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An Efficient Algorithm for Graph Isomorphism 

D. G. C O R N E I L  A N D  C. C. G O T L I E B  

University of Toronto,* Toronto, Ontario, Canada 

ABSTRACT. A procedure for de te rmining  whe the r  two graphs are isomorphic is described. 

During the procedure,  from any given graph  two graphs,  the represen ta t ive  graph and the 

reordered graph, are derived. 

The represen ta t ive  graph is a homomorphic  image of the original graph;  the reordered 

graph is const ructed  from the represen ta t ive  graph to be isomorphic to the given graph. 

Unique labels are assigned to the  ver t ices  of bo th  derived graphs.  I t  follows t ha t  two repre- 

sentative graphs  or two reordered graphs  are isomorphic if and only if they are identical .  A 

conjecture s t a t e s  t h a t  the represen ta t ive  graphs  exhibi t  the  au tomorphism par t i t ion ing  of the  

given graph. The  represen ta t ive  graphs form a necessi ty condi t ion for isomorphism; namely,  

if the represen ta t ive  graphs  are not  identical ,  then the given graphs are not  isomorphic.  The  

converse is t rue  for trees and follows from the conjecture  for o ther  types of graphs.  I t  is also 

shown tha t  the reordered graphs  form a sufficiency condit ion for isomorphism; namely,  if the 

reordered graphs are identical ,  then the given graphs are isomorphic.  The  converse follows 

from the conjecture.  

The t ime required to de termine  bo th  derived graphs depends on a power of n, the  order of 

the given graph. This  power is a funct ion of an adjacency proper ty  known as the s t rong regu- 

larity of the given graph.  For  graphs  t h a t  do not conta in  a s t rongly  regular  t rans i t ive  sub-  

graph, the power is, a t  worst ,  five. 

CR CATEGORIES:  3.66, 5 . 3 2  

KEY WORDS AND PHRASES: graph,  g raph  isomorphism, isomorphism, heurist ic  procedure,  

strongly regular  graph, automorphisms,  t rans i t ive  graphs,  coding of graphs,  efficient algo- 

rithm, effective algori thm, determinis t ic  a lgori thm, au tomorphism par t i t ion ing ,  t r ans i t ive  

subgraphs 

1. Introduction 

No efficient deterministic algorithm is known for determining whether two given 

finite graphs, G1 and G2, are isomorphic. An efficient deterministic algorithm is one 

which guarantees a solution in a time, T, where T is proportional to a constant 

power of n, the order of the graph. A closely related but inherently more difficult 

problem is the subgraph isomorphism problem; namely, given two finite graphs, G1 

and G2, determine whether G2 is isomorphic to G1 or to a subgraph of G1 • The graph 

isomorphism problem and/or the subgraph isomorphism problem arise in such fields 

as chemistry, information retrieval, linguistics, logistics, switching theory, and 

network theory. For example, in a chemistry application a chemical compound is 

represented by its atomic structure diagram (i.e. an undirected, labeled graph). 

A given compound is matched with the compounds contained in a large file or 

library [1]. A subgraph isomorphism indicates that the given compound is a sub- 

* Depar tmen t  of Computer  Science. This  paper  embodies the  results  conta ined in the  Ph.D.  

thesis by  D. G. Corneil.  Any differences f rom the  results  in the thesis are noted. (These are 

incorporated into a revision sheet  for the  thesis .)  
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52 D. G. CORNEIL AND C. C. GOTLIEB 

compound of the library compound under scrutiny; a graph isomorphism indicates 

that the given compound is already in the library. 

Since we are dealing exclusively with finite graphs, a deterministic isomorphism 

algorithm based upon reordering the nodes is easily given. In this algorithm the 

nodes of one of the graphs, say G2, are systematically reordered, and each graph 

determined by such a reordering is checked for identity with G1. G1 is isomorphic 

to G2 if and only if G1 is identical to at least one of the graphs determined by a 

reordering. The number of node reorderings of G2 that must be performed is bounded 

by n !. Unger has pointed out that, even using fast present-day computers, a more 

practical procedure is necessary for dealing with graphs with more than 10 vertices 

[2]. 

Since graph isomorphism has many applications, effective computer programs 

are needed. The lack of an efficient deterministic algorithm has led to inefficient 

computer procedures, known as heuristic procedures, which do not guarantee an 

answer in a reasonable time [2, 3, 4]. Heuristic isomorphism procedures attempt 

to reduce the number of reordering by employing conditions that are necessary 

for the existence of an isomorphism. These conditions are properties that are in- 

variant under graph isomorphism. For example, no isomorphism between two 

undirected graphs, G~ and G2, may map vertex x of G1 onto vertex y of G2 if the 

degree of x does not equal the degree of y. Using such properties, the upper bound 

on the number of reorderings of the nodes of G2 may be reduced. A more detailed 

description of heuristic procedures is presented in [5]. 

The graph isomorphism procedure presented in Section 5 of this paper is effi- 

cient for all graphs that do not belong to a certain recognizable class. However, 

since the method is based upon a conjecture, the procedure is not deterministic. 

It terminates with one of the following three statements: 

(i) The graphs are isomorphic, with the following isomorphism: . . . .  

(it) The graphs are not isomorphic. 

(iii) The graphs form a counterexample to the conjecture. 

In the third case it would be necessary to use a deterministic nonefficient heuristic 

procedure; however, no counterexamples have been discovered. 

Only undirected, unlabeled graphs are considered; minor modifications are 

necessary for other types of graphs (see [5]). In Sections 2 and 3, algorithms which 

partition the set of vertices of a graph are presented. By using these algorithms, 

the representative graph and the reordered graph are defined (Section 4). The 

graph isomorphism algorithm is presented in Section 5; the timing considerations 

are discussed in Section 6. 

Before presenting this material, some definitions are given. 

A subgraph, 1 H, of G is a transitive subgraph of G if for any two nodes, x, y, of H 

there exists an automorphism of G mapping x onto y. 

A partitioning of the set, V, of vertices of a graph G(V, E) is 2 called the auto- 

morphism partitioning when the following holds: vertices x and y belong to the 

same cell if and only if there exists at least one automorphism of G mapping x 

onto y. Note that the set of vertices in a cell of the automorphism partitioning 

forms a transitive subgraph. 

1 The set of edges in H is the  restriction of the  set  of edges in G to the set  of vert ices in H.  

2 E is the  set  of edges in G. 
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An E~cient Algorithm for Graph Isomorphism 53 

A 2-strongly regular graph is an undirected graph, G( V, E), which is not complete 

and not void such that  there exist constants p~l, p~2, p~2, p~,  p~2, p~2 where: 

(I) for all y E V, for all z E V where (y, z) ~ E:  

(i) { {x { x E V -  {Y, Z} ; (x, y) E E; (x, z) E E} = P~i , 

(ii) [ {x Ix  E V -  {y,z} ; ( z , y )  E E ; ( x , z )  ~ E} = p~2, 

(iii) I {x[x  E V -  {y,z} ; ( x , y )  ~ E ; ( x , z )  ~ E} = p~2; 

(II) for all y E V, for all z E V where (y, z) ~ E: 

(i) {{x{x C V - -  {y,z} ; ( z , y )  E E;  (x,z)  ~ E} = p~l, 

(ii) ]{x{x E V - -  {y,z} ; ( z , y )  E E ; ( x , z )  ~ E} = p~2, 

(iii) {{xIx E V -  {y,z} ; ( x , y )  $ E ; ( x , z )  ~ E} = p~2. 

This definition is equivalent to Bose's definition of strongly regular [6]. Condition 

I indicates that  for any two distinct adjacent vertices y and z, there exist exactly 

p~ vertices adjacent to both y and z, exactly p~2 vertices adjacent to y but not 

adjacent to z, and exactly p~2 vertices not adjacent to either y or z. Condition II  

is similar except that  y and z are not adjacent. 

The definition of 2-strongly regular may be extended to h-strongly regular (h > 2) 

in an obvious way- -by  specifying, up to isomorphism, all graphs of order h (see 

[5] for h = 3). For purposes of continuity, a regular graph may be called 1-strongly 

regular. 

2. Terminal Connection Partitioning Algorithm 

In the determination of the representative graph, it is necessary to partition the 

set of vertices of the given graph. In this section, an algorithm for refining a given 

partitioning is given. I t  may be shown that  if the given partitioning is invariant 

under automorphism (and this is always the case for us), the partitioning resulting 

from this algorithm is also invariant under automorphism. We assume that  in the 

given partitioning, V has been partitioned into i (i  > 1) cells, 3 where the j t h  cell 

is denoted V ~ (1 _< j _< i). 

ALGORITHM I 

Step 1. To each node y E V, associate a list (al , . . -  , ai) where ai equals the 

exact number of nodes, x~ E V ~ s u c h t h a t  (y, xz) E E (1 _< j _< i). Note that  

~=1 a1 = d(y), the degree of vertex y. 

Step 2. We now define a refinement of the j t h  cell. 

(i) Perform an ordering of the nodes in the cell by examining the lists associated 

with the nodes of V j. Order the nodes by lexicographically ordering their lists. 

(ii) If all the nodes have the same list, no refinement is done. 

(iii) If the lists are not identical, use the ordering of the nodes of V ~ to refine 

V j as follows: Assume that  node y precedes all other nodes of V~; then the first 

subcell of V j consists of node y and all other nodes of V j which have the same list 

as y. Remove these nodes from V i, and from the remaining nodes choose the node 

that precedes all other remaining nodes. 

3 If i equals  1, t hen  V has  no t  been pa r t i t i oned .  
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54 D . G .  CORNEIL AND C. C. GOTLIEB 

This node and all other nodes with the same list form the second subcell of W. 

Continue this process until all nodes of V j belong to a subcell of V j. 

Step 3. Apply step 2 to all i cells. If at least one of the cells is refined, then we 

reindex all the cells and go to step 1. This reindexing is carried out as follows: 

Assume that  cells 1 to j - 1 are not refined, but  cell j is; cells 1 to j - 1 retain 

their previous cell indices. Index the 1 subcells of cell j as j ,  j + 1, • • • , j + l - 1 

according to the ordering of subcells defined in step 2. The next cell to be indexed 

(cell j -Jr 1 or a subcell of it) is assigned the index j + l, and the process continues 

until all cells have been indexed. 

If no cell is refined, the algorithm is finished, and the terminal connection parti- 

tioning of the set of nodes of G with respect to the given partitioning has been 

obtained. Since the refinement requires at least one refinement in order to continue, 

and the number of cells is bounded by the number of nodes of G (which is finite), 

the algorithm terminates. If the given partitioning consists of V alone, then the 

first iteration of Algorithm I merely performs a degree partitioning of V (i.e. two 

vertices belong to the same cell if and only if their degrees are the same). If G is 

regular and the given partitioning consists of V alone, then Algorithm I does not 

refine the partitioning. 

E x a m p l e  of  A lgor i thm I .  Consider the graph in Figure 1. Assume that  we are given the follow- 
ing degree part i t ioning of V: 

Cell index Nodes 

I 3, 7,8,  10 
I I  6 

I I I  2, 4 

IV 1, 5, 9 

From step 1 of the algorithm, the lists are: 

Cell index Node List 

/ 3 ( 3 , 0 , 2 , 0 )  

t 7 (3,1, 1,0) 
I 8 (2, O, 1, 2) 

[10 (2, O, 1, 2) 

I I  6 (1, O, 1, 2) 

f2 (3, o, o, o) 
iH 

\4 (2, 1, O, O) 

[1 (1, 1, 0, 0) 
IV ~5 (1, 1, O, O) 

[9 (2, o, o, o) 

In step 2 the lists are lexicographically ordered, and the nodes 

Cell index Node 

J 
7 (3, 

I 3 (3, 
s (2, 

lO (2, 
I I  6 

I I I  f2 

i v  

15 

are placed in the following order: 

List 

1 ,1 ,0 )  

o, 2, o) 
o, 1,2) 
0,1,2) 

(1, 0, 1, 2) 

(3, o, o, o) 
(2, 1, o, o) 
(2, o, o, o) 
(1, 1, o, o) 
(1, 1, O, O) 
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Cells l, I I I ,  and IV are refined. In step 3 the subcells are reindexed, and in step 1 the new lists 

are assigned as follows: 

Cell index Node List 

I 7 (o, 1, 2, 1, o, 1, o, o) 
I I  3 (1, 0, 2, 0, 1, 1, 0, 0) 

I I I  ; 8 ( 1 , 1 , 0 , 0 , 1 , 0 , 1 , 1 )  
~10 (1, 1, 0, 0, 1, 0, 1, 1) 

iv 6 (1 ,0 ,0 ,0 ,0 ,1 ,0 ,2)  
v 2 (0, 1, 2, o, o, o, o, o) 

VI 4 (1, 1, 0, 1, 0, 0, 0, 0) 

VI I  9 (0, 0, 2, 0, 0, 0, 0, 0) 

VIII f l  (0, O, 1, 1, O, O, 6, O) 
\5 (o, o, 1, 1, o, o, o, o) 

Since the lists associated with  nodes 8 and 10 are identical and the lists associated with nodes 

1 and 5 are identical, the algorithm is finished, and this is the terminal connection part i t ioning 

for this graph with  respect to the given parti t ioning. 

To represent the refined partitioning of V, we now define Q, the directed quotient 

graph of a graph G. The terminal connection partitioning algorithm defines the 

following equivalence relation on V: two nodes belong to the same equivalence 

class if and only if they belonged to the same initial partition and their terminal 

lists are identical [5]. Thus we may define the directed quotient graph, Q, such that  

(i) the set of vertices is the set of integers from 1 to f (f  is the number of cells 

in the terminal connection partitioning) ; 

(ii) the set of directed edges is defined such that  if a node, y C V ~, is adjacent 

to exactly 1 nodes in V j (l equals the as in the terminal list associated with y), then 

there is a directed edge of weight 1 from node i of Q to node j of Q. 

Since the vertices are assigned unique integer labels, two quotient graphs are 

isomorphic if and only if they are identical. The quotient graph, Q, is a homo- 

morphic image of G(V, E) (i.e. the nodes of G are mapped onto the nodes of Q, 

and the edges of G are mapped onto the edges of Q). Since the nodes in cell V j 

form a regular subgraph, say of degree h, of G, there is a directed loop of weight h 

on vertex j in Q. 

Note that  the set of rows of B, the adjacency matrix of Q, is the set of lists corre- 

sponding to the terminal cells of the partitioning (i.e. t h e j t h  row of B is the terminal 

list associated with each node, y C V~). B has the properties: 

(i) ~ = 1  blj = d(x~), for all i, where f is the number of columns in the matrix, 

and x~ is a vertex in cell i. 

(ii) order of V i X b~j = order of V j X bjl, for all i and j .  

Example of Quotient Graph. The quotient graph, Q, for the graph given in Figure 1, when the 

degree part i t ioning is the given parti t ioning, is given in Figure 2. The number of arrowheads 

on the edges indicates the weight of the edge in each direction. 

3. Terminal Quotient Graph 

It was stated in Section 2 that  since the partitioning presented to Algorithm I 

is invariant under automorphism, the partitioning resulting from the algorithm 

is also invariant under automorphism. Thus any two vertices that  belong to a 

transitive subgraph must belong to the same cell of the refined partitioning. An 

Journal of the Association :for Computing Machinery, Vol. 17. No. I, January 1970 
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2 

3 4 

5 

Eli 

9 s 

F i o .  1. A g r a p h ,  G FIG.  2. Q ,  t h e  q u o t i e n t  g r a p h  f o r  G 

equivalent s ta tement  is the following: the automorphism partitioning is a refine- 

ment  (possibly trivial) of the parti t ioning resulting from Algorithm I. 

We now present Algorithm I I ,  which utilizes Algorithm I and a t tempts  to deter- 

mine the maximal transitive subgraphs of the given graph. The algorithm performs 

a parti t ioning on the set of vertices and results in a graph which is defined as the 

terminal  quotient graph, Qr • 

ALGORITHM I I  

Step 1. Per form Algorithm I on V, resulting in the quotient  graph, Q. If  the 

given graph is not regular, then the degree parti t ioning is refined in Algorithm I. 

If  the graph is regular of degree h, then no partit ioning of V is achieved, and Q 

consists of one vertex with a directed loop of weight h on it. 

Step 2. Assume tha t  there are i cells ( i  ~ 1 ). Set k equal to 1 and go to step 3. 

Step 3. Examine cell V k. If  there is only one vertex in cell V k, go to step 7. 

Assume tha t  there are 1 (l > 1) vertices Xl, - "  , x z in V k. Choose one of these 

vertices, say x~, and go to step 4. 

Step 4. Perform the following refinement of the existing parti t ioning (i.e. as 

represented by  Q). Remove xg from V k and place it in new cell 1. New indices are 

assigned to all the old cells of Q as follows: old cell j is assigned the new index j + 1 

for all j .  Effectively, we have altered the given graph G by  assigning vertex xg a 

unique label and by  placing it in a unique cell. The new partit ioning is invariant  

under automorphism for this altered graph. Apply Algorithm I to this new parti- 

tioning and obtain the quotient graph Qxg which will be called the vertex quotient 

graph for xg with respect to the given partitioning. G o  to step 5. 

Step 5. Perform step 4 for all 1 nodes x l ,  . . . ,  x z of cell V k. If  Q~I ~ Q~0, 

for 4 all g (1 ~ g _< 1), then go to step 7; otherwise go to step 6. 

In this step we have assumed that the vertices in cell V k do n o t  form an h-strongly regular 
subgraph (h > 2). It is necessary to determine the largest h such that the subgraph is h- 
strongly regular. To do this, Step 4 of Algorithm II  is altered so that an h-vertex quotient 
graph is calculated (i.e. the vertex quotient graph with respect to h given vertices). The h- 
vertex connection partitioning algorithm, which calculates the h-vertex quotient graph, is de- 
fined in the following way: Place each of the chosen h vertices (xl , - • • , xh) into an individual 
cell such that x~ is in cell i; then perform Algorithm I. The resulting quotient graph is called the 
h-vertex quotient graph Q x ~  , • • • , x  h . The following theorem is proved in [5] : 

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January  1970 



An Effwient Algorithm for Graph Isomorphism 57 

Step 6. If for any two vertices, y, z, in V k, Q~ ~ Qz, then there can be no auto- 

morphism of G that maps y onto z. We may therefore refine the partitioning repre- 

sented by Q in the following way. The set of vertices in cell V k is partitioned such 

that two vertices belong to the same subcell if and only if they possess identical 

vertex quotient graphs. Now consider each adjacency matrix to be a vector where 

the (i -t- 1)-th row of the matrix immediately succeeds the ith row for all i. The 

subcells are then ordered by lexicographically ordering the vectors corresponding 

to the adjacency matrices of the vertex quotient graphs. This refinement of V k 

provides a refinement of the partitioning of V represented by Q. Perform Algorithm 

I on this new partitioning and reenter Algorithm II at step 2 with the new Q. 

Step 7. Replace k with k ~ 1. If ]c does not equal i, go to step 3. If k equals i, 

then the algorithm is finished. We now refer to the given quotient graph, Q, as the 

terminal quotient graph, Qr • 

An example of this algorithm will be given in Section 5, where the entire graph 

isomorphism algorithm is presented. 

We now make the following conjecture: 

Conjecture. The partitioning resulting from Algorithm II is the automorphism 

partitioning of V. 

Note that the automorphism partitioning is a refinement (we conjecture trivial) 

of the partitioning from Algorithm II. 5 

In order to deal with the fact that two graphs which possess the same terminal 

quotient graphs may be nonisomorphic (see Figure 3), we introduce the representa- 

tive graph. 

4. Representative Graph and Reordered Graph 

Having calculated the terminal quotient graph and the vertex quotient graphs 

(Algorithm II) we now define the representative graph, GR. 

If all transitive subgraphs of a given graph G are not 2-strongly regular, 6 then 

G~, the representative graph of G, is immediately derived from Qr, the terminal 

quotient graph associated with G. Let QH~ denote the vertex quotient graph asso- 

ciated with each vertex in the transitive subgraph Hi of G, where the nodes of Hi 

are mapped onto node i of Q~ for all i. GR is defined to be the graph Qr such that 

THEOREM I. A graph G(V, E) is h-strongly regular (2 < h < n) i f  and only if  

(i) G is (h - 1)-strongly regular; 

(ii) In  all (h - 1)-vertex connection partitionings, two vertices belong to the same cell i f  and 

only i f  their adjacencies to the (h - 1) chosen vertices are identical; 

(iii) Qxl,...,~h-i ------ Q~l,...,~h-~ i f  and only i f  the following holds: (x~ , xi) E E i f  and only i f  

(Y~ , Yi) E E for all i and j .  
Thus it  is possible to determine m, the maximal strong regularity of a subgraph. If a sub- 

graph is m-strongly regular, then the set of m vertex quotient graphs for all possible choices of 

m vertices must be calculated. See [5] for further details. 
Because of this conjecture, special t reatment  is required in Algorithm II  for h-strongly regular 

graphs (h _> 2). This necessity is i l lustrated by " the  exceptional graph of order 26," given in 
[7]. This graph is nontransit ive and 2-strongly regular. Since it  is nontransit ive,  the auto- 

morphism part i t ioning consists of at least two cells; since it is 2-strongly regular, all vertex 

quotient graphs are identical (Theorem I).  
6 If the transi t ive subgraph Hi is h-strongly regular (h > 2) but  .lot (h ~ 1)-strongly regular, 

then node j of GR is labeled by the family of h-vertex quotient  graphs associated with Hj  . See 

[5] for further details. 

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970 
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G i 5 Q~ 

5 

7 

G2 

2 

7 6 

o~ 

e~ 

FI( ; .  3. N o n i s o m o r p h i c  g r a p h s  w h i c h  h a v e  i d e n t i c a l  t e r m i n a l  q u o t i e n t  g r a p h s  

node i of GR is labeled by the vertex quotient graph QH, (recall that  each vertex 

in Qr was labeled with a unique integer). 

The representative graphs of the graphs of Figure 3 are shown in Figure 4. 

We define two representative graphs to be identical (also isomorphic) if the 

terminal quotient graphs arc identical and if vertices in the representative graphs 

with the same integer label also have identical vertex quotient graph labels. 

THEOREM II. G1 ~ G2 ~ GR I ~ GR 2. 

PROOF. This follows immediately from the fact that  the partitionings resulting 

from Algorithm I and Algorithm II  are invariant under automorphism, and there- 

fore invariant under isomorphism. 

I t  is seen that  the representative graphs form a necessity condition for iso- 

morphism; namely, if GR 1 ~ G, 2, then G1 ~ G2 • Thus we conclude that  the graphs 

in Figure 3 are not isomorphic. 

THEOREM III.  I f  the conjecture is true, then GR 1 ~- GR 2 ~ G1 ~ G~. (Converse 

of Theorem II.) 

PROOF. Consider graph G3 to be the union of G~ and G~. Assume that  G~ and 

G2 are connected; otherwise, set G3 to be the union of the complement of G~ and 

the complement of G2. Let  H~ (K~) denote the transitive (from the conjecture) 

subgraph of G1 (G2) where the nodes of Hi (Ki)  are mapped onto note i of Qr 1 (Qr2), 

for all i. Let  Q~ denote the vertex quotient graph (or family of h-vertex quotient 

graphs) associated with Hi when H~ is a subgraph of Gj .  Let D denote the quotient 

graph of G~ (and hence G2) resulting from Algorithm I. 

Now apply Algorithm II  to G3 • Since G ~ G 2 ~ 2 R ~ R,QH~ ~ Q~ for a l l i a n d Q r  3 

Qr 1 =- Qr 2. Since G~ and G2 are disjoint in G3, Q~, ~- Q~, U D and Q~, =- Q2K~ U D 

for all i. Thus Q~ ~ Q~ , and in the partitioning of the set of vertices of G3 cell i 

contains H~ U Ki for all i. For some cell i choose vertex x C V~ and vertex y ~ V~. 

Since the given partitioning is assumed to be the automorphism partitioning, we 
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t 

GR [: 

where node I is assigned the additional [abel 

and node g is assigned the additional labe l  

2 

22 
2 

GR 

where node I is assigned the additional label  

and node I~ is assigned the addit iona[ label 

2 

5 

1 2 ' 
FIG. 4. G R and G R for the graphs in Figure 3 

know tha t  there exists an automorphism of G tha t  maps x onto y. Since G~ and G~ 

are connected graphs, vertices in V1 (V2) may  only be mapped onto vertices ire 

V2 (Vi). Thus this automorphism of G3 is induced by an isomorphism of G1 onto 

G2, and G~ ~--~ G2.7 I t  should be noted tha t  the proof requires the validity of Con- 

jecture V.3-1 for graphs of order 2n which consist of two disjoint subgraphs of 

order n. 

We now state Theorem IV which shows tha t  the converse of Theorem I I  holds 

for trees. 

THEOREM IV. Consider two finite undirected trees T~ and T2 with quotient graphs 

Q1 and Q2 (as calculated in step 1 of Algorithm II ) .  Then (i) Qi (i = 1 or 2) is the 

terminal quotient graph Qr i, and ( ii) if Q~ ~ Q2 then T1 ~ T2. 

Other efficient tree isomorphism algorithms not related to our method can be 

given (e.g. [8, 9]). 

The representative graphs form a necessity condition for isomorphism. We now 

introduce reordered graphs and develop a sufficiency condition. First we present 

the algorithm for determining the reordered graph, Gr, f rom the representative 

7 This theorem is not presented in the thesis. All conjectures in the thesis that are related to 
the isomorphism algorithm have thus been compressed into one essential conjecture. Dr. J. 
Turner has presented a counterexample to Conjecture V.4-1 of the thesis; however, since this 
conjecture is not needed, our results are not affected. 
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graph,  GR. The  reordered g raph  is const ructed  to be isomorphic to the  given graph 

G. I n  this a lgor i thm it is assumed t h a t  any  subgraph whose nodes are mapped  onto 

a single vertex of QT is not  an h-strongly regular graph  (h ~_ 2).  For  these types 

of graphs see [5]. 

ALGORITHM I I I  

Step 1. Does the number  of vertices in Qr equal the number  of nodes in G? If 

not,  go to step 2; otherwise, Qr represents a unique reordering of the  nodes of G, 

the  adjacency matr ix  of Gr is identical  to the  adjacency matr ix  of Q r ,  and the 

a lgor i thm is finished. 

Step 2. Let  V ~ denote  the  i th  cell of the par t i t ioning of V represented by  Qr .  

Choose the  cell with the lowest index, say j ,  such tha t  the  order of V ~ ¢ 1. From 

V ~ arbi trar i ly choose a vertex, say x. Pe r fo rm step 4 of Algor i thm I I  to construct  

the vertex quot ient  g raph  Q~ (this vertex quot ient  graph  is formed with respect 

to the  current  par t i t ioning of V).  Pe r fo rm steps 2 to 7 of Algor i thm I I  to refine 

the  par t i t ioning represented by  Qx, obta in ing a new terminal  quot ien t  g raph  Qr .  

Go to step 1. 

Example of Algorithm III. I n  F i gu re  3, G~ a n d  Q~ are  g iven .  T h e  h o m o m o r p h i c  m a p p i n g  of V 

onto O~ is 

(1, (2, 3, 4, 5, 6, 7)) ~ (I, II).  

Since the order of Q~ = 2 and the order of V = 7, we perform step 2. Here we set j = II, 
and choose a vertex, say 4. Q4 is calculated (see the vertex quotient graph label assigned to 
vertex I I  of GR in Figure 4). This partitioning is not refined in step 2. The mapping of V onto 
the new QT is 

(4, 1, (3, 5), (2, 6), 7) ~ (I, II, I I I ,  IV, V). 

In step 1, since the order of QT = 5 and the order of V = 7 we return to step 2, set j = III  
and choose a vertex, say 5. Q5 is calculated (see Figure 5), no refinement is achieved, and we 
perform step 1. The mapping of V onto Q5 is 

(5, 4, 1, 3, 6, 2, 7) ~ (I, II, I I I ,  IV, V, VI, VII). 

Since the order of QT is 8, which is the order of V, the algorithm is finished and Gr is given in, 
Figure 6. 

11I 
3 

I 
I 

"~ 5 

Fro .  5. T h e  v e r t e x  q u o t i e n t  g r aph ,  Q~ , for  FIG. 6. Gr , t h e  r eo rde red  g r a p h ,  for  G~ 

G2 of F i gu re  3 of F igu re  3 
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I CALCULATE [ 
t 2 GR and GR 

3 G2 

I CALCULATE I 
G', o.~ G; 

G C ond G z form o ) 
counfer - exompl~ 

the conjecture 

FIG. 7. Algor i thm IV, the  graph FiG. 8. 

isomorphism algor i thm 

3 

6 

7 

2 4 

I 5 

G] and G~, two graphs  to be 

tes ted for isomorphism 

We now present a theorem regarding reordered graphs. 

THEOREM V. Gr 1 ~ Gr 2 ~ G1 ~ G2 • 

PROOF. This is obvious since Gr ~ ~ G1 and Gr 2 ~ G2. 

It is seen that  the reordered graphs form a sufficiency condition for isomorphism; 

namely, if G~ 1 --- Gr 2, then G1 ~ G2. The converse of this theorem is true if the 

Conjecture is true (see [5]). Thus if the Conjecture is true, then the reordered 

graph is a canonical form for the equivalence class of graphs isomorphic to the 

given graph. 

5. Graph Isomorphism Algorithm 

ALGORITHM I V  

This algorithm is presented in the form of a flowchart in Figure 7. I t  may be shown 

that if the Conjecture is true, then GR 1 ------ GR 2 ~ Gr 1 ~ Gr 2. In the isomorphism 

algorithm, it is a violation of this statement that  would indicate that  a counter- 

example had been found to the Conjecture. 

Example of Algorithm IV. We are given the  graphs,  Gi and  G2 , presented in Figure 8. In block 1 

of Algorithm IV, the  represen ta t ive  graphs,  G~ and  G~, are derived. The execution of Algo- 

rithm I I  on G1 will be followed in detail .  

After step 1 of Algor i thm II ,  Q consists of one ver tex wi th  a directed loop of weight 3 on it.  

In step 2, k is set equal  to 1. In  steps 3, 4, and  5, the ver tex quot ien t  graphs Qi (1 < i < 8) 

are calculated. In step 6 i t  is seen t h a t  Ql -~ QG ; Q~ ~ Q4 -~ Q6 ~ Qs ; Q3 -~ Q7 • The set of 

vertices is pa r t i t i oned  and  the  subcells are ordered such t h a t  cell {1, 5} precedes cell {3, 7} 

which precedes cell {2, 4, 6, 8}. Algor i thm I does not  refine this  par t i t ion ing  so t h a t  we now 
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i 
GR 

where node I iS 

assigned the 

additional label: 

and node ~ is 

assigned the 

add i t i ona l  label: 

2 

5 4 

3 

and node m is 2 ~  ~.4 
assigned t h e  

a d d i t i o n a l  l a b e l :  

l 5 

7 

FIG. 9. GR , t he  r e p r e s e n t a t i v e  g r a p h  for b o t h  G~ and  G~ 

2 4 

I 5 

7 

FiG. 10. Gr , t h e  r eo rde red  g r a p h  for b o t h  G1 a n d  G2 

h a v e  a new q u o t i e n t  g r a p h  Q. (Qis  t he  s a m e  as QT g iven  in F igu re  9.) A l g o r i t h m  I I  is reentered  

a t  s t ep  2. I t  is f o u n d  t h a t  no f u r t h e r  r e f i n e m e n t  is a ch i eved ,  s 
1 2 

T h e  r e p r e s e n t a t i v e  g r a p h s  for  b o t h  G1 a n d  G~ are  g iven  in  F i g u r e  9. Since G~ -= GR, t h e  yes 

exi t  of b lock  2 is fol lowed.  I n  b lock  3, G~ a n d  G*r a re  d e t e r m i n e d  (see F i g u r e  10). Since G~ ~- 

G'r, t h e  yes  exi t  of b lock  4 is t a k e n  a n d  we conc lude  t h a t  G~ is i s o m o r p h i c  to  G~ . One  possible  

s In  fac t ,  we know of no e x a m p l e  in w h i c h  a r e f i nemen t  is a c h i e v e d  a t  t h i s  po in t .  
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isomorphism between G1 and  G2 is ~(4, 2, 1, 8, 7, 3, 5, 6) where n o d e j  of G1 is mapped onto node 

q(j) of G: (e.g. node 4 of G1 is mapped onto node 8 of G2). Fu r the r  examples of the a lgor i thm 
are presented in [5]. 

6. Timing Considerations 

In this section we examine the timing requirement for Algorithms I and IV; the 

other algorithms are examined in [5]. We determine the dependence of the processing 

time, T, on n by examining each step of the algorithm and estimating the number 

of machine cycles needed to perform this step. The following assumptions are 

made: the binary adjacency matrices are packed into the machine words; 51 machine 

cycles are needed to interrogate an element of a packed binary matrix; 52 cycles 

are needed to compare two words; 52 cycles are needed for an integer addition; 54 

cycles are needed for a word replacement; the times for all other operations, par- 

ticularly indexing operations for controlling loops and for modifying fetch instruc- 

tions, are negligible. For each step (and thus for the algorithm), the largest term 

is found for each of 51,52,53, and 54. This analysis is similar to that  in [10]. 

In the analysis of Algorithm I, the following terminology is used: t denotes the 

iteration that  is being performed; in the t-th iteration, the set of nodes has been 

previously partitioned into f( t )  cells; f is the order of the quotient graph; n / d e n o t e s  

the number of nodes in cell V j in the t-th iteration (j = 1, . - .  , f( t));  there are 

exactly hjt different lists assigned to the nodes in V j in the t-th iteration; N = ~ t  n 2; 

F = ~ t  f(t). The number of machine cycles required by the implemented version 
of the algorithm is 

+ terms which depend on lower powers of the parameters. 

An upper bound on this expression is 

n3(51 -t- ]52 + 353 -t- ~-54) -t- terms which depend on lower powers of n. 

(This bound is unreachable.) 

For Algorithm IV, the maximum number of machine cycles required for graphs 

that do not contain 2-strongly regular transitive subgraphs is [5]: 

n5(51 + ~52 -I- 353 + ~-54) -/- terms which depend on lower powers of n. 

As an example of the validity of these timing expressions, we used the IBM 

7094-II to examine the predicted timings and the observed timings for random 

graphs and polygons. For isomorphic random graphs the processing time depended 

on n 2. For density of edges = 0.5 and n = 20, the predicted time is 0.00363 min, 

and the observed time is 0.00447 min; for n = 60, the predicted time is 0.0323 min, 

and the observed time is 0.0330 min. The predicted time for isomorphic polygons 

depends on n4; this family of graphs seems to possess the worst dependence on n 

for graphs that  do not contain 2-strongly regular transitive subgraphs. For n = 10, 

the predicted time is 0.0346 rain, and the observed time is 0.0453 min; for n = 40, 

the predicted time is 7.77 min, and the observed time is 9.97 min; for n = 60, the 

predicted time is 38.7 min. 

For graphs that  contain a transitive h-strongly regular subgraph [not (h + 1)- 
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strongly regular (h > 2)], the upper bound on the timing for the graph isomorphism 

algorithm depends on n 5+h. Since the upper bound for h may be n, our isomorphism 

algorithm is inefficient for families of graphs whose strong regularity is a function 

of n. 

For other graphs and in particular for graphs encountered in usual applications, 

the algorithm is efficient and, subject to the Conjecture, highly effective. 
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