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What is Hidden 
Surface Removal?

● Project a 3D image onto a view plane, 
displaying only the surfaces which would not be 
obstructed from view.



 

 

Introduction
● Distinguishing features of Mulmuley's algorithm.

– Randomized surface processing and 
fragment removal.

– The “deeper” the surface, the less time 
spent processing it.

– Complexity is roughly proportional to the 
visible output times the log of the depth.



 

 

Hidden Surface 
Removal

● Partition the view plane and label each 
partition with an appropriate face name.

● Projection of all faces establishes 
junctions on the view plan.

● An efficient algorithm will spend little 
time on invisible junctions.



 

 

Background
●  Series - 

– Critical for Analysis of Mulmuley's 
algorithm.

– The theta series of a lattice is the 
generating function for the number of 
vectors with norm n in the lattice.

(http://mathworld.wolfram.com/ThetaSeries.html)

http://mathworld.wolfram.com/ThetaSeries.html


 

 

Associating Faces with a Theta 
Series

● Perspective projection of faces onto view plane 
with an observer at (0,0,-inf)

Observer (0,0,-inf)

View plane

Scene

-z

x

y



 

 

Establishing a Theta Series:
Definitions

● A face, h, obstructs a junction, q, if the 
projection of h onto the view plane makes q 
invisible.

● Obstruction level, level(q) is the number of 
faces which obstruct q.

● V
l
 is the set of junctions at obstruction level l.

● V
1
 is the set of visible faces.



 

 

Establishing a Theta 
Series

● For every real s >= 0

– (sum over l)

 s= v l 
l s



 

 

Algorithmic Implications from this 
Theta Series

● (0) = Number of junctions in the view plane.
● Existing algorithms were linear in (0).
● This paper's algorithm is linear in (1).
● (∞) = Number of visible junctions

– Open question – Can hidden surface removal 
be done in time that is linear in (∞) or even 

(s)?
– Conjecture: NO



 

 

Randomization
● Hidden surface removal is a type of “sort” 

problem... quicksort suggests randomization 
strategy.

● quicksort “divide and conquer” does not 
translate to hidden surface removal.

● Probabalistic game theory analysis gave rise to 
this algorithm.



 

 

Limitations
● Since this is a general purpose 

algorithm, “Special situations” cannot be 
cheaply detected.

– Car in front of a grass field
– A box containing lots of items.

● Conventional heuristics should also be 
used

– Clipping
– Hierarchical comparisons



 

 

The Algorithm - Setup
● n – The number of faces

– Non-intersecting faces assumed
– Arbitrary shapes allowed
– Preprocessing complete
– Special face O is the background

● Establish Partition H
0
 labeled with the 

background face, O.



 

 

The Algorithm – 
Processing

● Create partitions H
1
, H

2
, ..., H

n

– Add one randomly selected face at a time.
– Partition H

k+1
 = Partition H

k
 + Face f

k+1

● Label each region in each partition with the 
currently visible face.

● H
n
 is the final visibility partition

● Scan H
n
 from left to right and paint labelled 

faces.



 

 

The Algorithm - 
Partitioning

● Partition H
k
 is constructed from randomly chosen faces 

f
0
,..., f

k
.

● In general, edge e from a face will be partly visible, or 
not at all.

– Disconnected visible parts of e are called fragments.

– All fragments establish a partition, but shapes are complicated.

● Pass a vertical through each fragment's end points, 
stopping at another edge or a window boundary.

● All resultant regions are trapezoids.



 

 

The Algorithm – One 
Partition



 

 

Representation
● Trapezoid:

– Definition: A vertex v of the partition is said to be 
visible in the face of R if the boundary of R 
has a tangent discontinuity at R.

– Each trapezoid is represented as a circular list 
of visible vertices

● Adjacency list:
– List of adjacent regions in which the vertex is 

visible.



 

 

Tangent Discontinuity
● Tangent 

Discontinuous
● Tangent 

continuous

α <> 0

α == 0



 

 

Trapezoid Representation - 
Example

● Trapezoid (a,b,c,d) – a, b, c, d are visible

● Junction e is not visible in the triangle.

a

b c

d

e



 

 

Additonal Information Needed

● Which regions of H
k
 will be impacted by adding 

random face f
k+1

?

● Conflict Information
– A face is in conflict with a region if

● The face's projection intersects with the region
● The region does not obscure the face

– If a face is in conflict with a region, it will be 
visible (at least partially) in H

k+1
.



 

 

Dealing with Conflict - Preliminary Updates
● Ignore regions with no conflict

● In conflicted regions, update along the boundary

– Move counterclockwise around the face (projection)
– Split conflicting edges.
– Pass vertical through new conflicted junctions.
– Update the visible face references.
– Update conflict and adjacency information.

● Update the interior – trapezoids that conflict with the new face, but are not 
adjacent to it.

– Change Trapezoid representations
– Update adjacency lists



 

 

Trapezoid Conflict



 

 

Dealing with Conflict - Reconfiguration

● It's too expensive to repeat the line-
drawing exercise.

● The projection of the new face is a 
trapezoidal decomposition with 
unnecessary trapezoids.

– Randomly remove hidden fragments 
until they're all gone.



 

 

The Complete Partition



 

 

Update Conflict 
Information

● Merge & Sort the conflict information 
from before the line removal step.

– Conflict information is stored in order by 
'x' coordinate.

● When all faces have been randomly 
selected, the algorithm is complete.



 

 

Analysis
● Mulmuley's algorithm provides hidden surface 

removal where the time spent processing 
obstructed surfaces is inversely proportional to 
the depth of the surface.

– Expected number of conflicts:
O(n log(n) + (1))

– Conjectured lower bound:
(n log(n) + (1))



 

 

Questions
● Thank You!


