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Abstract. In this paper we consider the problem of placing guards to supervise an 

art gallery with holes. No gallery with n vertices and h holes requires more than 

[_(n + h)/3] guards. For some galleries this number of guards is necessary. We present 

an algorithm which places the L(n + h)/3d guards in O(n 2) time. 

1. Introduction 

Art-gallery problems ask the following question: H o w  many guards are always 

sufficient and sometimes necessary to see every point in an art gallery? The floor 

plan of  the gallery is viewed as a simple polygon. A guard is a point in the polygon. 

If this point coincides with vertex, then the guard  is called a vertex #uard. If there 

is no  restriction on the location of the point, then the guard is a point guard. We 

are concerned with the visibility between the guards and the remaining points in 

the polygon. A guard x sees a point  y if the line segment ~-~ does not intersect 

the exterior of  the polygon. The original art-gallery problem, posed in 1973 by 

Klee [7], asks for the number  of  guards required to survey any art gallery with 

n walls and no interior obstructions. The problem was soon solved by Chvfital 

[3], who showed that [_n/3d vertex guards are both  necessary and sufficient. 

A different and very simple sufficiency proof  of  the same result was given in 1978 
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by Fisk I-4]. This proof was used by Avis and Toussaint to implement an algorithm 

running in O(n log n) time, to assign positions to the guards I-1]. 

If the art gallery is allowed to have obstructions (e.g., pillars) in its interior, the 

corresponding floor plan is a simple polygon with other simple disjoint polygons 

called holes inside. In such a polygon, tn /3J  guards are no longer sufficient. 

In 1984 Shermer showed that, for any polygon with one hole, L(n + 1)/3~ is 

a tight bound on the number of guards needed. Shermer had already established 

in 1982 that L(n + h)/3J guards are necessary for a polygon with n vertices 

and h holes. Shermer's results can be found in [8]. In 1991 two independent and 

dramatically different proofs were generated for the fact that L(n + h)/3J point 

guards are also sufficient: one by us [2] and one by Hoffmann et al. [6]. Neither 

paper gave details of algorithms for placing the guards, but the algorithm derived 

from the Hoffmann et al. proof has complexity O(n 3 log n) [5]. In this paper we 

present an O(n z) algorithm to place the guards. Since the algorithm derives from 

the constructive nature of our proof, we start by giving the proof. 

Fisk's proof that tn/3J guards are sufficient in any polygon without holes, 

starts with an arbitrary triangulation of the polygon. The second step is to 

three-color the graph of the triangulated polygon, i.e., colors are assigned to the 

vertices in such a way that no two vertices that share an edge in the graph have 

the same color and only three colors are used. In the third step guards are placed 

at the vertices of the least-used color. At most Ln/3J vertices can be colored 

by this color, so no more than Ln/3] guards are used. Finally it remains to 

note that since all three vertices of a triangle have different colors, every triangle 

has a guard at one of its vertices. This guard sees every point inside the triangle. 

Every point of the polygon is inside some triangle and thus the guards see all 

points in the polygon. To show the sufficiency of [(n + 1)/3/ guards in any 

polygon with exactly one hole, Shermer uses an arbitrary triangulation of the 

polygon with the hole. This triangulation must contain a cycle of triangles, i.e., if 

we construct the dual of the triangulation with one node for each triangle and an 

edge between two nodes if the corresponding triangles share an edge, then the 

dual graph has a cycle surrounding the hole. Shermer first shows that to prove 

the sufficiency of t(n + 1)/3J guards for any triangulation, it is enough to 

provide a proof for a reduced triangulation consisting only of a cycle of triangles 

perhaps with at most single triangles attached. In some of these triangulations it 

is not possible to pick L(n + 1)/3_/guards so that every triangle has a guard at 

one of its vertices. Shermer calls these configurations tough triangulations and 

makes a case study to show that in each case L(n + 1)/3] guards are still 

sufficient. 

Our approach to show that L(n + h)/3J guards are sufficient in any polygon 

with n vertices and h holes, is radically different: first connect each hole to the 

exterior with a quadrilateral "channel" and then triangulate the hole-free version 

of the polygon. The channels are such that: 

(1) Only one new vertex is introduced for each channel. 

(2) A triangle in the remaining polygon sees all of  the channel. 

Our triangulation is not  arbitrary. We force these special triangles to be included 

with the result that a guard placement based on three-coloring in the hole-free 
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polygon will automatically cover the channels. In Section 2 we use this method 

to give a new proof for the sufficiency of L(n + 1)/3/guards when h = 1 and in 

Section 3 we extend this result to an arbitrary h. The computational complexity 

and other aspects of the algorithm is discussed in Section 4. 

2. Guarding a Polygon with One Hole 

Let P be a polygon with one hole and n vertices. Our procedure for proving 

that P can be guarded by t(n + 1)/3J guards has the following steps. Construct a 

channel C that joins the hole to the exterior boundary of P, in such a way that 

at most one additional vertex is created. Then remove C, producing a new polygon 

p1 with n + 1 vertices and no holes. This polygon can be guarded by (n + 1)/3/ 

guards. The only part of the original polygon left unguarded is the channel C. To 

ensure that C is also seen by at least one guard, we associate with C during 

construction a triangle T in the new polygon P~. T has the property that a guard 

arbitrarily placed within it can see the entire channel in the original polygon. 

When p1 is triangulated to place the guards, we force T to be one of the triangles. 

After three-coloring, one of T's vertices is colored by the least-used color. The 

guard placed at this vertex sees all of C and the L(n + 1)/3J guards placed 

can then see not only p1 but also all of the original polygon P. 

We describe three methods of constructing C such that: 

(1) The net gain in vertices is at most one. 

(2) A triangle in the remaining hole-free polygon sees all of C. 

All the methods involve rotations of a ray around a source point. We adopt the 

convention that if the ray hits two or more vertices simultaneously, then the "first 

vertex encountered" refers to the vertex closest to the source point. In the following 

let the vertices on the exterior boundary B be Po . . . . .  Pro- 1 in clockwise order and 

let the vertices on the hole H be h 0 . . . . .  hn-m-1 in counterclockwise order. The 

first way to construct a channel is to pick an edge h k_ lhk, where hk is a reflex 

vertex of P on H, and extend it through hk until it hits the exterior boundary at 

a point q on edge Pi Pl- 1 (see Fig. 1). Create a new vertex q' a distance of e away 

from q in the direction of p_ 1 and connect q' to hk + 1. C is the area h k, q, q', hk + 1. 

The edge qq' has length e and is called the e-side of C. The new polygon pl has 

vertices Pl ,  . . . , P l - 1 ,  q', hk § 1 . . . . .  h k - 1 ,  q, Pi . . . . .  Pro, using modular arithmetic on 

the indices. The first property of a channel construction is satisfied because two 

new vertices q and q' are present, but h k now lies interior to the edge h k -  l q  and is no 

longer a vertex. To satisfy the second property, a triangle T is required. If T can 

be found such that the area of C u T is convex and empty, then every vertex of 

T is guaranteed to see all of C and the second property of a channel construction 

is satisfied. We choose as the base of T one side of C. In this construction q'h k § 1 

is that side. A third vertex v $ q'hk+ 1 to serve as the apex of T must be found. 

Choose v as the first vertex encountered when h k + l q  rotates counterclockwise 

around hk§ ~ with q sliding along its edge toward p~_ 1- If the quadrilateral 

Q---(hk. 1, hk, q, v) is convex and empty, then area C u T is guaranteed to be 
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Fig. 1. Edge h k_ 1hi is extended through h k. 

convex and empty. Above we extended edge h k_lhk t h r o u g h  h k. A symmetric 

construction can be produced if we instead extend edge h k + ~hk through h k. 

In Case 2.1 we formalize the conditions that must hold for this type of 

construction to be possible. We let h~ represent a vertex adjacent to h~ in either 

direction. In the forward  version of Case 2.1, hi lies in a counterclockwise direction 

from hk and in the backward version of Case 2.1, ht lies in a clockwise direction 

from h k. Similarly vertex Pi is adjacent to p~. We consolidate the two versions into 

one case: 

Case 2.1. A reflex vertex h k of P on H with incident edges e = hkh I and e' and 

an edge f = PiPj on B exists such that the following conditions hold: 

�9 The extension of e' through h k hits edge f on B at q # p~. 

�9 A half-plane defined by hkq contains both e and pg. 

�9 A vertex v on H or B and a quadrilateral Q = (h i, hk, q, v) exist such that: 

1. v~qhl .  

2. v is the first vertex encountered by hzq as q slides along f toward pj. 

3. Q is convex. 

4. Q has an empty interior. 

Note that it is possible within Case 2.1 for the extension from h k to touch a 

vertex on B. In the special case where q coincides with a vertex p~ and hk, q, and 

Pi-1 do not form a right turn, the construction results in a polygon P1 with n 

vertices. If the extension from hk first touches B at a vertex pj and hk, p j, and p j_ 

form a right turn, then the extension is continued. The removal of C divides P 

into pieces. These pieces are triangulated separately and then joined at pj before 

the triangulation graph is three-colored. 

The second method of constructing a channel is to connect vertex hk directly 

to pi, create vertex p'~ a distance of ~ away from p~ in the direction of Pl-1 and 



An Efficient Algorithm for Guard Placement in Polygons with Holes 81 

Fig. 2. Vertex h k is connected directly to vertex Pv 

connect  it to hk+l (see Fig. 2). C is the area  hk, pl, p'i, hk+ 1 with e-side PiP'i. 

The base of  t r iangle T lies a long the side p'ihk+ 1 and the third vertex v is picked 

so that  Q = (hk+l, hk, Pl, V) is empty  and  convex. A backward  version of the 

cons t ruc t ion  ensues if we instead place vertex P'i in the direct ion of  Pi+l and  

connect  it to h k_ 1. This type of const ruct ion  is appl icable  in the following case: 

Case 2.2. An edge e = hkh I on H and an edge f = PiPj on B exist such that  the 

following condi t ions  hold:  

�9 A half-plane defined by h k Pl contains  bo th  e and  pj. 

�9 A vertex v on  H or  B and a quadr i la te ra l  Q = (hi, hk, Pl, v) exist such that :  

1. v q~ piht. 

2. v is the first vertex encountered  by h~ Pl as Pi slides a long  f toward  Pi- 

3. Q is convex. 

4. Q has empty  interior.  

F o r  the third and final me thod  of  const ruct ing C, we extend an edge from a 

vertex Pi on the exter ior  b o u n d a r y  until  it hits an edge e on H at a po in t  k (see 

Fig. 3). Create  a new vertex P'i next to Pi and  connect  it to the endpoin t  of  e. 

Fig. 3. Edge p~_ lP~ is extended through Pv 
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C has e-side p~ p'i. A forward or backward version of the construction is produced 

depending on which incident edge is extended from p~. This type of construction 

is applicable in the following case: 

Case 2.3. An edge e = hkh t on H and a reflex vertex p~ with incident edges f and 

f '  on B exist such that the following conditions hold: 

�9 The extension of f '  through p~ hits e at k ~ h~. 

�9 A half-plane defined by pik contains both f and h I. 

�9 A vertex v on H or B and a quadrilateral Q = (h~, k, Pi, v) exist such that: 

1. v q~ p ih  I. 

2. v is the first vertex encountered by h~pl as pl slides along f toward pj. 

3. Q is convex. 

4. Q has an empty interior. 

Each one of the above cases was specified to allow a corresponding type of 

channel to be constructed between an edge on H and an edge on B. The e-side of 

C always lies on B. 

Lemma 2.1. I f  one o f  the cases above holds for  a polyoon P with one hole, then 

a channel can be removed f rom P in such a way that the new polygon p1 has: 

�9 n + 1 vertices. 

�9 No  hole. 

�9 A specific triangle T f rom whose vertices the area o f  the removed channel 

is visible in P. 

Proof. In each case the construction adds one vertex to the total, thus the number 

of vertices is n + I. Each constructed channel has one side along the hole and an 

e-side along the exterior boundary. Thus no hole exists when the channel is 

removed. One side of T is shared by C, guaranteeing that the two endpoints see 

all of C. The following method finds the third vertex v of T. Rotate the edge shared 

by C and T around the endpoint situated on H. Let the other endpoint slide along 

the boundary edge on which it is situated. The first vertex encountered by the 

rotating edge is v. This vertex could be the endpoint of the boundary edge (see 

Fig. 1) or some other vertex (see Fig. 4). The condition that Q must be convex 

guarantees that v is encountered by the rotating edge before the rotation is carried 

past an extension of the edge shared by C and H (see Fig. 5). Thus the third vertex 

of T sees all of C. [] 

Lemma 2.1 guarantees that if one of the Cases 2.1-2.3 holds, then a channel with 

the required properties can be constructed. To prove that any hole can be connec- 

ted to the exterior by a channel, it remains to show that in every polygon with one 

hole two edges (one on the hole and one on the exterior boundary) exist such that 

one of the cases is applicable. Before proceeding to this proof, it is helpful to under- 

stand what happens when none of the cases applies to two specified edges, in 
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Fig. 4. The first vertex encountered a s  hk+ l q' rotates toward an extension of hkh k+l iS O. 

par t icu la r  when vertex v, as specified in the condi t ions  for Cases 2.1-2.3, does 

not  exist. 

We  begin with the forward version of Case 2.1. Let h and p represent  h k and  q, 

rcspcctively, and assume that  the first two condi t ions  of Case 2.1 hold with e 

incident  to h in the counterc lockwise  direction. F o r  Case 2.1 not  to apply,  it must  

be true that  the requisite vertex v does not  exist. Let I h be a line th rough  e and 

let lp be a line th rough  f (see Fig. 6). If I h and Ip are paral le l  or if they intersect 

at a po in t  z on the oppos i te  side of hp from h~, then quadr i la te ra l  Q' = (hz, h, p, p j) 

is convex (see Fig. 6(a)). In this s i tuat ion one or  more  vertices must  lie inside Q', 

or Q' would  be bo th  empty  and convcx. At least  one of these vertices must  also 

lie in the tr iangle (h, p, h~), since othcrwise one vertex v could  be picked from among  

the vertices in Q' in such a way that  quadr i la te ra l  (h~, h, p, v) is empty  and convex 

and v ~ phi. If ins tead z and  h t lie on the same side of  hp, then Q' may  still be 

Fig. 5. If a vertex v is not found before edge hk+ lq' has rotated past the extension of hkhk+ 1 through 
hk+l, then Q is not convex. 
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Fig. 6. (a) Q' is nonempty. (b) Q' is nonconvex. 

nonempty but it is also possible that Q' is empty and nonconvex (see Fig. 6(b)). 

In Q' the interior angles at both h and p are convex since the first condition of 

Case 2.1 was assumed true. Either h~ or pj must then be a reflex vertex. 

We conclude from the preceding paragraph that for the forward version of Case 

2.1 to fail either some vertex lies in triangle (h, p, h3 or Q' has a reflex angle at h~ 

or pj. The forward versions of Cases 2.2 and 2.3 fail in the same situations: in 

Case 2.2 h and p represent two vertices hk and p~, chosen such that the first 

condition of the case holds; in Case 2.3 h and p represent k and Pl such that the 

first two conditions of the case hold. 

We now assess the feasibility of the backward versions of Cases 2.1-2.3, where 

the forward versions are already known to fail. This is more complicated because 

we do not make any assumptions about  the characteristics of h I and pj and 

the reasons for failure need not involve the existence of an empty convex quadri- 

lateral Q. Therefore, we determine what the situation should be for one of the 

backward versions to apply. Specifically, if Q' as described above is empty and 

nonconvex with a reflex angle at ht, then if an extension of the counterclockwise 

edge through h~ hits the edge p, p j, a vertex v exists such that Q = (h, h t, q, v) is 

convex and empty and Case 2.1 applies (see Fig. 7(a)). If  Q' is empty and nonconvex 

with a reflex angle at pj (see Fig. 7(b)), then if an extension of the counterclockwise 

edge from pj hits a point k on hht, a vertex v exists such that Q = (h, k, p j, v) is 

convex and empty and Case 2.3 applies. Finally if Q is convex and nonempty (see 

Fig. 7(c)) and an extension of the counterclockwise edge from pj hits e at point k 

on hh,  then Case 2.3 applies if none of the vertices inside Q lie in the triangle 

(p j, k, h). 
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Fig. 7. (a) Case 2.1 applies. (b) and (c) Case 2.3 applies. 

In conclusion, we stress that the obstruction of triangle (hi, h, p) or  nonconvexity 

of Q' does not preclude the existence of an applicable case (in the situations above 

the backward versions can still be applied), but if no applicable case exists, then 

it must  be true that either some vertex lies in triangle (ht, p, h) or Q' has a reflex 

vertex. 

We are now prepared to prove the following lemma: 

Lemma 2.2. At  least one of  the Cases 2.1-2.3 applies to any polygon with one hole. 

Proof. The format of the proof  is an algorithm which finds an edge e on H for 

which one of the cases applies. The strategy of the algorithm is to isolate two 

reflex vertices a and b of  P on H with two corresponding points r and s on B in 

such a way that one of  the cases will apply in the area of P which lies between 

the two segments ar and bs (see Fig. 8): a must  be chosen so that  the extension 

of the edge clockwise from a through a intersects B without intersecting any other 

part of  H; b must  be chosen so that  the extension of the edge counterclockwise 

from b through b intersects B without  intersecting any other part  of  H and at least 

one vertex lies on B between r and s. To this end, consider the relative convex hull 

of H given B, defined as the min imum perimeter polygon containing H constrained 

to lie in B. (For  a description of relative convex hulls and their computat ion,  see 

[9].) The extension of  an edge from a vertex which lies both on H and the 

relative convex hull of H given B cannot  intersect H. Let a be the leftmost such 

vertex and let r be the first intersection point  between B and the extension from 

a, such that a, r, and p~_ 1 form a left turn, where Pi Pi-1 is the edge on which r 
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Fig. 8. The area between ar and bs is searched for an applicable case. 

lies. To locate b, traverse the vertices of the relative convex hull of H given B in 

a counterclockwise direction from a and pick as b the first vertex on H such that 

an extension of the edge counterclockwise of b through b intersects B at a point 

s without intersecting the segment ap~_ 1. Vertex b must exist. We walk around 

the relative convex hull of  H given B and stop to check every vertex which lies 

on H. An extension of the counterclockwise edge from such a vertex will not  hit 

H. However,  we must  also make sure that it does not intersect api_~. Let the 

direction of  h--r* be d and let the direction of ~ be d'. Since a, r, and Pl-  ~ form 

a left turn, it follows that d' < d § 180. If we start the traversal at a facing in 

direction d and if we complete the traversal and return to a, then we will have 

turned 360 ~ Consequently we must  at some vertex w be facing in the direction 

d" where d" > d' + 180 or we could never return to a. An extension of the edge 

counterclockwise from w through w cannot  intersect api-~.  Segment bs lies in a 

counterclockwise direction from ar. 

Having delimited the search area, we start the search by placing a segment h'p' 

so that  h' coincides with a and p' coincides with r. The segment h'p' will be walked 

along the two chains in steps. This move is always in a counterclockwise direction 

with h'p' growing and shrinking to keep one endpoint  on each chain. At each step, 

check to see whether any case applies. If no case applies, then either h' or  p' moves 

to a new vertex. The move guarantees that h' and p' see each other all times. 

Specifically, let e be the edge incident to h' in a counterclockwise direction and 

let f represent P'Pi- l .  First try to apply Cases 2.1 and 2.3 using edges e and f.  

If unsuccessful, then one of the following situations holds: 

(1) Q is nonempty.  

(2) Q is empty with a reflex angle at h~. 

(3) Q is empty with a reflex vertex at pj. 
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Fig. 9. The first encountered vertex as h'p' rotates lies on the exterior boundary. This vertex becomes 
the new p'. 

In either case we wish to move one endpoint  of h'p' and try again. To decide what 

the part icular move should be, we first rotate h'p' around  p', letting h' slide along 

e in a counterclockwise direction. Let x be the first vertex encountered by the 

rotat ing h'p'. Vertex x will either be found before the endpoint  of e has been 

reached or x will be this endpoint.  If x lies on B, we take a step by moving p' to 

x, leaving h' in its old posit ion (see Fig. 9). If x lies on H, then h' is moved to x 

and p' remains unchanged (see Figs. 10 and 11). 

Note that the choice of x ensures that x sees both h J and p' before the move 

and consequently after the move h' and p' see each other. The choice of x also 

implies that  if x lies on B, then x is a reflex vertex. 

After the move, we try again to apply the cases in the following order: 

�9 Try the forward version of Case 2.2 if p' ~ r and construct  a channel  if 

possible. 

�9 Try the forward version of Case 2.1 ifp '  = r, using q = p', but  do not  construct 

a channel.  While p' = r, it is possible that Case 2.2 does not apply because 

Fig. 10. The first encountered vertex is a hole vertex. It becomes the new h'. 
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Fig. 11. The endpoint of e becomes the new h'. 

h'pi m a y  be obs t ruc ted  (see Fig. 12) and no nonempty  quadr i l a te ra l  Q exists. 

Case 2.2 is used to find a vertex x to which h' or  p' will be moved  in the next 

step. If  no vertex v exists such tha t  quadr i l a te ra l  Q = (ht, h', p', v) is convex 

and empty,  then x is found by the ro ta t ion  of h'p' as above.  If vertex v exists 

and  v r p~_ 1, then v is the vertex to which h' or  p' will be moved in the next 

step. Final ly ,  if v = Pl-1,  then the backward  version of Case 2.2 will app ly  

when tr ied below and  no  further move is needed for h'p'. 
�9 Try the backward  version of Case 2.1 if x = ht and  the extension of e' hits 

f and  const ruct  a channel  if possible.  

�9 Try the backward  version of Case 2.2 if v = pi_ 1 and const ruct  a channel  

if possible.  

�9 Try  the forward version of  Case 2.3 if p'  is a vertex and const ruct  a channel  

if possible.  

�9 Try  the backward  vers ion of Case 2.3 with an extension of  the edge 

counterc lockwise  from p' if p '  is a vertex and const ruct  a channel  if possible.  

�9 Try  the backward  version of  Case 2.3 and  const ruct  a channel  if possible. 

Fig. 12. While p' = r it is possible that h' does not see Pi. 
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If none of the above steps was successful, i.e., none of the Cases 2.1-2.3 were 

applicable, then in particular the forward versions of the three cases all failed. It 

follows, as discussed in the preamble to Lemma 2.2, that either some vertex x is 

present in the triangle (h', p', hi) or the quadrilateral (h,, h', p', Pi- 1) is nonconvex. 

We again use rotations of h'p' to find x and move either h' or p' one step in a 

counterclockwise direction. If triangle (h~, h', p') is obstructed, then x is the first 

obstructing vertex. If triangle (h~, h', p') is empty and quadrilateral (h~, h', p', p~_ 1) 
is nonconvex, then hz is the new h'. Each time we fail to find an applicable case, 

we move one step closer to the segment bs. We make the following three 

observations: 

1. Either an applicable case exists or a move of p' or h' is made. 

2. Since vertex b is chosen in such a way that no part of  the polygon intersects 

bs, a vertex in a counterclockwise direction from b or  s cannot  be chosen as 

x until h' is positioned at b. 

3. In any step where triangle (ht, h', p') is obstructed, vertex b cannot  be the 

first obstructing vertex encountered as h'p' is rotated. Since bs is an extension 

of the edge counterclockwise from b, the other endpoint  of the edge clockwise 

from b would be encountered first. Thus the only way that b can be chosen 

as the new h' is when b is the current hi and quadrilateral (hi, h', p', Pi- 1) is 

nonconvex. 

F rom the above observations it follows that if no applicable case is found, then 

Fig. 13. Case 2.1 applies. 
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segment  h'p' is moved  in a counterc lockwise  di rect ion until  h' is located at the 

vertex adjacent  to b and p' is the endpoin t  of the edge on which s lies (see 

Fig. 13). At  this poin t  the quadr i l a te ra l  (h', p', s, b) is convex and empty,  since 

b and s are chosen so that  no par t  of  P intersects bs. O u r  choice of b and  s 

guarantees  that  Case 2.1 applies  from b with v = p' and  the a lgor i thm terminates  

successfully. [ ]  

The a lgor i thm is i l lustrated in Fig. 14, where we show each step taken by 

segment h'p' in the search a rea  from Fig. 8. 

Fig. 14. The steps taken by h'p' before an applicable case is found. The heavy dashed line indicates 
the current position of h'p'. In (a)-(d) the thin dashed line shows how far h'p' must rotate before a 
vertex x is encountered. In (e) the quadrilateral (h', b, s, p') is convex and empty, Case 2.1 applies and 

the resulting channel is seen in (f). 
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Fig. 15. (a) Triangulation where four combinatorial guards are necessary. (b) After the indicated 
channel is removed, guards are placed at the black vertices. 

Lemmas 2.1 and 2.2 together prove the following theorem: 

Theorem 2.3. In any polygon P with n vertices and one hole a channel can be 

removed in such a way that the remainin9 polygon has: 

�9 n + 1 vertices. 

�9 N o  hole. 

�9 A triangle f rom  whose vertices the area o f  the removed channel is visible in P. 

The L(n + 1)/3J bound on the number of guards required in a polygon 

with one hole follows from the theorem. While all the guards are vertex guards 

in ps, not all these vertices exist in P. The guards in P are therefore point guards. 

We conclude this section by showing how our algorithm handles a polygon, 

whose triangulation is tough. As discussed in Section 1, a tough triangulation is 

one where one triangle must be left without a guard at one of its vertices in order 

not to use more than L(n + 1)/3J guards. Figure 15(a) shows such a polygon 

with ten vertices. If we require every triangle to have a guard at one of its corners, 

i.e., if we require the guards to be combinatorial, then four guards are needed. 

Figure 15(b) shows the channel constructed for this polygon by our algorithm and 

also the resulting guard assignment. The removal of a channel from the polygon 

has the result that the triangulation of the new polygon contains one less triangle. 

The assigned guards are combinatorial in the hole-free polygon, but not in the 

original polygon. The problem of making sure that one triangle is guarded without 

having a guard at one of its vertices is handled automatically by the algorithm 

and does not present any problems. 

3. Guarding a Polygon with an Arbitrary Number of Holes 

When the polygon has h holes, the construction of a channel as in Section 2 above, 

will be repeated h times. Each construction and removal of a channel results in a 
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new polygon with one additional vertex and one less hole. After h repetitions we 

have a polygon with n + h vertices and no holes. Inside this polygon a triangle 

for each channel will exist such that the vertices of the triangle see all of the area 

covered by the corresponding channel in the original polygon. In the remainder 

of this section we show exactly how the triangles and constructions are modified 

to ensure that these triangles exist. With the triangles in place, a guard assignment 

based on three-coloring in the hole-free polygon will cover the original polygon 

with holes. Since the new polygon has n + h vertices, the number of guards is 

[_(n + h)/3]. These guards are vertex guards in the hole-free polygon, but point 

guards in the original polygon, since new vertices were added during the channel 

constructions. 

To construct the first channel, we start the search at vertex a of one hole and 

point r, which satisfy the same conditions as in the case of h = 1. We place the 

segment h'p' to coincide with ar and try to construct a channel. If no case applies, 

either h' or p' is moved in a counterclockwise direction as described in Section 2, 

but now h' may move to a different hole. This substitution does not affect the 

existence of an applicable construction; as long as no construction is found we 

keep moving h' or p' and eventually must reach a situation where the extension 

of the edge counterclockwise from a vertex b through b hits the boundary at s 

and the quadrilateral (h', b, s, p') is convex with an empty interior. At this point 

Case 2.1 applies. The vertex b is not predetermined; instead we just test each new 

vertex adjacent to h' in a counterclockwise direction as a potential b. The reason 

for this change in procedure is that, with several holes, the exterior boundary may 

partially hide some holes from each other and as we move in a counterclockwise 

direction from a, even some holes on the relative convex hull may be skipped (see 

Fig. 16). At the point where a construction is found, one hole (not necessarily the 

hole where the search started) is joined to the boundary by a channel adding one 

vertex to the total. We then proceed to search for the next channel, starting at the 

point where we last switched from one hole to another, or, if no such switch 

occurred, we restart the search at a newly picked vertex a. Let the channels be 

C1, C2 . . . . .  Ch. The construction and removal of the first channel C1 results in a 

polygon P1 with n + 1 vertices and h -  1 holes. Constructing and removing 

channel C2 results in polygon p 2  with n + 2 vertices and h - 2 holes, etc., until 

we have a polygon ph with n + h vertices and no holes. We must at this point 

also have h triangles T~, T 2 . . . . .  Th inside ph such that guards anywhere inside 

these triangles can see all of the area covered by channels C1 . . . . .  Ch in the original 

polygon P. 

Our main concern with multiple holes is that once we have a completed channel 

and its associated triangle, the construction of a subsequent channel may interfere 

with the existing triangle. Let t~, t2, and t3 be the vertices of triangle T, associated 

with channel C~. The side t i t  2 is the side shared with C, and t~ was originally a 

hole vertex. Assume a channel C~ (s > r) is constructed. After the construction of 

C s the following two conditions must hold: 

1. Each vertex tl, t2, and t3, if superimposed on the original polygon P, sees 

the area covered by Cr. 

2. T~ must exist within PS (and ultimately within ph). 
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Fig. 16. No vertex on hole H 2 becomes h' since part of B inserts itself between H 1 and H2. 

A tr iangle T, may  go th rough  mult iple  changes dur ing  the course of the algori thm. 

Here we detail  the types of changes that  can occur as well as addi t iona l  restrict ions 

on some of  the cases to guarantee  that  condi t ions  I and 2 still ho ld  at the end of 

the channel  construct ions.  A tr iangle T, has one of  two types. Ei ther  t2t 3 is an 

edge on the exter ior  bounda ry  forming an angle of  less than  180 ~ with t~t2 (see 

Fig. 17), or  t:t3 is inter ior  to  pr ,  in which case another  b o u n d a r y  edge t2p) also 

forming an angle of less than 180 ~ with t~t 2 originates  at t 2 (see Fig. 18). F o r  

condi t ion  1 to be violated, one of  the vertices of  T r must  have moved.  Vertices are 

moved  only in const ruct ions  where Cases 2.1 and 2.3 are applied.  The  const ruct ion 

used in Case 2.1 extends an edge from a reflex vertex on H and the const ruct ion  in 

Case 2.3 extends an edge from a reflex vertex on B. Vertex t 3 is the only vertex 

of  T, that  can lie on a hole. Thus if Case 2.1 was appl ied  to construct  Cs, then 

vertex t3 on  H was moved. If Case 2.3 was applied,  then vertex t I or  t3 (if t 3 lies 

on B) was moved. Vertex t2 is never moved since t2 is not  a reflex vertex. F o r  

condi t ion  2 to be violated,  ei ther a vertex has moved as descr ibed above or  C, 

removed par t  of T~ or  both.  C~ has removed par t  of  T, if the e-side of  Cs is placed 

a long edge t l t2 or  t2t 3 (or t zp  ~ in the second version of T,). In the first version of 

T, an e-side a long edge tat 2 will cut off vertex t 1 from the rest of T, and  an e-side 

a long t2 t3 will cut off vertex t 3. In the second version of  T~ the vertices cut off are 

tx or  t2 in the first case and t3 in the second case. 

There are thus six instances in which the cons t ruc t ion  of C, interferes with 

the condi t ions  tha t  must  hold  for T,: 

�9 Vertex t 3 lies on B and is moved. 

�9 Vertex t 3 lies on H and is moved.  

�9 Vertex t~ is moved.  



94 I. Bjorling-Sachs and D. L. Souvaine 

Fig. 17. The side t2t 3 lies on the exterior boundary. 

�9 Vertex t 3 is cut off. 

�9 Vertex t 2 is cut off. 

�9 Vertex t l  is cut  off. 

W e  t reat  each instance as a separa te  case. Let  Q, = ( 9 ,  h , , p , ,  t3) be the 

quadr i la te ra l  that  was specified as convex and empty  when C, was constructed.  

Similar ly let Qs = (9s, hs, Ps, v~) be the co r respond ing  quadr i la te ra l  for C~. Let l, 

and I s be lines th rough  9,h,  and  9sh~, respectively. 

Instance 1. The tr iangle side tat 3 is an edge on the boundary .  Vertex t 3 is 

moved.  

Case 2.3 is appl ied  to const ruct  Cs with the result that  Qr becomes nonconvex 

or  nonempty .  When  t2t 3 is extended,  t3 moves  away  from its original  pos i t ion  and 

the side Ort 3 rota tes  a round  9, (see Fig. 19). If Q, becomes nonempty  while still 

being convex, then some vertex v in Q~ exists such tha t  Q', = ( 9 ,  h,, p,,  v) is empty  

and convex. Vertex v replaces t 3, and  a modif ied version of  T, exists. If  Q~ should 

remain  empty  but  become nonconvex,  then the case tha t  was appl ied  to const ruct  

C, no longer  applies. Q, becomes nonconvex  when t 3 reaches poin t  z, which is the 

intersect ion poin t  between lr and  a line lp th rough  tz t  3. Consequent ly ,  Qr may  

become nonconvex  if z and  t 3 lie on the same side of  hrp,. To prevent  this problem,  

we further restrict  the cases descr ibed in Section 2. In par t icular ,  we add  the 

condi t ion  tha t  if t a and  z lie on the same side of  h,p,  and  t 3 is chosen as the 

endpoin t  of  the edge on which p, lies, then the tr iangle (9~t3z) mus t  not  be 
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Fig. 18. The side t2t 3 is interior to the polygon. 

empty. An appl icable  case still always exists since when the quadr i la tera l  

(g,, h ,  p,,  t3) is empty  and convex and z lies on same side of h~p, a s  t3 ,  then 

a vertex v exists such that  Q', = (hr, g,, t3, V) is empty  and convex and Case 2.2 

applies with g, as h k and t 3 a s  Pi. 

Instance 2. The tr iangle side t2t 3 is inter ior  to the polygon.  Vertex t 3 is moved. 

Case 2.1 is appl ied  to construct  Cs with the result that  Qr changes shape. 

Assume first that  the extension from t3 hits edge t2pj .  This edge will now 

Fig. 19. Extending edge t2t 3 so that t 3 ends up on the opposite side of I makes Q, nonconvex. 
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Fig. 20. The side clockwise from t 3 is extended through ts, hitting edge t2p j. 

have  two new vertices: the re located t 3 (called q in Case 2.1) and  q' which 

lies at a dis tance of  e away  from q. I f  t 2 and  q' are on oppos i te  sides of  q 

(see Fig. 20), then Q, = (g,, hr, p, ,  t3) remains  empty  and  convex with t 3 in its 

new locat ion,  i.e., t 3 = q. If t2 and q' are  on the same side of q (see Fig. 21), 

then  Q'r = (g,, h,, p, ,  q') is empty  and convex. Vertex q' replaces t 3 and T~ exists in 

Ps in a modif ied  form. The  quadr i la te ra l  (gs, hs, Ps, t l)  is convex, since t 3 is the first 

vertex encounte red  as g~p~ ro ta tes  a round  g,. If it is not  empty,  then some vertex 

v, inside it can be picked such that  Qs = (g,, hs, q, v~) is empty  and convex. 

Assume instead that  one or  both  extensions th rough  t 3 hit edge tit2 (see 

Fig.  22) a n d  we app ly  the cons t ruc t ion  associated with Case 2.1. The result 

is that T, no longer  exists in PS. There  are two possibili t ies.  Ei ther  we just  

s tar ted  the  search for an  appl icable  case with t 3 chosen as a and  poin t  r 

s i tuated o n  tit2, or  the search s tar ted at a vertex in a clockwise direct ion 

f rom t3. I f  our search jus t  s tarted,  then our  moving  line segment h'p' current ly  

has  h ' =  a and p ' =  r. W e  take  a step by moving  p' to t 2 and cont inue the 

search. T h e  move is in a counterc lockwise  di rect ion and  the new p'  sees bo th  

h' and r. Since t 3 cannot  p lay  the role of bo th  a and  b, an appl icable  case 

is still gua ran teed  to  exist. 

Fig. 21. The side counterclockwise from t 3 is extended through ta, hitting edge t2p j. 
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Fig. 22. An edge is extended through t3, hitting side tlt 2. 

If instead our  search started at some vertex in a clockwise direction from 

t3, then segment h'p' is currently positioned with h' at vertex g~ and p' at 

vertex t,. Let Ip be a line through the edge incident to t I in a clockwise direction. 

lf/p intersects t2t 3 o r  if t I is convex, then an empty convex quadrilateral (g,, t3, tl, v) 

exists and the construction associated with Case 2.2, with edge gst3 a s  e, applied 

in a previous step (see Fig. 23). Thus we must have moved forward in our search 

only if lp does not intersect t2t  3 and tl is reflex. In this case no easy modification 

of T~ exists, and t3 may  be designated b so that we cannot  move forward. We 

prevent this problem by disallowing the construction of C r and T~ in the first place, 

if it would produce these consequences. Adding the following condition to the 

cases in Section 2 suffices: vertex Vr on H may not be such that the extension of 

one of its incident edges hits p , g ,  unless vertex g, is convex or the extension of the 

edge clockwise from g, through g~ intersects p,  vr. The addition of this condition 

does not  change the fact that  one of the cases will eventually apply, since if the 

condition does not hold, the extension of the counterclockwise edge from g, hits 

H and g, cannot  serve as b. The next step taken by segment h'p' is to move h' to v,. 

Fig. 23. If lp intersects t2t3, then Case 2.2 applies. 
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Fig. 24. Extending edge t2t 1 through t I makes Q, nonempty in P. 

Instance 3. Vertex tl is moved.  

Vertex tl can move  if the construct ion associated with Case 2.3 is used to 

produce C~ with the result that  Q, becomes nonempty  in P (see Fig. 24). We prevent  

this behavior  by modifying Case 2.3 to include the condit ion that  the extended 

side f '  m a y  not be the side of any channel C, support ing an associated triangle 

T~. This restriction does not  preclude the existence of an applicable case. An empty  

convex quadri lateral  Qs must  exist or  else Case 2.3 would not  apply. In Q~ replace 

the point  k where the extension from tl hits e with the other  endpoint  h'~ of e. Let 

the new quadri lateral  be Q'~. If Q', is empty  and convex, then Case 2.2 applies. If 

Q'~ is nonempty ,  then vertex x exists such that  either h' or p' next moves  to x. If 

Qs is nonconvex and empty,  then p' moves to tl. At this point, extend an edge 

from t~ again, but  use the other  incident edge. A new vertex t' is created next to 

t I in the direction of t 2. Let g'~ be the point where the extension hits e. Either 

quadri lateral  (h's, g'~, h ,  t2) is convex and empty,  or  a vertex vs exists such that 

quadri lateral  (h~, gs, tl, v,) is convex and empty.  Thus Case 2.3 holds using this 

different edge extension. If  tz is the vertex chosen for Q',, then Q'r = (t', h,, Pr, g',) is 

convex and  empty  in P. The  corresponding triangles T~ and T~ are identical and 

exist in P~. If some other vertex v, is chosen for Q's, then Q'r = (t', h,, p,, t3) is convex 

and empty  in P, t' replaces t~, and T, exists. 

Instance 4. Vertex t 3 is cut off from T, by the intended channel Cs. 

This instance resembles Instance 2 where vertex t 3 moves  on to  edge t z p  j. 

Channel  C~ creates two new vertices on side t2t  3 (or t2pj). Let these two 



An Efficient Algorithm for Guard Placement in Polygons with Holes 99 

Fig, 25, T~ shrinks to become triangle (tl, t2, q), 

vertices be q and q'. If q is closer to t~, then q replaces t3, Q', = (t~, h,, p~, q) 

is convex and empty in P, and T, exists in P~ (see Fig. 25). If q' is the vertex closer 

to t 2, then T, and T~ must share the area t~, t2, q', 9, (see Fig. 26). T, becomes the 

triangle ( t t ,  t2, q') and T~ is chosen using vertices q', g~, and t~ or T, is chosen using 

ta, t2, and 9, and T, becomes triangle (g~, tz, q'). 

Instance 5. Vertex t 2 is cut off from T~ by the intended channel C~, 

This instance occurs only if t z t  3 is interior to P'. We attempted to construct 

channel C, so that its e-side lies along edge t t t  2, but then T~ would no longer exist 

within P~. A new vertex must be chosen to replace this t 2. Let the two vertices of 

Fig. 26. T, shrinks to triangle (t 1, t2, q'). 
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Fig. 27. T~ shrinks to triangle (tl, q, t3). 

Cs on edge tit  2 be q and q'. Whichever  of  q or q' lies on the same side of Cs as tl 

and t 3 will replace t 2 in T,. T, in its modified form still has one side along the side 

of channel C, and its three vertices, if super imposed on P, (and P), all see the entire 

area covered by C,. Specifically, if q is closer to tx, T~ becomes the triangle (tl, q, t3) 

(see Fig. 27). The vertex v s which completes  Qs lies on the other side of C~, and 

triangles T, and T~ now do not interfere with each other. If q' is closer to tl, T~ 

shrinks to triangle (q,  q', t3) (see Fig. 28). In this case triangles T~ and T~ lie on the 

Fig. 28. T, shrinks to triangle (tx, q', t3). 
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same side of C~. By the choice of t 3 we know that vertex v, which becomes the apex 

of T~ either is identical with the vertex t3 or lies inside the quadrilateral (y~, h~, q, t3). 

Thus triangles T~ and T~ do not interfere with each other and both exist in P~. 

Instance 6. Vertex tl is cut off from T~ by the intended channel Cs. 

In this case we wish to place the e-side of Cs along t i t  2 by using an extension 

from some vertex h~ on a hole. When C, was constructed, the additional condition 

from Instance 2 above must  have held or Cr would not have been constructed. 

We thus know that either some other vertex t that is encountered before hk when 

t~ tz  rotates toward the extension through t~ (if t z t  3 is interior to P, then t = t3) 

exists, or the extension of the edge counterclockwise from tl intersects t 2h  ~. In the 

first case we first replace t 3 by t in T~. If this replacement forces C s to cut off vertex 

t 2 instead of tl (see Fig. 29), we continue the modifications as in Instance 5. If the 

replacement does not result in Instance 5, we return to our original t 3 and let q 

and q' be the two new vertices on t i t  2. With q' closer to t 1, T~ shrinks to the triangle 

(q, f2, t3) (see Fig. 30) and T~ is chosen normally using q', tl, and gs. The 

modified T~ exists in P~, and, since the vertex replacing tl lies on the side 

tx t z ,  every vertex of T, still sees all of  the area covered by C, in P. If q is 

closer to ta, T~ becomes the triangle (q',t2, t3) (see Fig. 31). To make sure 

that T~ and T~ both exist, we look at the convex quadrilateral Q~ = (9s, h~, q', t3). 

If Qs is empty, then T~ is the triangle (95, q', t3); if Q~ is nonempty,  then one of the 

vertices in Qs becomes the third vertex of  T~. In either case both T~ and T~ exist in 

P~. Finally, if the edge counterclockwise from t ~ through t~ intersects t 2 h~, we know 

that unless vertex h s is the vertex where we actually start the search for a channel, 

Case 2.2 would have applied at an earlier step just as in Instance 2. Consequently, 

Fig. 29. When t replaces t 3 in T,, channel C~ cuts off t 2 instead of t 1 from T,. 
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Fig. 30. T, shrinks to triangle (q, t2, t3). 

h~ = a and we a t t empt  to app ly  the cons t ruc t ion  of Case 2.1 to create channel  C~. 

If I s and  an extension of t2t 3 th rough  t a intersect  and  the area  in between is empty,  

we move  p' to t 2 and  cont inue  the search. Otherwise,  we simply go ahead  and 

const ruct  the in tended channel  as above  with q closer to t r 

As demons t r a t ed  above,  a t r iangle T~ m a y  go th rough  several modif ica-  

t ions before all channels have been const ructed  (see Fig. 32), but  the revised 

versions of Cases 2.1-2.3 guarantee  that  a sa t isfactory T~ will exist in ph: 

Case 3.1. A reflex vertex h k on H with incident  edges e = hkh I and e' and 

an edge f = PiPj on B exists such that  the fol lowing condi t ions  hold:  

Fig. 31. T~ shrinks to triangle (q', t2, ta). 
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Fig. 32. The channels are constructed in numerical order. 

�9 The extension of  e' th rough  h k hits f at q r pj. 

�9 A half-plane defined by h kq conta ins  both  e and  pj. 

�9 A vertex v on B or  H and  a quadr i la te ra l  Q = (h,, h k, q, v) such that :  

b 

1. vCqhl .  

2. v is the first vertex encountered  by htq as q slides a l o n g f .  

3. v = pj ~ P w triangle(hi,  v, z) ~ {hz, v, z}. 

4. Q is convex. 

5. Q has an empty  interior.  

�9 f is not  the base of a t r iangle  T with h k designated  t 3. 

�9 There is no vertex u on H such tha t :  

1. Excluding p j, u is the first vertex encountered  by h~q as q slides a long a line 

th rough  f .  

2. The  extension of an edge incident  with u intersects htq. 

3. u, hi, hm is a left turn, where hm is the endpoin t  of  edge e" ~ e incident  

with h~. 
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Case 3.2. An edge e = hkh t on H and an edge f = p~pj on B exists such that  the 

following conditions hold: 

�9 A half-plane defined by hkp ~ contains both  e and pj. 

�9 A vertex v on H or B and a quadrilateral Q = (hi, hk, Pl, v) such that:  

1. vCpih  I. 

2. v is the first vertex encountered by hsp ~ as p~ slides along f.  

3. v = p~ =~ P u triangle(h~, v, z) r {hz, v, z}. 

4. Q is convex. 

5. Q has an empty interior. 

�9 There is no vertex u on H such that: 

1. Excluding pj, u is the first vertex encountered by h~p~ as pg slides along a 

line through f.  

2. The extension of an edge incident to u intersects h~p~. 

3. u, h z, hm is a left turn, where h,~ is the endpoint  of edge e" r e incident with 

hr. 

Case 3.3. An edge e = hkh t on H and a reflex vertex Pi with incident edges f and 

f '  on B exist such that  the following conditions hold: 

�9 The extension of f '  th rough  p~ hits e at k ,/: h t. 

�9 A half-plane defined by pi k contains both  f and h~. 

�9 A vertex v on H or B and a quadrilateral Q = (ht, k, Pi, v) exist such that:  

1. vq~pih z. 

2. v is the first vertex encountered by h~p i as Pl slides along f.  

3. v = pj ~ P u triangle(h z, v, z) r {h l, v, z}. 

4. Q is convex. 

5. Q has an empty interior. 

�9 f '  is not  the base of a triangle with p~ designated t r 

�9 There is no vertex u on H such that:  

1. Excluding pj, u is the first vertex encountered by h~p~ as p~ slides along a 

line through f.  

2. The extension of an edge incident to u intersects htp~. 

3. u, hth m is a left turn, where h,, is the endpoint  of  edge e" r e incident with hr. 

When h channels have been constructed, every part  of each channel is visible 

f rom a triangle and the interiors of these triangles are all disjoint. In addition, the 

construct ion of the channels results in a simple polygon ph with at most  n + h 

vertices and no holes. The triangles T 1 . . . . .  T h are inside this polygon. We remove 

the triangles and triangulate the remaining parts. Put t ing the pieces together again 

we have a triangulated polygon in which, after three-coloring, we can place 

[_(n + h)/3] vertex guards that  see all of  ph (see Fig. 33). Since each of the 

triangles 7"1 . . . . .  T h has a guard  at at least one vertex, these guards see all of the 
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Fig. 33. The hole-free polygon is triangulated and guards placed based on three-coloring. These 
guards see all of the original polygon. 

original polygon P. The guards are point guards, since ph has vertices not present 

in P. This proves the following theorem: 

Theorem 3.1. [(n + h)/3_j point 9uards are sufficient to cover the interior of  

a simple polyyon of n vertices and with h holes. 

4. Algorithm for Placing the Guards 

We use the following argument to show that O(n 2) time will suffice to turn the 

polygon P into a simple polygon ph with no holes and n + h vertices: for each 

pair of vertices h' and p', O(n) time suffices to check whether a channel between 

the edges e and f is possible; during the algorithm, at most O(n) edge pairs are 

checked. Although the triangulation, three-coloring, and placing of the guards 

within ph can be done in linear time, if Chazelle's triangulation algorithm is used, 

we use the practical algorithm by Avis and Toussaint, which runs in O(n log n) 

time. Thus the overall time bound is O(n2). 
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Cons ider  the case of  one hole. Let  H be the hole and let B be the exter ior  

b o u n d a r y  of the polygon.  Fo l lowing  the construct ive p r o o f  of the theorem in 

Section 2, we start  by  finding a vertex a on H, to serve as h'. We  next find the 

edge first intersected by the extension of the edge clockwise from a th rough  a and  

compute  r = p'. Given  the segment  h'p', we try each channel  cons t ruc t ion  in turn, 

if none  is possible  ei ther  h' or p' is moved  one step in a counterc lockwise  direct ion 

and we try again.  All var iable  names are those used in Sections 2 and 3. 

Algorithm (to turn  P into pl)  

h' ,--- leftmost  vertex of H 

r ~- p' ,-- intersect ion po in t  between B and  extension edge clockwise from 

h' th rough  h' 

p~ ,-- first vertex of B in clockwise di rect ion from q 
q ~ p '  

cons t ruc t -a -channel  

construct-a-channel  

while no channel  is found do 

x ~  

nex t  ~ 2J 

if q = p' then t ry  forward  Case 3.1 

if  the case applies then a channel  is found 

eiseif Q is n o n e m p t y  or  nonconvex  then 

x ,-- first vertex encounte red  by  ro ta t ing  h'p' 

elseif vertex u exists then x ,-- u 

else x ,-- P i -  t 

if  no success and  p' r r then try forward  Case 3.2 

if  the  case applies  then a channel  is found 

elseif Q is n o n e m p t y  or  nonconvex  then 

x ~ first vertex encounte red  by  ro ta t ing  h'p' 

elseif vertex u exists then x ~ u 

if no channel  is found and  p' = r then t ry forward  Case 3.1 

if Q is n o n e m p t y  or  nonconvex  then 

x *-- first vertex encounte red  by  ro ta t ing  h'p' 

elseif vertex u exists then x ~ u 

else x ~- dpi_ 1 

if no channel  is found 

if no channel  is found 

if no channel  is found 

if no channel  is found 

if  no  channel  is found 

if x 6 H then h '  , , -  x 

else p' ~ x 

endwhile 

and x = hz then try b a c k w a r d  Case 3.1 

and x = Pi-1 then t ry  backward  Case 3.2 

then try forward  Case 3.3 from Pi 

then t ry Case 3.3 from pi_ 1 

then 

Given a tenta t ive  pair  h' and  p', it t akes  l inear  t ime to try one construct ion.  

This is so, since all tha t  is involved in an a t t empted  cons t ruc t ion  is f inding the 
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intersections between two lines and checking whether any vertex lies inside the 

intended channel or the associated triangle. This can be done in linear time. Since 

only a constant number  of constructions are tried, the while loop in the construct- 

a-channel algorithm runs in linear time. Once replaced, a particular vertex never 

again becomes the current h' or p'. Thus each time through the while loop either 

h' or p' must be previously unseen. Therefore, we run through the while loop at 

most  n times and the total time taken by construct-a-channel is O(n2). Picking an 

initial h' and finding the corresponding p' and p~ is also done in linear time. Thus 

the complete algorithm for one hole takes O(n 2) time. 

When there is more  than one hole, the search for channels does not  stop until 

all holes are connected to the exterior. Keeping P and H1 . . . . .  Hh as doubly linked 

lists enables us to update the polygon P in constant  time, since when we are 

considering a particular pair h' and p', we are at the correct point  in the lists to 

adjust pointers and delete and add appropriate vertices. Each time a channel is 

constructed, the search for the next channel continues in such a way that all but 

one of the vertex pairs producing a candidate channel contains a previously unseen 

vertex. To ensure this phenomenon,  throughout  the search, we record each place 

where the search jumps from one hole to another, by pushing the pair old h', old 

p' on a stack S. After a channel has been constructed, pop the stack and check if 

the indicated hole has been connected. If so, pop the stack again; else continue 

the search from the popped vertices. The vertex which last time became the new 

h' now lies on the exterior boundary  and becomes the new p'. The search continues 

from there along a new route. 

Algorithm (to turn P into ph) 

j ~ 0  

while j < h do 

if S = ~Z~ then 

h' ~- a ~ leftmost vertex on H 

p' ~- r ~- intersection point between B and extension of e' through h' 

Pl ~-left endpoint  of edge on which p' lies 

construct-a-channel 

j * - j +  1 

else 

h' ,-- pop(S) 

if h' E B then 

pop(S) 

else 

q ~ intersection point between B and extension of  e' through h' 

p'+-- pop(S) 

construct-a-channel 

j ' , - j +  1 

endif 

endif 

endwhile 
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Either at the start the search or at any intermediary point when the stack is 

empty and holes still exist, we pick the leftmost hole vertex and the point where an 

extension of the edge clockwise from this vertex intersects the boundary as the 

place to continue the search. When the stack is empty, all vertices previously 

considered now lie on the current exterior boundary. Thus this initial pair will 

contain a previously unseen vertex. If no channel construction is found for this 

pair and p' is replaced by an obstructing vertex, this vertex may have been 

previously seen, but this can occur at most once each time we restart the search, 

i.e., at most once for each hole. In summary, since the number of holes is h, we 

investigate at most O(n + h) edge pairs for possible channel constructions. Spend- 

ing O(n) time on each edge pair gives us a total time of O(n2). 

5. Conclusions 

In this paper we studied the problem of assigning stationary guards in polygons 

with holes. We showed a bound for the number of guards required and gave an 

algorithm for placing the guards that runs in O(n 2) time, where n is the total 

number of vertices. The algorithm was derived from the constructive proof of the 

upper bound. 

We note that a new polygon ph without holes was constructed from the original 

polygon P in such a way that several new vertices were created. Therefore, although 

the chosen guards are vertex guards in ph, these vertices need not exist in P and 

the same guards are instead point guards in the original polygon. The problem 

of finding a tight bound on the number of vertex guards required to guard a 

polygon with h holes and a total of n vertices remains open. L(n + h)/3J vertex 

guards are certainly necessary but the best-known upper bound is L(n + 2h)/3J 

established by O'Rourke [8] in 1982. 
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