
 Open access Journal Article DOI:10.1145/321556.321562

An Efficient Algorithm for Graph Isomorphism — Source link

Derek G. Corneil, C. C. Gotlieb

Institutions: University of Toronto

Published on: 01 Jan 1970 - Journal of the ACM (ACM)

Topics: Indifference graph, Symmetric graph, Cograph, Chordal graph and Graph product

Related papers:

 An Algorithm for Subgraph Isomorphism

 The graph isomorphism disease

 GIT—a heuristic program for testing pairs of directed line graphs for isomorphism

 A Backtrack Procedure for Isomorphism of Directed Graphs

 Computers and Intractability: A Guide to the Theory of NP-Completeness

Share this paper:

View more about this paper here: https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-
4h06kvxu4w

https://typeset.io/
https://www.doi.org/10.1145/321556.321562
https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w
https://typeset.io/authors/derek-g-corneil-582zpn7033
https://typeset.io/authors/c-c-gotlieb-1szmqbezkw
https://typeset.io/institutions/university-of-toronto-3dwwuuvf
https://typeset.io/journals/journal-of-the-acm-buyoi0af
https://typeset.io/topics/indifference-graph-1ffkpojm
https://typeset.io/topics/symmetric-graph-2p9uht75
https://typeset.io/topics/cograph-2cgew4bp
https://typeset.io/topics/chordal-graph-1s9kadl9
https://typeset.io/topics/graph-product-32e62pm6
https://typeset.io/papers/an-algorithm-for-subgraph-isomorphism-1t0qre6b4v
https://typeset.io/papers/the-graph-isomorphism-disease-3p3v590mll
https://typeset.io/papers/git-a-heuristic-program-for-testing-pairs-of-directed-line-53jre0r5vg
https://typeset.io/papers/a-backtrack-procedure-for-isomorphism-of-directed-graphs-1zwiwinjlx
https://typeset.io/papers/computers-and-intractability-a-guide-to-the-theory-of-np-25fplzw7ir
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w
https://twitter.com/intent/tweet?text=An%20Efficient%20Algorithm%20for%20Graph%20Isomorphism&url=https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w
https://typeset.io/papers/an-efficient-algorithm-for-graph-isomorphism-4h06kvxu4w

An Efficient Algorithm for Graph Isomorphism

D. G. C O R N E I L A N D C. C. G O T L I E B

University of Toronto,* Toronto, Ontario, Canada

ABSTRACT. A procedure for de te rmining whe the r two graphs are isomorphic is described.

During the procedure, from any given graph two graphs, the represen ta t ive graph and the

reordered graph, are derived.

The represen ta t ive graph is a homomorphic image of the original graph; the reordered

graph is const ructed from the represen ta t ive graph to be isomorphic to the given graph.

Unique labels are assigned to the ver t ices of bo th derived graphs. I t follows t ha t two repre-

sentative graphs or two reordered graphs are isomorphic if and only if they are identical . A

conjecture s t a t e s t h a t the represen ta t ive graphs exhibi t the au tomorphism par t i t ion ing of the

given graph. The represen ta t ive graphs form a necessi ty condi t ion for isomorphism; namely,

if the represen ta t ive graphs are not identical , then the given graphs are not isomorphic. The

converse is t rue for trees and follows from the conjecture for o ther types of graphs. I t is also

shown tha t the reordered graphs form a sufficiency condit ion for isomorphism; namely, if the

reordered graphs are identical , then the given graphs are isomorphic. The converse follows

from the conjecture.

The t ime required to de termine bo th derived graphs depends on a power of n, the order of

the given graph. This power is a funct ion of an adjacency proper ty known as the s t rong regu-

larity of the given graph. For graphs t h a t do not conta in a s t rongly regular t rans i t ive sub-

graph, the power is, a t worst , five.

CR CATEGORIES: 3.66, 5 . 3 2

KEY WORDS AND PHRASES: graph, g raph isomorphism, isomorphism, heurist ic procedure,

strongly regular graph, automorphisms, t rans i t ive graphs, coding of graphs, efficient algo-

rithm, effective algori thm, determinis t ic a lgori thm, au tomorphism par t i t ion ing , t r ans i t ive

subgraphs

1. Introduction

No efficient deterministic algorithm is known for determining whether two given

finite graphs, G1 and G2, are isomorphic. An efficient deterministic algorithm is one

which guarantees a solution in a time, T, where T is proportional to a constant

power of n, the order of the graph. A closely related but inherently more difficult

problem is the subgraph isomorphism problem; namely, given two finite graphs, G1

and G2, determine whether G2 is isomorphic to G1 or to a subgraph of G1 • The graph

isomorphism problem and/or the subgraph isomorphism problem arise in such fields

as chemistry, information retrieval, linguistics, logistics, switching theory, and

network theory. For example, in a chemistry application a chemical compound is

represented by its atomic structure diagram (i.e. an undirected, labeled graph).

A given compound is matched with the compounds contained in a large file or

library [1]. A subgraph isomorphism indicates that the given compound is a sub-

* Depar tmen t of Computer Science. This paper embodies the results conta ined in the Ph.D.

thesis by D. G. Corneil. Any differences f rom the results in the thesis are noted. (These are

incorporated into a revision sheet for the thesis .)

Journal of the Association for Computing Machinery, Vo]. 17, No. 1, January 1970, pp. 51-64.

52 D. G. CORNEIL AND C. C. GOTLIEB

compound of the library compound under scrutiny; a graph isomorphism indicates

that the given compound is already in the library.

Since we are dealing exclusively with finite graphs, a deterministic isomorphism

algorithm based upon reordering the nodes is easily given. In this algorithm the

nodes of one of the graphs, say G2, are systematically reordered, and each graph

determined by such a reordering is checked for identity with G1. G1 is isomorphic

to G2 if and only if G1 is identical to at least one of the graphs determined by a

reordering. The number of node reorderings of G2 that must be performed is bounded

by n !. Unger has pointed out that, even using fast present-day computers, a more

practical procedure is necessary for dealing with graphs with more than 10 vertices

[2].

Since graph isomorphism has many applications, effective computer programs

are needed. The lack of an efficient deterministic algorithm has led to inefficient

computer procedures, known as heuristic procedures, which do not guarantee an

answer in a reasonable time [2, 3, 4]. Heuristic isomorphism procedures attempt

to reduce the number of reordering by employing conditions that are necessary

for the existence of an isomorphism. These conditions are properties that are in-

variant under graph isomorphism. For example, no isomorphism between two

undirected graphs, G~ and G2, may map vertex x of G1 onto vertex y of G2 if the

degree of x does not equal the degree of y. Using such properties, the upper bound

on the number of reorderings of the nodes of G2 may be reduced. A more detailed

description of heuristic procedures is presented in [5].

The graph isomorphism procedure presented in Section 5 of this paper is effi-

cient for all graphs that do not belong to a certain recognizable class. However,

since the method is based upon a conjecture, the procedure is not deterministic.

It terminates with one of the following three statements:

(i) The graphs are isomorphic, with the following isomorphism:

(it) The graphs are not isomorphic.

(iii) The graphs form a counterexample to the conjecture.

In the third case it would be necessary to use a deterministic nonefficient heuristic

procedure; however, no counterexamples have been discovered.

Only undirected, unlabeled graphs are considered; minor modifications are

necessary for other types of graphs (see [5]). In Sections 2 and 3, algorithms which

partition the set of vertices of a graph are presented. By using these algorithms,

the representative graph and the reordered graph are defined (Section 4). The

graph isomorphism algorithm is presented in Section 5; the timing considerations

are discussed in Section 6.

Before presenting this material, some definitions are given.

A subgraph, 1 H, of G is a transitive subgraph of G if for any two nodes, x, y, of H

there exists an automorphism of G mapping x onto y.

A partitioning of the set, V, of vertices of a graph G(V, E) is 2 called the auto-

morphism partitioning when the following holds: vertices x and y belong to the

same cell if and only if there exists at least one automorphism of G mapping x

onto y. Note that the set of vertices in a cell of the automorphism partitioning

forms a transitive subgraph.

1 The set of edges in H is the restriction of the set of edges in G to the set of vert ices in H.

2 E is the set of edges in G.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An E~cient Algorithm for Graph Isomorphism 53

A 2-strongly regular graph is an undirected graph, G(V, E), which is not complete

and not void such that there exist constants p~l, p~2, p~2, p~, p~2, p~2 where:

(I) for all y E V, for all z E V where (y, z) ~ E:

(i) { {x { x E V - {Y, Z} ; (x, y) E E; (x, z) E E} = P~i ,

(ii) [{x Ix E V - {y,z} ; (z , y) E E ; (x , z) ~ E} = p~2,

(iii) I {x[x E V - {y,z} ; (x , y) ~ E ; (x , z) ~ E} = p~2;

(II) for all y E V, for all z E V where (y, z) ~ E:

(i) {{x{x C V - - {y,z} ; (z , y) E E; (x,z) ~ E} = p~l,

(ii)]{x{x E V - - {y,z} ; (z , y) E E ; (x , z) ~ E} = p~2,

(iii) {{xIx E V - {y,z} ; (x , y) $ E ; (x , z) ~ E} = p~2.

This definition is equivalent to Bose's definition of strongly regular [6]. Condition

I indicates that for any two distinct adjacent vertices y and z, there exist exactly

p~ vertices adjacent to both y and z, exactly p~2 vertices adjacent to y but not

adjacent to z, and exactly p~2 vertices not adjacent to either y or z. Condition II

is similar except that y and z are not adjacent.

The definition of 2-strongly regular may be extended to h-strongly regular (h > 2)

in an obvious way- -by specifying, up to isomorphism, all graphs of order h (see

[5] for h = 3). For purposes of continuity, a regular graph may be called 1-strongly

regular.

2. Terminal Connection Partitioning Algorithm

In the determination of the representative graph, it is necessary to partition the

set of vertices of the given graph. In this section, an algorithm for refining a given

partitioning is given. I t may be shown that if the given partitioning is invariant

under automorphism (and this is always the case for us), the partitioning resulting

from this algorithm is also invariant under automorphism. We assume that in the

given partitioning, V has been partitioned into i (i > 1) cells, 3 where the j t h cell

is denoted V ~ (1 _< j _< i).

ALGORITHM I

Step 1. To each node y E V, associate a list (al , . . - , ai) where ai equals the

exact number of nodes, x~ E V ~ s u c h t h a t (y, xz) E E (1 _< j _< i). Note that

~=1 a1 = d(y), the degree of vertex y.

Step 2. We now define a refinement of the j t h cell.

(i) Perform an ordering of the nodes in the cell by examining the lists associated

with the nodes of V j. Order the nodes by lexicographically ordering their lists.

(ii) If all the nodes have the same list, no refinement is done.

(iii) If the lists are not identical, use the ordering of the nodes of V ~ to refine

V j as follows: Assume that node y precedes all other nodes of V~; then the first

subcell of V j consists of node y and all other nodes of V j which have the same list

as y. Remove these nodes from V i, and from the remaining nodes choose the node

that precedes all other remaining nodes.

3 If i equals 1, t hen V has no t been pa r t i t i oned .

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

54 D . G . CORNEIL AND C. C. GOTLIEB

This node and all other nodes with the same list form the second subcell of W.

Continue this process until all nodes of V j belong to a subcell of V j.

Step 3. Apply step 2 to all i cells. If at least one of the cells is refined, then we

reindex all the cells and go to step 1. This reindexing is carried out as follows:

Assume that cells 1 to j - 1 are not refined, but cell j is; cells 1 to j - 1 retain

their previous cell indices. Index the 1 subcells of cell j as j , j + 1, • • • , j + l - 1

according to the ordering of subcells defined in step 2. The next cell to be indexed

(cell j -Jr 1 or a subcell of it) is assigned the index j + l, and the process continues

until all cells have been indexed.

If no cell is refined, the algorithm is finished, and the terminal connection parti-

tioning of the set of nodes of G with respect to the given partitioning has been

obtained. Since the refinement requires at least one refinement in order to continue,

and the number of cells is bounded by the number of nodes of G (which is finite),

the algorithm terminates. If the given partitioning consists of V alone, then the

first iteration of Algorithm I merely performs a degree partitioning of V (i.e. two

vertices belong to the same cell if and only if their degrees are the same). If G is

regular and the given partitioning consists of V alone, then Algorithm I does not

refine the partitioning.

E x a m p l e of A lgor i thm I . Consider the graph in Figure 1. Assume that we are given the follow-
ing degree part i t ioning of V:

Cell index Nodes

I 3, 7,8, 10
I I 6

I I I 2, 4

IV 1, 5, 9

From step 1 of the algorithm, the lists are:

Cell index Node List

/ 3 (3 , 0 , 2 , 0)

t 7 (3,1, 1,0)
I 8 (2, O, 1, 2)

[10 (2, O, 1, 2)

I I 6 (1, O, 1, 2)

f2 (3, o, o, o)
iH

\4 (2, 1, O, O)

[1 (1, 1, 0, 0)
IV ~5 (1, 1, O, O)

[9 (2, o, o, o)

In step 2 the lists are lexicographically ordered, and the nodes

Cell index Node

J
7 (3,

I 3 (3,
s (2,

lO (2,
I I 6

I I I f2

i v

15

are placed in the following order:

List

1 ,1 ,0)

o, 2, o)
o, 1,2)
0,1,2)

(1, 0, 1, 2)

(3, o, o, o)
(2, 1, o, o)
(2, o, o, o)
(1, 1, o, o)
(1, 1, O, O)

Journal of the Association for Computing Machinery, Vol. 17, No. 1. January 1970

An Efficient Algorithm for Graph Isomorphism 55

Cells l, I I I , and IV are refined. In step 3 the subcells are reindexed, and in step 1 the new lists

are assigned as follows:

Cell index Node List

I 7 (o, 1, 2, 1, o, 1, o, o)
I I 3 (1, 0, 2, 0, 1, 1, 0, 0)

I I I ; 8 (1 , 1 , 0 , 0 , 1 , 0 , 1 , 1)
~10 (1, 1, 0, 0, 1, 0, 1, 1)

iv 6 (1 ,0 ,0 ,0 ,0 ,1 ,0 ,2)
v 2 (0, 1, 2, o, o, o, o, o)

VI 4 (1, 1, 0, 1, 0, 0, 0, 0)

VI I 9 (0, 0, 2, 0, 0, 0, 0, 0)

VIII f l (0, O, 1, 1, O, O, 6, O)
\5 (o, o, 1, 1, o, o, o, o)

Since the lists associated with nodes 8 and 10 are identical and the lists associated with nodes

1 and 5 are identical, the algorithm is finished, and this is the terminal connection part i t ioning

for this graph with respect to the given parti t ioning.

To represent the refined partitioning of V, we now define Q, the directed quotient

graph of a graph G. The terminal connection partitioning algorithm defines the

following equivalence relation on V: two nodes belong to the same equivalence

class if and only if they belonged to the same initial partition and their terminal

lists are identical [5]. Thus we may define the directed quotient graph, Q, such that

(i) the set of vertices is the set of integers from 1 to f (f is the number of cells

in the terminal connection partitioning) ;

(ii) the set of directed edges is defined such that if a node, y C V ~, is adjacent

to exactly 1 nodes in V j (l equals the as in the terminal list associated with y), then

there is a directed edge of weight 1 from node i of Q to node j of Q.

Since the vertices are assigned unique integer labels, two quotient graphs are

isomorphic if and only if they are identical. The quotient graph, Q, is a homo-

morphic image of G(V, E) (i.e. the nodes of G are mapped onto the nodes of Q,

and the edges of G are mapped onto the edges of Q). Since the nodes in cell V j

form a regular subgraph, say of degree h, of G, there is a directed loop of weight h

on vertex j in Q.

Note that the set of rows of B, the adjacency matrix of Q, is the set of lists corre-

sponding to the terminal cells of the partitioning (i.e. t h e j t h row of B is the terminal

list associated with each node, y C V~). B has the properties:

(i) ~ = 1 blj = d(x~), for all i, where f is the number of columns in the matrix,

and x~ is a vertex in cell i.

(ii) order of V i X b~j = order of V j X bjl, for all i and j .

Example of Quotient Graph. The quotient graph, Q, for the graph given in Figure 1, when the

degree part i t ioning is the given parti t ioning, is given in Figure 2. The number of arrowheads

on the edges indicates the weight of the edge in each direction.

3. Terminal Quotient Graph

It was stated in Section 2 that since the partitioning presented to Algorithm I

is invariant under automorphism, the partitioning resulting from the algorithm

is also invariant under automorphism. Thus any two vertices that belong to a

transitive subgraph must belong to the same cell of the refined partitioning. An

Journal of the Association :for Computing Machinery, Vol. 17. No. I, January 1970

5 6 D. G. C O R N E I L AND C. C. G O T L I E B

2

3 4

5

Eli

9 s

F i o . 1. A g r a p h , G FIG. 2. Q , t h e q u o t i e n t g r a p h f o r G

equivalent s ta tement is the following: the automorphism partitioning is a refine-

ment (possibly trivial) of the parti t ioning resulting from Algorithm I.

We now present Algorithm I I , which utilizes Algorithm I and a t tempts to deter-

mine the maximal transitive subgraphs of the given graph. The algorithm performs

a parti t ioning on the set of vertices and results in a graph which is defined as the

terminal quotient graph, Qr •

ALGORITHM I I

Step 1. Per form Algorithm I on V, resulting in the quotient graph, Q. If the

given graph is not regular, then the degree parti t ioning is refined in Algorithm I.

If the graph is regular of degree h, then no partit ioning of V is achieved, and Q

consists of one vertex with a directed loop of weight h on it.

Step 2. Assume tha t there are i cells (i ~ 1). Set k equal to 1 and go to step 3.

Step 3. Examine cell V k. If there is only one vertex in cell V k, go to step 7.

Assume tha t there are 1 (l > 1) vertices Xl, - " , x z in V k. Choose one of these

vertices, say x~, and go to step 4.

Step 4. Perform the following refinement of the existing parti t ioning (i.e. as

represented by Q). Remove xg from V k and place it in new cell 1. New indices are

assigned to all the old cells of Q as follows: old cell j is assigned the new index j + 1

for all j . Effectively, we have altered the given graph G by assigning vertex xg a

unique label and by placing it in a unique cell. The new partit ioning is invariant

under automorphism for this altered graph. Apply Algorithm I to this new parti-

tioning and obtain the quotient graph Qxg which will be called the vertex quotient

graph for xg with respect to the given partitioning. G o to step 5.

Step 5. Perform step 4 for all 1 nodes x l , . . . , x z of cell V k. If Q~I ~ Q~0,

for 4 all g (1 ~ g _< 1), then go to step 7; otherwise go to step 6.

In this step we have assumed that the vertices in cell V k do n o t form an h-strongly regular
subgraph (h > 2). It is necessary to determine the largest h such that the subgraph is h-
strongly regular. To do this, Step 4 of Algorithm II is altered so that an h-vertex quotient
graph is calculated (i.e. the vertex quotient graph with respect to h given vertices). The h-
vertex connection partitioning algorithm, which calculates the h-vertex quotient graph, is de-
fined in the following way: Place each of the chosen h vertices (xl , - • • , xh) into an individual
cell such that x~ is in cell i; then perform Algorithm I. The resulting quotient graph is called the
h-vertex quotient graph Q x ~ , • • • , x h . The following theorem is proved in [5] :

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An Effwient Algorithm for Graph Isomorphism 57

Step 6. If for any two vertices, y, z, in V k, Q~ ~ Qz, then there can be no auto-

morphism of G that maps y onto z. We may therefore refine the partitioning repre-

sented by Q in the following way. The set of vertices in cell V k is partitioned such

that two vertices belong to the same subcell if and only if they possess identical

vertex quotient graphs. Now consider each adjacency matrix to be a vector where

the (i -t- 1)-th row of the matrix immediately succeeds the ith row for all i. The

subcells are then ordered by lexicographically ordering the vectors corresponding

to the adjacency matrices of the vertex quotient graphs. This refinement of V k

provides a refinement of the partitioning of V represented by Q. Perform Algorithm

I on this new partitioning and reenter Algorithm II at step 2 with the new Q.

Step 7. Replace k with k ~ 1. If]c does not equal i, go to step 3. If k equals i,

then the algorithm is finished. We now refer to the given quotient graph, Q, as the

terminal quotient graph, Qr •

An example of this algorithm will be given in Section 5, where the entire graph

isomorphism algorithm is presented.

We now make the following conjecture:

Conjecture. The partitioning resulting from Algorithm II is the automorphism

partitioning of V.

Note that the automorphism partitioning is a refinement (we conjecture trivial)

of the partitioning from Algorithm II. 5

In order to deal with the fact that two graphs which possess the same terminal

quotient graphs may be nonisomorphic (see Figure 3), we introduce the representa-

tive graph.

4. Representative Graph and Reordered Graph

Having calculated the terminal quotient graph and the vertex quotient graphs

(Algorithm II) we now define the representative graph, GR.

If all transitive subgraphs of a given graph G are not 2-strongly regular, 6 then

G~, the representative graph of G, is immediately derived from Qr, the terminal

quotient graph associated with G. Let QH~ denote the vertex quotient graph asso-

ciated with each vertex in the transitive subgraph Hi of G, where the nodes of Hi

are mapped onto node i of Q~ for all i. GR is defined to be the graph Qr such that

THEOREM I. A graph G(V, E) is h-strongly regular (2 < h < n) i f and only if

(i) G is (h - 1)-strongly regular;

(ii) In all (h - 1)-vertex connection partitionings, two vertices belong to the same cell i f and

only i f their adjacencies to the (h - 1) chosen vertices are identical;

(iii) Qxl,...,~h-i ------ Q~l,...,~h-~ i f and only i f the following holds: (x~ , xi) E E i f and only i f

(Y~ , Yi) E E for all i and j .
Thus it is possible to determine m, the maximal strong regularity of a subgraph. If a sub-

graph is m-strongly regular, then the set of m vertex quotient graphs for all possible choices of

m vertices must be calculated. See [5] for further details.
Because of this conjecture, special t reatment is required in Algorithm II for h-strongly regular

graphs (h _> 2). This necessity is i l lustrated by " the exceptional graph of order 26," given in
[7]. This graph is nontransit ive and 2-strongly regular. Since it is nontransit ive, the auto-

morphism part i t ioning consists of at least two cells; since it is 2-strongly regular, all vertex

quotient graphs are identical (Theorem I).
6 If the transi t ive subgraph Hi is h-strongly regular (h > 2) but .lot (h ~ 1)-strongly regular,

then node j of GR is labeled by the family of h-vertex quotient graphs associated with Hj . See

[5] for further details.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

5 8 D. G. C O R N E I L AND C. C. G O T L I E B

G i 5 Q~

5

7

G2

2

7 6

o~

e~

FI(; . 3. N o n i s o m o r p h i c g r a p h s w h i c h h a v e i d e n t i c a l t e r m i n a l q u o t i e n t g r a p h s

node i of GR is labeled by the vertex quotient graph QH, (recall that each vertex

in Qr was labeled with a unique integer).

The representative graphs of the graphs of Figure 3 are shown in Figure 4.

We define two representative graphs to be identical (also isomorphic) if the

terminal quotient graphs arc identical and if vertices in the representative graphs

with the same integer label also have identical vertex quotient graph labels.

THEOREM II. G1 ~ G2 ~ GR I ~ GR 2.

PROOF. This follows immediately from the fact that the partitionings resulting

from Algorithm I and Algorithm II are invariant under automorphism, and there-

fore invariant under isomorphism.

I t is seen that the representative graphs form a necessity condition for iso-

morphism; namely, if GR 1 ~ G, 2, then G1 ~ G2 • Thus we conclude that the graphs

in Figure 3 are not isomorphic.

THEOREM III. I f the conjecture is true, then GR 1 ~- GR 2 ~ G1 ~ G~. (Converse

of Theorem II.)

PROOF. Consider graph G3 to be the union of G~ and G~. Assume that G~ and

G2 are connected; otherwise, set G3 to be the union of the complement of G~ and

the complement of G2. Let H~ (K~) denote the transitive (from the conjecture)

subgraph of G1 (G2) where the nodes of Hi (Ki) are mapped onto note i of Qr 1 (Qr2),

for all i. Let Q~ denote the vertex quotient graph (or family of h-vertex quotient

graphs) associated with Hi when H~ is a subgraph of Gj . Let D denote the quotient

graph of G~ (and hence G2) resulting from Algorithm I.

Now apply Algorithm II to G3 • Since G ~ G 2 ~ 2 R ~ R,QH~ ~ Q~ for a l l i a n d Q r 3

Qr 1 =- Qr 2. Since G~ and G2 are disjoint in G3, Q~, ~- Q~, U D and Q~, =- Q2K~ U D

for all i. Thus Q~ ~ Q~ , and in the partitioning of the set of vertices of G3 cell i

contains H~ U Ki for all i. For some cell i choose vertex x C V~ and vertex y ~ V~.

Since the given partitioning is assumed to be the automorphism partitioning, we

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An E~cient Algorithm for Graph Isomorphism 59

t

GR [:

where node I is assigned the additional [abel

and node g is assigned the additional labe l

2

22
2

GR

where node I is assigned the additional label

and node I~ is assigned the addit iona[label

2

5

1 2 '
FIG. 4. G R and G R for the graphs in Figure 3

know tha t there exists an automorphism of G tha t maps x onto y. Since G~ and G~

are connected graphs, vertices in V1 (V2) may only be mapped onto vertices ire

V2 (Vi). Thus this automorphism of G3 is induced by an isomorphism of G1 onto

G2, and G~ ~--~ G2.7 I t should be noted tha t the proof requires the validity of Con-

jecture V.3-1 for graphs of order 2n which consist of two disjoint subgraphs of

order n.

We now state Theorem IV which shows tha t the converse of Theorem I I holds

for trees.

THEOREM IV. Consider two finite undirected trees T~ and T2 with quotient graphs

Q1 and Q2 (as calculated in step 1 of Algorithm II) . Then (i) Qi (i = 1 or 2) is the

terminal quotient graph Qr i, and (ii) if Q~ ~ Q2 then T1 ~ T2.

Other efficient tree isomorphism algorithms not related to our method can be

given (e.g. [8, 9]).

The representative graphs form a necessity condition for isomorphism. We now

introduce reordered graphs and develop a sufficiency condition. First we present

the algorithm for determining the reordered graph, Gr, f rom the representative

7 This theorem is not presented in the thesis. All conjectures in the thesis that are related to
the isomorphism algorithm have thus been compressed into one essential conjecture. Dr. J.
Turner has presented a counterexample to Conjecture V.4-1 of the thesis; however, since this
conjecture is not needed, our results are not affected.

J o u r n a l of t h e Assoc ia t ion for C o m p u t i n g M a c h i n e r y , Vol . 17, No . 1, J a n u a r y 1970

6 0 D. G. CORNEIL AND C. C. GOTLIEB

graph, GR. The reordered g raph is const ructed to be isomorphic to the given graph

G. I n this a lgor i thm it is assumed t h a t any subgraph whose nodes are mapped onto

a single vertex of QT is not an h-strongly regular graph (h ~_ 2). For these types

of graphs see [5].

ALGORITHM I I I

Step 1. Does the number of vertices in Qr equal the number of nodes in G? If

not, go to step 2; otherwise, Qr represents a unique reordering of the nodes of G,

the adjacency matr ix of Gr is identical to the adjacency matr ix of Q r , and the

a lgor i thm is finished.

Step 2. Let V ~ denote the i th cell of the par t i t ioning of V represented by Qr .

Choose the cell with the lowest index, say j , such tha t the order of V ~ ¢ 1. From

V ~ arbi trar i ly choose a vertex, say x. Pe r fo rm step 4 of Algor i thm I I to construct

the vertex quot ient g raph Q~ (this vertex quot ient graph is formed with respect

to the current par t i t ioning of V). Pe r fo rm steps 2 to 7 of Algor i thm I I to refine

the par t i t ioning represented by Qx, obta in ing a new terminal quot ien t g raph Qr .

Go to step 1.

Example of Algorithm III. I n F i gu re 3, G~ a n d Q~ are g iven . T h e h o m o m o r p h i c m a p p i n g of V

onto O~ is

(1, (2, 3, 4, 5, 6, 7)) ~ (I, II).

Since the order of Q~ = 2 and the order of V = 7, we perform step 2. Here we set j = II,
and choose a vertex, say 4. Q4 is calculated (see the vertex quotient graph label assigned to
vertex I I of GR in Figure 4). This partitioning is not refined in step 2. The mapping of V onto
the new QT is

(4, 1, (3, 5), (2, 6), 7) ~ (I, II, I I I , IV, V).

In step 1, since the order of QT = 5 and the order of V = 7 we return to step 2, set j = III
and choose a vertex, say 5. Q5 is calculated (see Figure 5), no refinement is achieved, and we
perform step 1. The mapping of V onto Q5 is

(5, 4, 1, 3, 6, 2, 7) ~ (I, II, I I I , IV, V, VI, VII).

Since the order of QT is 8, which is the order of V, the algorithm is finished and Gr is given in,
Figure 6.

11I
3

I
I

"~ 5

Fro . 5. T h e v e r t e x q u o t i e n t g r aph , Q~ , for FIG. 6. Gr , t h e r eo rde red g r a p h , for G~

G2 of F i gu re 3 of F igu re 3

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An Eff~ient Algorithm for Graph Isomorphism 61

I CALCULATE [
t 2 GR and GR

3 G2

I CALCULATE I
G', o.~ G;

G C ond G z form o)
counfer - exompl~

the conjecture

FIG. 7. Algor i thm IV, the graph FiG. 8.

isomorphism algor i thm

3

6

7

2 4

I 5

G] and G~, two graphs to be

tes ted for isomorphism

We now present a theorem regarding reordered graphs.

THEOREM V. Gr 1 ~ Gr 2 ~ G1 ~ G2 •

PROOF. This is obvious since Gr ~ ~ G1 and Gr 2 ~ G2.

It is seen that the reordered graphs form a sufficiency condition for isomorphism;

namely, if G~ 1 --- Gr 2, then G1 ~ G2. The converse of this theorem is true if the

Conjecture is true (see [5]). Thus if the Conjecture is true, then the reordered

graph is a canonical form for the equivalence class of graphs isomorphic to the

given graph.

5. Graph Isomorphism Algorithm

ALGORITHM I V

This algorithm is presented in the form of a flowchart in Figure 7. I t may be shown

that if the Conjecture is true, then GR 1 ------ GR 2 ~ Gr 1 ~ Gr 2. In the isomorphism

algorithm, it is a violation of this statement that would indicate that a counter-

example had been found to the Conjecture.

Example of Algorithm IV. We are given the graphs, Gi and G2 , presented in Figure 8. In block 1

of Algorithm IV, the represen ta t ive graphs, G~ and G~, are derived. The execution of Algo-

rithm I I on G1 will be followed in detail .

After step 1 of Algor i thm II , Q consists of one ver tex wi th a directed loop of weight 3 on it.

In step 2, k is set equal to 1. In steps 3, 4, and 5, the ver tex quot ien t graphs Qi (1 < i < 8)

are calculated. In step 6 i t is seen t h a t Ql -~ QG ; Q~ ~ Q4 -~ Q6 ~ Qs ; Q3 -~ Q7 • The set of

vertices is pa r t i t i oned and the subcells are ordered such t h a t cell {1, 5} precedes cell {3, 7}

which precedes cell {2, 4, 6, 8}. Algor i thm I does not refine this par t i t ion ing so t h a t we now

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

62 D. G. CORNEIL AND C. C. GOTLIE~

i
GR

where node I iS

assigned the

additional label:

and node ~ is

assigned the

add i t i ona l label:

2

5 4

3

and node m is 2 ~ ~.4
assigned t h e

a d d i t i o n a l l a b e l :

l 5

7

FIG. 9. GR , t he r e p r e s e n t a t i v e g r a p h for b o t h G~ and G~

2 4

I 5

7

FiG. 10. Gr , t h e r eo rde red g r a p h for b o t h G1 a n d G2

h a v e a new q u o t i e n t g r a p h Q. (Qis t he s a m e as QT g iven in F igu re 9.) A l g o r i t h m I I is reentered

a t s t ep 2. I t is f o u n d t h a t no f u r t h e r r e f i n e m e n t is a ch i eved , s
1 2

T h e r e p r e s e n t a t i v e g r a p h s for b o t h G1 a n d G~ are g iven in F i g u r e 9. Since G~ -= GR, t h e yes

exi t of b lock 2 is fol lowed. I n b lock 3, G~ a n d G*r a re d e t e r m i n e d (see F i g u r e 10). Since G~ ~-

G'r, t h e yes exi t of b lock 4 is t a k e n a n d we conc lude t h a t G~ is i s o m o r p h i c to G~ . One possible

s In fac t , we know of no e x a m p l e in w h i c h a r e f i nemen t is a c h i e v e d a t t h i s po in t .

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An Eficient Algorithm for Graph Isomorphism 63

isomorphism between G1 and G2 is ~(4, 2, 1, 8, 7, 3, 5, 6) where n o d e j of G1 is mapped onto node

q(j) of G: (e.g. node 4 of G1 is mapped onto node 8 of G2). Fu r the r examples of the a lgor i thm
are presented in [5].

6. Timing Considerations

In this section we examine the timing requirement for Algorithms I and IV; the

other algorithms are examined in [5]. We determine the dependence of the processing

time, T, on n by examining each step of the algorithm and estimating the number

of machine cycles needed to perform this step. The following assumptions are

made: the binary adjacency matrices are packed into the machine words; 51 machine

cycles are needed to interrogate an element of a packed binary matrix; 52 cycles

are needed to compare two words; 52 cycles are needed for an integer addition; 54

cycles are needed for a word replacement; the times for all other operations, par-

ticularly indexing operations for controlling loops and for modifying fetch instruc-

tions, are negligible. For each step (and thus for the algorithm), the largest term

is found for each of 51,52,53, and 54. This analysis is similar to that in [10].

In the analysis of Algorithm I, the following terminology is used: t denotes the

iteration that is being performed; in the t-th iteration, the set of nodes has been

previously partitioned into f(t) cells; f is the order of the quotient graph; n / d e n o t e s

the number of nodes in cell V j in the t-th iteration (j = 1, . - . , f(t)); there are

exactly hjt different lists assigned to the nodes in V j in the t-th iteration; N = ~ t n 2;

F = ~ t f(t). The number of machine cycles required by the implemented version
of the algorithm is

+ terms which depend on lower powers of the parameters.

An upper bound on this expression is

n3(51 -t-]52 + 353 -t- ~-54) -t- terms which depend on lower powers of n.

(This bound is unreachable.)

For Algorithm IV, the maximum number of machine cycles required for graphs

that do not contain 2-strongly regular transitive subgraphs is [5]:

n5(51 + ~52 -I- 353 + ~-54) -/- terms which depend on lower powers of n.

As an example of the validity of these timing expressions, we used the IBM

7094-II to examine the predicted timings and the observed timings for random

graphs and polygons. For isomorphic random graphs the processing time depended

on n 2. For density of edges = 0.5 and n = 20, the predicted time is 0.00363 min,

and the observed time is 0.00447 min; for n = 60, the predicted time is 0.0323 min,

and the observed time is 0.0330 min. The predicted time for isomorphic polygons

depends on n4; this family of graphs seems to possess the worst dependence on n

for graphs that do not contain 2-strongly regular transitive subgraphs. For n = 10,

the predicted time is 0.0346 rain, and the observed time is 0.0453 min; for n = 40,

the predicted time is 7.77 min, and the observed time is 9.97 min; for n = 60, the

predicted time is 38.7 min.

For graphs that contain a transitive h-strongly regular subgraph [not (h + 1)-

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

64 D. G. CORNEIL AND C. C. GOTLIEB

strongly regular (h > 2)], the upper bound on the timing for the graph isomorphism

algorithm depends on n 5+h. Since the upper bound for h may be n, our isomorphism

algorithm is inefficient for families of graphs whose strong regularity is a function

of n.

For other graphs and in particular for graphs encountered in usual applications,

the algorithm is efficient and, subject to the Conjecture, highly effective.

ACKNOWLEDGMENTS. The authors are indebted to Professor A. B. Lehman of the

University of Toronto for the clarification resulting from his careful criticism of both

the thesis and this paper. Professor Lehman pointed out how the representative

graphs form a necessity condition and how the reordered graphs form a sufficiency

condition for isomorphism. The authors also wish to thank the National Research

Council of Canada for financial assistance and to acknowledge the helpful sugges-

tions made by Dr. J. Turner of the Stanford Research Institute.

R E F E R E N C E S

1. LYNCH, M . F . Storage and retrieval of information on chemical structures by computer.

Endeavour 27, 101 (May 1968), 68-73.

2. UNGER, S. H. G I T - - a heuristic program for testing pairs of directed line graphs for

isomorphism. Comm. ACM 7, 1 (Jan. 1964), 26-34.

3. SUSSENGUTH, E., JR. A graph theoretical algorithm for matching chemical structures.

J. Chem. Doc. 5, 1 (Feb. 1965), 36-43.

4. B~HM, C., AND SANTOLINI, A. A quasi-decision algorithm for the p-equivalence of two

matrices. ICC Bull. 8, 1 (1964), 57-69.

5, CORNEIL, D . G . Graph Isomorphism. Ph.D. thesis, U. of Toronto, Canada, 1968.
6. BOSE, R . C . Strongly regular graphs, partial geometries, and part ial ly balanced designs.

Pacific J. Math. 18 (1963), 389-420.
7. GOETHALS, J. M., AND SEIDEL, J . J . Orthogonal matrices with zero diagonal. Canad. J.

Math. 19 (1967), 1001-1010.

8. SMOLENSKII, Y . A . A method for the linear recording of graphs. USSR Comput. Math.

and Math. Phys. 2 (1963), 396-397.
9. BUSACKER, R., AND SAATY, W. Finite Graphs and Networks--An Introduction with Appli-

cations. McGraw-Hil l , New York, 1965, 196-199.
10. GOTLIEB, C. C., AND CORNEIL, D . G . Algorithms for finding a fundamental set of cycles

for an undirected linear graph. Comm. ACM 10, 12 (Dec. 1967), 780-783.

RECEIVED JULY, 1968; REVISED SEPTEMBER, 1968

Journal of lhe Association for Computing Machinery, Voh 17, No. 1, January 1970

