > 2; then not all nodes are of degree 2, implying that there are at least two
degree-3 nodes (since there must always be an even number of odd-degree vertices in a
graph). Next, for each degree-2 node, we delete it and replace its two incident edges with
a single edge. The resulting graph, calfitis a 3-regular planar graph, possibly with
loops and possibly with multiedges (two edges joining the same pair of nodes). Further,
G hash + 1 faces, B — 2 nodes, andI8— 3 arcs (by Euler’s formula). Each node of
G corresponds to a triangle ih; we call theseO(h) triangles thgunction triangles
Removal of the junction triangles froRiresults in a set of simple polygons, one for each
arc ofG, which we refer to as theorridors of P. (That corridors are simply connected
follows immediately from the contraction process.) Refer to Fig. 1.

The boundary of a corridd€ consists of four pieces: (1) a polygonal chain along
the boundary of an obstac{@,, from a vertexa to a vertexb; (2) a diagonal (junction
triangle) edge fronb to a vertexc (possiblyO, = Oy); (3) a polygonal chain along the
boundary ofO,, from c to a vertexd; and (4) a diagonal (junction triangle) edge from
d back toa. The segmentad andbc are thedoorsof C. (Note thata may equab, or
¢ may equal, if C corresponds to a loop iéir.) If we replace the paths fromto b
and fromc to d with their geodesic pathg,, andr.q, within C (imagine pulling “taut”

An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 379

Fig. 1. A polygon P having two holes. There are two junction triangles (shown with small circles in them),
linked by three arcs off (shown with dashed curves). Removal of the two junction triangles results in three
corridors.

the paths), then we obtain a region, callednaurglass H € C, with the boundary
consisting ofray, 74, and the doorad andbc; see [5], [6], and [12]H is called an
open hourglas# w4, N g = ¥ (i.€., if there exists a line segment joining the doors of
C, separatingd; andOy); H is called aclosed hourglasstherwise. Refer to Fig. 2. If

H is open, then the pathg,, andr.q are concave with respect té; i.e., each vertex
of these paths has an internal angle greater thah 188l is closed, then it consists of
two “funnels,” with apicex andy, and a geodesic pathc = map N 7¢q, joining X and

y; we callrr¢ thecorridor pathfor C. By the results of [6] and [12], we can compute
from C in linear time, by computing the pathsy, andn.q; doing this for all corridors
requires onlyO(n) time.

Let Q € P denote the union of the junction triangles and the hourglassesTiius,

Q consists of junction triangles, open hourglasses, funnels, and corridor path@. Let
denote the s&p, minus the corridor paths. (Note that may be disconnected.) There are
only O(h) junction triangles an@® (h) funnel apices. Thus, the boundary@f consists

of O(h) convex vertices an@®(h) reflex chains.

Letz* be a shortest-t path inP. If 7* intersects a corridd€, it must intersect both
doors ofC (if it enters and leaves through the same door, it could be shortened), and stay
within the corresponding hourglass (again, by local optimality). Furthermpores Q,
since, by construction df, at least one of the three triangles incident on eachaoidt
has degree 3 iG7, and so must be a junction triangle, which survives after contraction.
We conclude:

Lemmal. n* C Q.

LetVG(Q') denote thevisibility graphof Q’, whose node set consists of all vertices of
Q' and whose edge set corresponds to pairs of vertices for which the connecting (open)

380 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

Fig. 2. An example of an open hourglass (left) and a closed hourglass (right), having a corridatgath,
linking the apices< andy.

line segment lies within the interior @’. We say that an edge ®G(Q') is relevantif

it is locally tangent to the boundary @}’ at each of its endpoints. (By definition, each
edge on the boundary @’ is not a relevant visibility graph edge.) By standard local
optimality arguments, we see thatN Q" must consist of relevant visibility graph edges,
together with convex chains on the boundanf@f Thus, we are motivated to compute
the relevant visibility graph edges f@'.

Now, the boundary o’ consists 0fO (h) vertices that are convex with respecQg

andO(h) reflex (with respect t@’) chains. This means that the complementary region,

R = M?\Q/, consists of a set of polygons having a total®@¢h) reflexvertices, and

O(h) convexchains. ThusR can be partitioned int® (h) convex polygons (e.g., by
extending an angle-bisecting segment inward from each reflex vertex, as done by Hertel
and Mehlhorn [9]). These convex polygons have pairwise-disjoint interiors.

We devise a method of computing the relevant visibility graph edges based on the
methods of Rohnert [19], [20], who studied the problem of computing shortest paths
among convex polygonal obstacles. Indeed, other than the presence of corridor paths,
we have reduced the general shortest-path problem to that of shortest paths among convex
obstacles.

First, note that for any pair of convex polygonal obstacles, there are four tangent
(supporting) segments, which can be computed in t@kgn). For any one convex
polygon, there aré€(h) incident tangent segments. Those tangent segments that are
“visible” (not penetrating any obstacle) can be identified by a simple sweep (by slope)
in time O(hlogh); the O(h) tangent segment endpoints partition the boundary of the
convex polygon intd (h) pieces (convex chains), the lengths of which are easily tabu-
lated within the sam@® (h logh) time bound. (These pieces can be considered as single
“edges” for purposes of computing shortest paths.) If we were to compute\d8' o))
at once, this would requir®(n + h?logn) time andO(h? + n) space; we can reduce

An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 381

the space requirement ©(n) by computing the segments ¥f5(Q’) as they become
needed in an execution of Dijkstra’s shortest-path algoriffnom source poins), as is
done in [20].

The lengths of the corridor paths are all computed within total thvie). Each corri-
dor path can be treated as a single “edge” during the execution of Dijkstra’s algorithm. In
all, there areD (h?) edges oG (Q'), O(h?) pieces of obstacle boundaries (induced by
the endpoints of the# G (Q') edges), an® (h) corridor edges. The resulting graph that is
searched therefore h&xh?) edges and(h?) nodes, and thus can be searched in time
O(h?logh) using Fredman and Tarjan’s implementation of Dijkstra’s algorithm [3]. In
addition to this time complexity is th®(n + h?logn) overhead in the construction of
VG (Q) and theO(n + hlog*** h) time for triangulatingP. In conclusion:

Theorem 1. A Euclidean shortest path in a polygon having n vertices and h holes can
be computed in time @ + h?logn), using Q(n) space

Remarks. 1. The time spent finding tangents in the above algorithm can be reduced to
O(h?log(n/h)) by a simple observation, pointed out by a refereertiertices of the
polygon are partitioned among tk(h) convex chains, so the time required to compute

a common tangent is not jusi(logn), but isO(logn; + logn;), wheren; andn; are

the chain sizes. The total time spent computing all tangents is then

o} (Z logn; + Iognj> =0 <hZIogni> < O(h%log(n/hy).

i#]

Since we sort the tangents, the overall time for computing the relevant visibility graph is
still O(n+ h?log(h 4+ n/h)) = ®(n+ h?logn). However, this sorting step can also be
eliminated, at the expense of increased space complexity (equal to the number of edges
of the visibility graph), by using the “visibility complex,” as introduced by Pocchiola and
Vegter [18]. This reduces the visibility graph construction tim®tm + h?log(n/ h)).

In fact, it may be possible to use the visibility complex to reduce the construction time to
O(n+elogn), whereeis the size of the relevant visibility graph. We leave this question
open. Note, however, this approach would sacrifice some of the simplicity of the method
we have proposed here.

2. An alternative improvement has been obtained by Kapoor and Maheshwari [11],
who obtain a time bound dd(n + eloge + h?log(e/ h) + h?log(n/ h)), based on an
algorithm that propagates visibility information through corridors and across junctions;
refer to the brief outline below, and see the full paper [11] for details. Their time bound
is sensitive to the numbee, of edges in the relevant visibility grapiG (Q'). Their
algorithm uses only(n) space. Note that = O(h?).

A Visibility Propagation Algorithm

Here, we briefly outline the visibility propagation algorithm detailed in [10] and [11] for
computing the relevant visibility graph.

382 S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell

The input to the algorithm is the set of corridors, which have been identified as
previously described. The goal now is to identify the (visible) common tangents between
pairs of convex chains that bound the hourglasses corresponding to corridors. For each
convex chairC, visible tangents to other convex chains are constructed by a propagation
algorithm that maintains sectors of visible regions—"visibility ranges,” each determined
by two tangents between the chahand other convex chains. The visibility range
represents the region from which a visible tangent may be drawn to the Chais
we sweep outward from the initial convex ch&nwe traverse corridors and junctions
and the visibility ranges change accordingly. To help in processing, the ranges for a
chainC are maintained in sorted order in a balanced tree which allows for deletion,
insertion, and merges of ranges along with updates and searches. (Since the ishain
convex the tangents incident onto it can be sorted in order of the vertices of the chain
to which they are incident.) At each step of the algorithm, the visibility ranges present
at a door of a corridor are propagated according to two cases: (1) propagation through a
corridor, which breaks into subcases according to whether the corresponding hourglass
is open or closed; and (2) propagation across a junction triangle, which results in either
a split of a set of ranges or a merging of two sets of visibility ranges. Since there are
only O(h) corridors and junction triangles, and each operation on a set of ranges can
be accomplished i©(logn) time, the resulting algorithm yields the relevant visibility
graph in timeO(h? logn). As mentioned above, with some further care, it is possible to
modify the propagation algorithm to be sensitive to the sizef the resulting visibility
graph; see [11].

3. Conclusion

We leave as a challenging open problem the question of whether or not shortest paths
can be computed in tim®(n + hlogh), usingO(n) space.

Acknowledgments

We thank the referees for several useful suggestions that improved this paper.

References

1. T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibility of disjoint polygdgsrithmica
1(1986), 49-63.

2. R. Bar-Yehuda and B. Chazelle, Triangulating disjoint Jordan chiaitesnat J. Comput Geom Appl. 4
(1994), 475-481.

3. M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization problems,
J. Assoc Comput Mach 34 (1987), 596-615.

4. S.K. Ghosh and D.M. Mount, An output-sensitive algorithm for computing visibility grapbsv J
Comput 20 (1991), 888-910.

5. L.J. Guibas and J. Hershberger, Optimal shortest path queries in a simple pdy@omput System Sci
39(1989), 126-152.

An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles 383

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.

. L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms for visibility and

shortest path problems inside triangulated simple polyghiggrithmica2 (1987), 209-233.

. J. Hershberger and S. Suri, On computing Euclidean shortest paths in theRutam&4th Annual IEEE

Symposium on Foundations of Computer Scieh®83, pp. 508-517.

. J.Hershbergerand S. Suri, An optimal-time algorithm for Euclidean shortest paths in the plane, Manuscript,

Washington University, 1995.

. S. Herteland K. Mehlhorn, Fast triangulation of the plane with respect to simple polygfams). Control

64(1985), 52—76.

S. Kapoor and S.N. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility problems
with polygonal obstaclesProc. Fourth Annual ACM Symposium on Computational Geoméit®gs,

pp. 172-182.

S. Kapoor and S.N. Maheshwari, An efficient algorithm for Euclidean shortest path with polygonal
obstacles, Technical Report, Dept. of Computer Science and Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi, 1994.

D.T. Lee and F.P. Preparata, Euclidean shortest paths in the presence of rectilinear bobteteneks

14 (1984), 393-410.

J.S.B. Mitchell, A new algorithm for shortest paths among obstacles in the plangyiath. Artificial

Intel. 3(1991), 83-106.

J.S.B. Mitchell, Shortest paths among obstacles in the fiateenat J. Comput Geom Appl. 6 (1996),
309-332.

J.S.B. Mitchell, Shortest paths and network§RC Handbook of Discrete and Computational Geometry
(E. Goodman and J. O'Rourke, eds.), CRC Press, Boca Raton, FL, 1997, pp. 445-466.

J.S.B. Mitchelland S. Suri, Separation and approximation of polyhedral suGraput Geom Theory

Appl. 5(1995), 95-114.

M.H. Overmars and E. Welzl, New methods for computing visibility graphsc. Fourth Annual ACM
Symposium on Computational Geometr988, pp. 164-171.

M. Pocchiola and G. Vegter, The visibility compléxternat J. Comput Geom Appl. 6 (1996), 279—-308.

H. Rohnert, Shortest paths in the plane with convex polygonal obstadtas). ProcessLett 23(1986),
71-76.

H. Rohnert, A new algorithm for shortest paths avoiding convex polygonal obstacles, Rept®2A86
Fachber. Inform., Univ. Saarlandes, Saadken, 1986.

M. Sharir and A. Schorr, On shortest paths in polyhedral sp&tab) J Comput 1 (1986), 193-215.

J.A. Storer and J.H. Reif, Shortest paths in the plane with polygonal obsthdespc Comput Mach
41(1994), 982-1012.

E. Welzl, Constructing the visibility graph forline segments irD(n®) time, Inform. ProcessLett 20
(1985), 167-171.

Received Marci30, 1993.and in revised form Augu&6, 1994 and May1, 1997.

