An Efficient Algorithm For Hidden Surface Removal

Ketan Mulmuley
The University of Chicago
1989

http://doi.acm.org/10.1145/74333.74372

Presentation by Steve Palmer

What is Hidden Surface Removal?

- Project a 3D image onto a view plane, displaying only the surfaces which would not be obstructed from view.

Introduction

- Distinguishing features of Mulmuley's algorithm.
- Randomized surface processing and fragment removal.
- The "deeper" the surface, the less time spent processing it.
- Complexity is roughly proportional to the visible output times the log of the depth.

Hidden Surface Removal

- Partition the view plane and label each partition with an appropriate face name.
- Projection of all faces establishes junctions on the view plan.
- An efficient algorithm will spend little time on invisible junctions.

Background

- Θ Series -
- Critical for Analysis of Mulmuley's algorithm.
- The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice. (http://mathworld.wolfram.com/ThetaSeries.html)

Associating Faces with a Theta Series

- Perspective projection of faces onto view plane with an observer at (0,0,-inf)

Establishing a Theta Series: Definitions

- A face, h , obstructs a junction, q , if the projection of h onto the view plane makes q invisible.
- Obstruction level, level(q) is the number of faces which obstruct q.
- V_{1} is the set of junctions at obstruction level I.
- V_{1} is the set of visible faces.

Establishing a Theta Series

- For every real $s>=0$

$$
\begin{aligned}
\theta(s) & =\sum \frac{v(l)}{l^{s}} \\
& -(\text { sum over } \mathrm{I})
\end{aligned}
$$

Algorithmic Implications from this

 Theta Series- $\Theta(0)=$ Number of junctions in the view plane.
- Existing algorithms were linear in $\Theta(0)$.
- This paper's algorithm is linear in $\Theta(1)$.
- $\Theta(\infty)=$ Number of visible junctions
- Open question - Can hidden surface removal be done in time that is linear in $\Theta(\infty)$ or even $\Theta(\mathrm{s})$?
- Conjecture: NO

Randomization

- Hidden surface removal is a type of "sort" problem... quicksort suggests randomization strategy.
- quicksort "divide and conquer" does not translate to hidden surface removal.
- Probabalistic game theory analysis gave rise to this algorithm.

Limitations

- Since this is a general purpose algorithm, "Special situations" cannot be cheaply detected.
- Car in front of a grass field
- A box containing lots of items.
- Conventional heuristics should also be used
- Clipping
- Hierarchical comparisons

The Algorithm - Setup

- n - The number of faces
- Non-intersecting faces assumed
- Arbitrary shapes allowed
- Preprocessing complete
- Special face O is the background
- Establish Partition H_{0} labeled with the background face, O.

The Algorithm Processing

- Create partitions $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{n}}$
- Add one randomly selected face at a time.
- Partition $\mathrm{H}_{\mathrm{k}+1}=$ Partition $\mathrm{H}_{\mathrm{k}}+$ Face $\mathrm{f}_{\mathrm{k}+1}$
- Label each region in each partition with the currently visible face.
- H_{n} is the final visibility partition
- Scan H_{n} from left to right and paint labelled faces.

The Algorithm Partitioning

- Partition H_{k} is constructed from randomly chosen faces $\mathrm{f}_{0}, \ldots, \mathrm{f}_{\mathrm{k}}$.
- In general, edge e from a face will be partly visible, or not at all.
- Disconnected visible parts of e are called fragments.
- All fragments establish a partition, but shapes are complicated.
- Pass a vertical through each fragment's end points, stopping at another edge or a window boundary.
- All resultant regions are trapezoids.

The Algorithm - One Partition

Representation

- Trapezoid:
- Definition: A vertex v of the partition is said to be visible in the face of R if the boundary of R has a tangent discontinuity at R.
- Each trapezoid is represented as a circular list of visible vertices
- Adjacency list:
- List of adjacent regions in which the vertex is visible.

Tangent Discontinuity

- Tangent Discontinuous
- Tangent continuous
$\alpha<>0$

Trapezoid Representation Example

- Trapezoid (a,b,c,d) - a, b, c, d are visible
- Junction e is not visible in the triangle.

Additonal Information Needed

- Which regions of H_{k} will be impacted by adding random face f_{k+1} ?
- Conflict Information
- A face is in conflict with a region if
- The face's projection intersects with the region
- The region does not obscure the face
- If a face is in conflict with a region, it will be visible (at least partially) in $\mathrm{H}_{\mathrm{k}+1}$.

Dealing with Conflict - Preliminary Updates

- Ignore regions with no conflict
- In conflicted regions, update along the boundary
- Move counterclockwise around the face (projection)
- Split conflicting edges.
- Pass vertical through new conflicted junctions.
- Update the visible face references.
- Update conflict and adjacency information.
- Update the interior - trapezoids that conflict with the new face, but are not adjacent to it.
- Change Trapezoid representations
- Update adjacency lists

Trapezoid Conflict

Dealing with Conflict - Reconfiguration

- It's too expensive to repeat the linedrawing exercise.
- The projection of the new face is a trapezoidal decomposition with unnecessary trapezoids.
- Randomly remove hidden fragments until they're all gone.

The Complete Partition

Update Conflict Information

- Merge \& Sort the conflict information from before the line removal step.
- Conflict information is stored in order by 'x' coordinate.
- When all faces have been randomly selected, the algorithm is complete.

Analysis

- Mulmuley's algorithm provides hidden surface removal where the time spent processing obstructed surfaces is inversely proportional to the depth of the surface.
- Expected number of conflicts: $O(n \log (n)+\Theta(1))$
- Conjectured lower bound:

$$
\Omega(\mathrm{n} \log (\mathrm{n})+\Theta(1))
$$

Questions

- Thank You!

