An Efficient Algorithm For Hidden Surface Removal

Ketan Mulmuley The University of Chicago 1989

http://doi.acm.org/10.1145/74333.74372

Presentation by Steve Palmer

What is Hidden Surface Removal?

 Project a 3D image onto a view plane, displaying only the surfaces which would not be obstructed from view.

Introduction

- Distinguishing features of Mulmuley's algorithm.
 - Randomized surface processing and fragment removal.
 - The "deeper" the surface, the less time spent processing it.
 - Complexity is roughly proportional to the visible output times the log of the depth.

Hidden Surface Removal

• Partition the view plane and label each partition with an appropriate face name.

• Projection of all faces establishes junctions on the view plan.

• An efficient algorithm will spend little time on invisible junctions.

Background

- O Series -
 - Critical for Analysis of Mulmuley's algorithm.
 - The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice.

(http://mathworld.wolfram.com/ThetaSeries.html)

Associating Faces with a Theta Series

 Perspective projection of faces onto view plane with an observer at (0,0,-inf)

Establishing a Theta Series: Definitions

- A face, h, obstructs a junction, q, if the projection of h onto the view plane makes q invisible.
- Obstruction level, level(q) is the number of faces which obstruct q.
- V_i is the set of junctions at obstruction level I.
- V₁ is the set of visible faces.

Establishing a Theta Series

• For every real s >= 0

$$\theta(s) = \Sigma \frac{v(l)}{l^s}$$

- (sum over I)

Algorithmic Implications from this Theta Series

- $\Theta(0) =$ Number of junctions in the view plane.
- Existing algorithms were linear in $\Theta(0)$.
- This paper's algorithm is linear in $\Theta(1)$.
- $\Theta(\infty)$ = Number of visible junctions
 - Open question Can hidden surface removal be done in time that is linear in 𝒫(∞) or even 𝒫(s)?
 - Conjecture: NO

Randomization

 Hidden surface removal is a type of "sort" problem... quicksort suggests randomization strategy.

 quicksort "divide and conquer" does not translate to hidden surface removal.

 Probabalistic game theory analysis gave rise to this algorithm.

Limitations

- Since this is a general purpose algorithm, "Special situations" cannot be cheaply detected.
 - Car in front of a grass field
 - A box containing lots of items.

- Conventional heuristics should also be used
 - Clipping
 - Hierarchical comparisons

The Algorithm - Setup

- n The number of faces
 - Non-intersecting faces assumed
 - Arbitrary shapes allowed
 - Preprocessing complete
 - Special face O is the background

Establish Partition H₀ labeled with the background face, O.

The Algorithm – Processing

- Create partitions H₁, H₂, ..., H_n
 - Add one randomly selected face at a time.
 - Partition H_{k+1} = Partition H_k + Face f_{k+1}
- Label each region in each partition with the currently visible face.
- H_n is the final visibility partition
- Scan H_n from left to right and paint labelled faces.

The Algorithm -Partitioning

- Partition H_k is constructed from randomly chosen faces $f_0, ..., f_k$.
- In general, edge e from a face will be partly visible, or not at all.
 - Disconnected visible parts of e are called fragments.
 - All fragments establish a partition, but shapes are complicated.
- Pass a vertical through each fragment's end points, stopping at another edge or a window boundary.
- All resultant regions are trapezoids.

The Algorithm – One Partition

Representation

Trapezoid:

- Definition: A vertex v of the partition is said to be visible in the face of R if the boundary of R has a tangent discontinuity at R.
- Each trapezoid is represented as a circular list of visible vertices
- Adjacency list:
 - List of adjacent regions in which the vertex is visible.

Tangent Discontinuity

Tangent Discontinuous

Tangent
continuous

Trapezoid Representation -Example

Trapezoid (a,b,c,d) – a, b, c, d are visible

Junction e is not visible in the triangle.

Additonal Information Needed

- Which regions of H_k will be impacted by adding random face f_{k+1} ?
- Conflict Information
 - A face is in conflict with a region if
 - The face's projection intersects with the region
 - The region does not obscure the face
 - If a face is in conflict with a region, it will be visible (at least partially) in H_{k+1}.

Dealing with Conflict - Preliminary Updates

- Ignore regions with no conflict
- In conflicted regions, update along the boundary
 - Move counterclockwise around the face (projection)
 - Split conflicting edges.
 - Pass vertical through new conflicted junctions.
 - Update the visible face references.
 - Update conflict and adjacency information.
- Update the interior trapezoids that conflict with the new face, but are not adjacent to it.
 - Change Trapezoid representations
 - Update adjacency lists

Trapezoid Conflict

Dealing with Conflict - Reconfiguration

- It's too expensive to repeat the linedrawing exercise.
- The projection of the new face is a trapezoidal decomposition with unnecessary trapezoids.
 - Randomly remove hidden fragments until they're all gone.

The Complete Partition

Update Conflict Information

- Merge & Sort the conflict information from before the line removal step.
 - Conflict information is stored in order by 'x' coordinate.

• When all faces have been randomly selected, the algorithm is complete.

Analysis

- Mulmuley's algorithm provides hidden surface removal where the time spent processing obstructed surfaces is inversely proportional to the depth of the surface.
 - Expected number of conflicts:
 - $O(n \log(n) + \Theta(1))$
 - Conjectured lower bound: $\Omega(n \log(n) + \Theta(1))$

• Thank You!