

An Efficient Algorithm For Hidden Surface Removal

Ketan Mulmuley
The University of Chicago

1989

http://doi.acm.org/10.1145/74333.74372

Presentation by Steve Palmer

http://doi.acm.org/10.1145/74333.74372

What is Hidden
Surface Removal?

● Project a 3D image onto a view plane,
displaying only the surfaces which would not be
obstructed from view.

Introduction
● Distinguishing features of Mulmuley's algorithm.

– Randomized surface processing and
fragment removal.

– The “deeper” the surface, the less time
spent processing it.

– Complexity is roughly proportional to the
visible output times the log of the depth.

Hidden Surface
Removal

● Partition the view plane and label each
partition with an appropriate face name.

● Projection of all faces establishes
junctions on the view plan.

● An efficient algorithm will spend little
time on invisible junctions.

Background
● Series -

– Critical for Analysis of Mulmuley's
algorithm.

– The theta series of a lattice is the
generating function for the number of
vectors with norm n in the lattice.

(http://mathworld.wolfram.com/ThetaSeries.html)

http://mathworld.wolfram.com/ThetaSeries.html

Associating Faces with a Theta
Series

● Perspective projection of faces onto view plane
with an observer at (0,0,-inf)

Observer (0,0,-inf)

View plane

Scene

-z

x

y

Establishing a Theta Series:
Definitions

● A face, h, obstructs a junction, q, if the
projection of h onto the view plane makes q
invisible.

● Obstruction level, level(q) is the number of
faces which obstruct q.

● V
l
 is the set of junctions at obstruction level l.

● V
1
 is the set of visible faces.

Establishing a Theta
Series

● For every real s >= 0

– (sum over l)

 s= v l
l s

Algorithmic Implications from this
Theta Series

● (0) = Number of junctions in the view plane.
● Existing algorithms were linear in (0).
● This paper's algorithm is linear in (1).
● (∞) = Number of visible junctions

– Open question – Can hidden surface removal
be done in time that is linear in (∞) or even

(s)?
– Conjecture: NO

Randomization
● Hidden surface removal is a type of “sort”

problem... quicksort suggests randomization
strategy.

● quicksort “divide and conquer” does not
translate to hidden surface removal.

● Probabalistic game theory analysis gave rise to
this algorithm.

Limitations
● Since this is a general purpose

algorithm, “Special situations” cannot be
cheaply detected.

– Car in front of a grass field
– A box containing lots of items.

● Conventional heuristics should also be
used

– Clipping
– Hierarchical comparisons

The Algorithm - Setup
● n – The number of faces

– Non-intersecting faces assumed
– Arbitrary shapes allowed
– Preprocessing complete
– Special face O is the background

● Establish Partition H
0
 labeled with the

background face, O.

The Algorithm –
Processing

● Create partitions H
1
, H

2
, ..., H

n

– Add one randomly selected face at a time.
– Partition H

k+1
 = Partition H

k
 + Face f

k+1

● Label each region in each partition with the
currently visible face.

● H
n
 is the final visibility partition

● Scan H
n
 from left to right and paint labelled

faces.

The Algorithm -
Partitioning

● Partition H
k
 is constructed from randomly chosen faces

f
0
,..., f

k
.

● In general, edge e from a face will be partly visible, or
not at all.

– Disconnected visible parts of e are called fragments.

– All fragments establish a partition, but shapes are complicated.

● Pass a vertical through each fragment's end points,
stopping at another edge or a window boundary.

● All resultant regions are trapezoids.

The Algorithm – One
Partition

Representation
● Trapezoid:

– Definition: A vertex v of the partition is said to be
visible in the face of R if the boundary of R
has a tangent discontinuity at R.

– Each trapezoid is represented as a circular list
of visible vertices

● Adjacency list:
– List of adjacent regions in which the vertex is

visible.

Tangent Discontinuity
● Tangent

Discontinuous
● Tangent

continuous

α <> 0

α == 0

Trapezoid Representation -
Example

● Trapezoid (a,b,c,d) – a, b, c, d are visible

● Junction e is not visible in the triangle.

a

b c

d

e

Additonal Information Needed

● Which regions of H
k
 will be impacted by adding

random face f
k+1

?

● Conflict Information
– A face is in conflict with a region if

● The face's projection intersects with the region
● The region does not obscure the face

– If a face is in conflict with a region, it will be
visible (at least partially) in H

k+1
.

Dealing with Conflict - Preliminary Updates
● Ignore regions with no conflict

● In conflicted regions, update along the boundary

– Move counterclockwise around the face (projection)
– Split conflicting edges.
– Pass vertical through new conflicted junctions.
– Update the visible face references.
– Update conflict and adjacency information.

● Update the interior – trapezoids that conflict with the new face, but are not
adjacent to it.

– Change Trapezoid representations
– Update adjacency lists

Trapezoid Conflict

Dealing with Conflict - Reconfiguration

● It's too expensive to repeat the line-
drawing exercise.

● The projection of the new face is a
trapezoidal decomposition with
unnecessary trapezoids.

– Randomly remove hidden fragments
until they're all gone.

The Complete Partition

Update Conflict
Information

● Merge & Sort the conflict information
from before the line removal step.

– Conflict information is stored in order by
'x' coordinate.

● When all faces have been randomly
selected, the algorithm is complete.

Analysis
● Mulmuley's algorithm provides hidden surface

removal where the time spent processing
obstructed surfaces is inversely proportional to
the depth of the surface.

– Expected number of conflicts:
O(n log(n) + (1))

– Conjectured lower bound:
(n log(n) + (1))

Questions
● Thank You!

