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A method for components instantaneous frequency (IF) estimation of multicomponent signals in low signal-to-noise ratio (SNR)
is proposed. The method combines a new proposed modification of a blind source separation (BSS) algorithm for components
separation, with the improved adaptive IF estimation procedure based on the modified sliding pairwise intersection of confidence
intervals (ICI) rule. The obtained results are compared to the multicomponent signal ICI-based IF estimation method for various
window types and SNRs, showing the estimation accuracy improvement in terms of the mean squared error (MSE) by up to 23%.
Furthermore, the highest improvement is achieved for low SNRs values, when many of the existing methods fail.

1. Signal Model and Problem Formulation

Many signals in practice, such as those found in speech
processing, biomedical applications, seismology, machine
condition monitoring, radar, sonar, telecommunication,
and many other applications are nonstationary [1]. Those
signals can be categorized as either monocomponent or
multicomponent signals, where the monocomponent signal,
unlike the multicomponent one, is characterized in the time-
frequency domain by a single “ridge” corresponding to an
elongated region of energy concentration [1].

For a real signal s(t), its analytic equivalent z(t) is defined
as

z(t) = s(t) + jH{s(t)} = a(t)e jφ(t), (1)

where H{s(t)} is the Hilbert transformation of s(t), a(t) is
the signal instantaneous amplitude, and φ(t) is the signal
instantaneous phase.

The instantaneous frequency (IF) describes the varia-
tions of the signal frequency contents with time; in the case of
a frequency-modulated (FM) signal, the IF represents the FM
modulation law and is often referred to as simply the IF law
[2, 3]. The IF of the monocomponent signal z(t) is the first

derivative of its instantaneous phase, that is, ω(t) = φ′(t) [1].
Furthermore, the crest of the “ridge” is often used to estimate
the IF of the signal z(t) as [1]

ω̂(t) = arg

[
max

f
TFDz

(
t, f
)]

, (2)

where TFDz(t, f ) is the signal z(t) time-frequency distribu-
tion [1].

On the other hand, the analytical multicomponent signal
x(t) can be modeled as a sum of two or more monocom-
ponent signals (each with its own IF ωm(t))

x(t) =
M∑

m=1

zm(t) =
M∑

m=1

am(t)e jφm(t), (3)

where M is the number of signal components, am(t) is the
mth component instantaneous amplitude, and φm(t) is its
instantaneous phase.

When calculating the Hilbert transform of the signal s(t)
in (1), the conditions of Bedrosian’s theorem need to be
satisfied, that is, a(t) has to be a low frequency function with
the spectrum which does not overlap with the e jφ(t) spectrum
[2–5].
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To obtain the multicomponent signal IF, a component
separation procedure should precede the IF estimation from
the extracted signal components [1]. However, when dealing
with multicomponent signals, their TFDs often contain
the cross-terms which significantly disturb signal time-
frequency representation, hence making the components
separation procedure more difficult. Thus the proper TFD
selection plays a crucial role in signal components extraction
efficiency. Various reduced interference distributions (RIDs)
have been proposed in order to have a high resolution time-
frequency signal representation, such as modified B distri-
bution (MBD) [6] and the RID based on the Bessel kernel
[7], both used in this paper. A measure for time-frequency
resolution and component separation was proposed in [8].

Methods for signal components extraction from a mix-
ture containing two or more statistically independent signals
are often termed as blind source separation (BSS) methods,
where the term “blind” indicates that neither the structure
of the mixtures nor the source signals are known in advance
[1]. So, the main problem of BSS is obtaining the original
waveforms of the sources when only their mixture is available
[9]. Due to its broad range of potential applications, BSS
has attracted a great deal of attention, resulting in numerous
BSS techniques which can be classified as the time domain
methods (e.g., [10, 11]), the frequency domain methods
(e.g., [12, 13]), adaptive (recursive) methods (e.g., [14]), and
nonrecursive methods (e.g., [15]).

Once the components are extracted from the signal, their
IF laws (which describe the signal frequency modulation
(FM) variation with time [1]) can be obtained using some
of the existing IF estimation methods. One of the popular IF
estimation methods is the iterative algorithm [16] based on
the spectrogram calculated from the signal analytic associate
in the algorithm’s first iteration, followed by the IF and
the instantaneous phase estimation. The obtained IF is then
used for a new calculation of the spectrogram which is
further used for signal demodulation. In the next iteration,
the matched spectrogram of the demodulated signal is
calculated, followed by a new IF and phase estimation.
The procedure is iteratively repeated until the IF estimate
convergence is reached (based on the threshold applied to the
difference between consecutive iterations) [16].

The IF estimation methods for noisy signals can be
divided into two categories comprising the case of mul-
tiplicative noise and the case of additive noise. For a
signal in multiplicative noise or a signal with the time-
varying amplitude, the use of the Wigner-Ville spectrum or
the polynomial Wigner-Ville distribution was proposed in
[17, 18].

For polynomial FM signals in additive noise and high
signal-to-noise ratio (SNR), the polynomial Wigner-Ville
distribution-based IF estimation method was suggested [19]
while for the low SNR an iterative procedure based on the
cross-polynomial Wigner-Ville distribution was proposed
[20]. The signal polynomial phase, and its IF as the derivative
of the obtained phase polynomial, can be also estimated
using the higher-order ambiguity functions [21]. The IF
estimation accuracy can be improved using the adaptive win-
dows and the S-transform (which combines the short-time

Fourier analysis and the wavelet analysis) [22] or the direc-
tionally smoothed pseudo-Wigner-Ville distribution bank
[23]. The IF estimation method based on the maxima of
time-frequency distributions adapted using the intersection
of confidence intervals (ICI) rule or its modifications, used
in the varying data-driven window width selection, was
shown to outperform the IF obtained from the maxima of
the TFD calculated using the best fixed-size window width
[24–26]. This paper presents a modification of the sliding
pairwise ICI rule-based method for signal component IF
estimation combined with the modified BSS method for
components separation and extraction. Unlike the ICI rule
based method which was used only for monocomponent
signals, this new proposed method based on the improved
ICI rule is extended and applied to multicomponent signals
IF estimation, resulting into increased estimation accuracy
for each component present in the signal.

A simplified flowchart of the new multicomponent IF
estimation method is shown in Figure 1. As it can be seen,
the components IF estimation using the proposed method is
preceded by the modified component extraction procedure
described in Section 2.3.

The paper is organized as follows. Section 2 gives an
introduction to the problem of proper TFD selection, fol-
lowed by the modified algorithm for components separation
and extraction for multicomponent signals in additive noise.
Section 3 defines the improved sliding pairwise ICI-based IF
estimation method from a set of the signal TFDs calculated
for various fixed window widths. Section 4 presents the
results of the multicomponent signal IF estimation using the
proposed method, and then compares them with the results
obtained with the ICI-based method. The conclusion is given
in Section 5.

2. Components Extraction Procedure

2.1. TFD Selection. When dealing with multicomponent
signals, the choice of the TFD plays a crucial role due to
the presence of the unwanted cross-terms which disturb the
signal representation in the (t, f ) domain. The best-known
TFD of a monocomponent linear FM analytic signal z(t) is
the Wigner-Ville distribution (WVD), which may be defined
as [1]

Wz
(
t, f
)
=

∫ +∞

−∞

z
(
t +

τ

2

)
· z∗

(
t −

τ

2

)
· e− j2π f τdτ. (4)

The main disadvantage of the WVD of multicomponent
signals or monocomponent signals with nonlinear IF is the
presence of interferences and loss of frequency resolution
[1], as illustrated in Figure 2. To reduce the cross-terms in
the WVD, the signal instantaneous autocorrelation function
z(t+τ/2)·z∗(t−τ/2) can be windowed in the lag τ direction
before taking its Fourier transform

PWz
(
t, f
)
=

∫ +∞

−∞

h(τ) · z
(
t +

τ

2

)
· z∗

(
t −

τ

2

)
· e− j2π f τdτ,

(5)

resulting in the pseudo-WVD PWz(t, f ) also called Doppler-
Independent TFD [1, pages 213-214].
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Figure 1: A simplified flowchart of the new IF estimation
algorithm.

Narrowing the frequency smoothing window h(τ) of the
pseudo WVD in order to better localize the signal in time
results in higher TFD time resolution, and consequently
lower frequency resolution [1]. Similarly, a narrow window
in the frequency domain results in high frequency resolution,
but simultaneously the time resolution gets disturbed [1,
page 215].

To have independently adjusted time and frequency
smoothing of the WVD, the smoothed pseudo WVD was
introduced [1]

SPWz
(
t, f
)
=

∫ +∞

−∞

h(τ)

∫ +∞

−∞

g(s− t) · z
(
s +

τ

2

)

· z∗
(
s−

τ

2

)
ds · e− j2π f τdτ,

(6)

where g(t) is the time smoothing window.
The efficiency of the IF estimation method presented in

this paper is affected by the TFD selection, hence a reduced
interference, high resolution TFD should be used. There are
numerous TFDs having such characteristics, some of which
are defined in [27–29]. One RID shown to be superior to
other fixed-kernel TFDs in terms of cross-terms reduction
and resolution enhancement, is the MBD defined as [6]

MBDz
(
t, f
)
=

∫∫ +∞

−∞

cosh−2β(t − u)∫ +∞
−∞ cosh−2βξdξ

· z
(
u +

τ

2

)

· z∗
(
u−

τ

2

)
· e− j2π f τdudτ,

(7)

where the parameter β, (0 < β ≤ 1), controls the distribution
resolution and cross-term elimination [6, 30]. Generally,
there is a compromise between those two TFD features, with
the MBD shown to outperform many popular distributions
[6, 8]. Furthermore, the MBD was also proven to be a suitable
TFD for robust IF estimation [6].

In this paper, the results obtained using the MBD are
compared to those obtained by another RID with the kernel
filter based on the Bessel function of the first kind (RIDB)
[7]. This choice of the RID was motivated by its good
performances in terms of time and frequency resolution
preservation due to the independent windowing in the τ and
ν domains, as well as its efficient cross-terms suppression [7].
The RIDB is defined as [7]

RIDBz
(
t, f
)
=

∫ +∞

−∞

h(τ) · Rz(t, τ) · e− j2π f τdτ, (8)

where

Rz(t, τ) =

∫ t+|τ|

t−|τ|

2g(v)

π|τ|

√
1−

(
v − t

τ

)2

· z
(
v +

τ

2

)

· z∗
(
v −

τ

2

)
dv.

(9)

This distribution has been tested on real-life signals, such
as heart sound signal and Doppler blood flow signal, and
proven to be superior over some other TFDs in suppressing
the cross-terms, while the autoterms were kept with high
resolution [7, 31, 32].

2.2. Algorithm for Signal Components Extraction. The signal
components separation and extraction can be done using the
two algorithms given in [33], classified by their authors as the
BSS algorithms even though they are different from standard
BSS formulation, being ad hoc approaches. The first of those
algorithms is applicable to multicomponent signals with
intersecting components (assuming that all components
have same time supports), while the second one is applicable
to multicomponent signals with components which do
not intersect and may have different time supports. The
modifications proposed in this paper can be applied to both
of these algorithms. However, in many practical situations
that we have dealt with, components belonging to the same
signal source do not generally intersect (e.g., newborn EEG
seizure signal analysis [1]), so we have chosen to apply our
modifications to the second algorithm only. Furthermore,
the chosen algorithm, unlike some other algorithms for
estimation of multicomponent signals in noise (e.g., [34–
36]) is not limited to the polynomial phase signals and can
also be used in estimation of other nonlinear phase signals,
as most real-life signals are (e.g., the echolocation sound
emitted by a bat, used in this paper). The components are
extracted one by one, until the remaining energy of the TFD
becomes sufficiently small [37].

The algorithm consists of three major stages. In the first
stage, a cross-terms free TFD, or the one with the cross-terms
being suppressed as much as possible, is calculated. In the
second stage of the algorithm, the components are extracted
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Figure 2: Example of a multicomponent signal and its representations in the (t, f ) domain. (a) Signal in the time domain. (b) Signal
components IFs. (c) WVD of the signal. (d) Signal MBD with the time and lag window length of N/4 + 1.

using the peaks of the TFD. The highest peak at (t0, f0) in
the time-frequency domain is extracted first, and then it is
set to zero (in order to avoid it being selected again) along
with the frequency range around it (t0, f ) (the size of which
is 2∆ f , such that f ∈ [ f0 − ∆ f , f0 + ∆ f ]). Then the next
highest peak (t′0, f ′0 ) in the vicinity of the previous one is
selected. That is, (t′0, f ′0 ) is the maximum in the (t, f ) domain
where t ∈ [t0 − 1, t0 + 1] and f ∈ [ f0 − F/2, f0 + F/2],
where F is the chosen frequency window width. Next, (t′0, f ′0 )
is set to be (t0, f0), and the procedure is repeated until the
boundaries of the TFD are reached or the TFD value at
(t′0, f ′0 ) is smaller than the preset threshold value ǫc defined
as the fraction of the TFD value at the first (t0, f0) point. Such
extracted TFD’s peaks constitute one signal component. The
next component is found in the same way using the above-
described procedure. The algorithm stops once the energy
remaining in the TFD is smaller than the threshold value ǫd
defined as a fraction of the signal total energy.

The second stage of the algorithm often produces a
number of components that is larger than the actual number

of components present in the analyzed multicomponent
signal. In order to fix this, a classification procedure was
proposed as the third and final algorithm stage. This com-
ponent classification procedure groups the components from
the second stage of the algorithm based on the minimum
distance between any pair of components. If two components
belong to the same actual component, their distance is going
to be smaller than the distance between the considered com-
ponent and any other component, and they get combined
into a single component [33].

2.3. Modification of the Algorithm for Components Extraction.
In order to avoid the components classification procedure
of the algorithm in [33], in this section, we present a
modification of the components extraction algorithm.
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Figure 3: A detailed flowchart of the modified components extraction algorithm.

The modified algorithm (the flowchart of which is shown
in Figure 3) for components separation and extraction starts
with the signal RID calculation; the MBD and the RIDB are
used in this paper.

As in the original method, the modified algorithm starts
with the detection of the highest peak (t0, f0) in the (t, f )

domain, followed by setting (t0, f ) to zero, where f ∈ [ f0 −
∆ f , f0 +∆ f ]. Then, the (t0, f0) vicinity is divided in two (t, f )
subregions such that f ∈ [ f0 − F/2, f0 + F/2], where t ∈
[t0 − 1, t0] for the first subregion and t ∈ [t0, t0 + 1] for the
second one. Thus, the two values for (t′0, f ′0 ) are obtained as
the maximum of each of the two subregions.
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Figure 4: Example of components separation and extraction procedure using the algorithm described in Section 2 (N = 128, the number
of frequency bins N f = 4N , ∆ f = F/2 = N f /4, ǫc = 0.2, and ǫd = 0.01). (a) The signal RIDB with the rectangular time and frequency
windows of length N/4 + 1. (b) Extracted first sinusoidal FM signal component. (c) Extracted linear FM signal component. (d) Extracted
second sinusoidal FM signal component.

In the next stage of the modified algorithm, the two
(t′0, f ′0 ) values are set as two (t0, f0), and the above-described
procedure is repeated for each of them as long as the (t0, f0)
value exceeds the threshold ǫc or until the TFD boundaries
are reached. The extracted (t0, f0) values then form one signal
component. Once the component is detected, it is extracted
from the (t, f ) plane and the procedure is repeated for the
next component present in the signal. The algorithm stops
once the remaining energy in the TFD becomes smaller than
the preset threshold ǫd.

The original method, due to its single-direction search,
results in components sections or parts (not whole compo-
nents), thus the components classification procedure needs
also to be employed in order to combine those parts into
signal components.

The modified method which applies a double-direction
component search (as shown in Figure 3) enables us

to accurately and efficiently obtain whole components
without having to perform any additional classification
procedure based on the minimum distance between the
components.

2.4. Example of Multicomponent Signal Components Extrac-
tion. In order to illustrate the performance of the modi-
fied algorithm for signal components extraction from its
RIDB, the signal mixture containing two sinusoidal FM
components and a linear FM component was used (see
Figure 4). Note that unlike the algorithm in [33], the
modified algorithm presented in this paper does not require
that all components must have same time supports. The
multicomponent signal RIDB calculated with the fixed time
and frequency smoothing rectangular windows, the length
of which was set to N/4 + 1 (N being the signal length), is
shown in Figure 4(a). However, the adaptive window widths
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will be used for the components IF estimation in the rest of
this paper, as described in Section 3.

The extracted components are shown in Figures 4(b),
4(c), and 4(d). As it can be seen, the components are well
identified with their time and frequency supports being well
preserved, which is necessary for their IF estimation.

3. IF Estimation Method Based on the Improved
Sliding Pairwise ICI Rule

3.1. Review of the IF Estimation Method Based on the ICI Rule.
Once the components are extracted from a multicomponent
signal TFD, their IFs can be obtained as the component
maxima in the time-frequency plane using some of the
existing monocomponent IF estimation methods. However,
estimating the IF as the TFD maxima results into estimation
bias which is caused either by IF higher order derivatives,
small noise (which moves the local maxima within the signal
component), or high noise (which moves the local maxima
outside the component) [38]. The estimation bias increases
with the window length used for TFD calculation, while
the variance decreases [6, 25]. Hence, due to the tradeoff

between the estimation bias and variance, the estimation
error reduction can be obtained using the proper window
length [25].

The adaptive method for selecting the appropriate win-
dow width based on the ICI rule was efficiently applied
to monocomponent signal IF estimation in [24, 25]. The
main advantage of this estimation method is that it does
not require the knowledge of estimation bias (unlike some
plugin methods, e.g., [39]), but only the estimation variance
(which can be easily obtained in the case of high sampling
rate and white noise). This is very useful in applications such
as speech and music processing, biological signals analysis,
radar, sonar, and geophysical applications [25].

For this reason, we have selected this algorithm as a
basis and starting point for our new proposed methodology;
we briefly review the ICI algorithm below and then show
the modifications that are needed in order to apply it to
multicomponent signals IF estimation.

Let us now consider a discrete nonstationary multicom-
ponent signal in additive noise

y(n) = x(n) + ǫ(n), (10)

where

x(n) =
M∑

m=1

zm(n) =
M∑

m=1

am(n)e jφm(n), (11)

where M is the number of signal components, ǫ(n) is white
complex-valued Gaussian noise with mutually independent
real and imaginary zero-mean parts of variance σ2

ǫ
/2, am(n)

is the mth component instantaneous amplitude, and φm(n)
is its instantaneous phase [1].

The component IF can be estimated from the signal TFD
as [1]

ω̂m(n,h) = arg

[
max
k

TFDm(n, k,h)

]
, (12)

where TFDm(n, k,h) is the TFD containing only the mth
component extracted from the multicomponent signal TFD
calculated using the window of length h. It was shown in [25]
that for the asymptotic case (small estimation error) the IF
estimation error ∆ω̂m(n,h) = ωm(n)− ω̂m(n,h) is

∣∣∆ω̂m(n,h)
∣∣ ≤ |biasm(n,h)| + κσm(h), (13)

with probability P(κ), where κ is a quantile of the standard
Gaussian distribution, and σm(h) the component estimation
error standard deviation obtained as

σm(h) =

√√√√ σ2
ǫ

2|Am|
2

(
1 +

σ2
ǫ

2|Am|
2

)
T

h3

E

F2
, (14)

where E =
∑h

i=1 w(i)(i/h)2, F =
∑h

i=1 [w(i)]2(i/h)2, and
w(n) is the real-valued symmetrical window of length h [25].
The E and F values depend on the window type used for
TFD calculation. For example, in the case of the rectangular
window E = F = 1/12 [25].

As shown in [25], for

|biasm(n,h)| ≤ κσm(h), (15)

Equation (13) becomes

∣∣∆ω̂m(n,h)
∣∣ ≤ 2κσm(h). (16)

Equations (13) and (16) imply that ωm(n) belongs to the
confidence interval Dm(n, l) = [Lm(n, l),Um(n, l)] with pro-
bability P(κ) (the larger κ value gives P(κ) closer to 1), where
its upper Um(n, l) and lower Lm(n, l) limits are defined as

Um(n, l) = [ω̂m(n,h) + 2κσm(h)],

Lm(n, l) = [ω̂m(n,h)− 2κσm(h)],
(17)

and l is the sequence number of h in a set of increasing
window widths H = {hl|h1 < h2 < · · · < hJ}. The
IF estimation method proposed in [24, 25] calculates a
sequence of TFDs for each of the window widths from H .
In general, any reasonable choice of H is acceptable [25]. In
this paper, we have used H = {hl|hl = hl−1 + 2}, same as in
[26], with h1 = N/8 + 1 and hJ = N/2 + 1.

Then, the components separation and extraction pro-
cedure is performed, as described in Section 2, resulting in
m component TFDs (denoted as TFDm(n, k,h)) for each h
from H .

Next, the set of J IFs estimates is obtained using (12) for
each of the signal components followed by the confidence
intervals Dm(n, l) calculation for each time instant nT (T
is the sampling interval) and each window width h. This
adaptive method tracks the intersection of the current
confidence interval Dm(n, l) and the previous one Dm(n, l −
1), giving the best window width for each time instant nT as
the largest one from H for which it is true that [24, 25]

Dm(n, l − 1)∩Dm(n, l) /= 0. (18)

A justification for such an adaptive data-dependent selec-
tion of window width size independently for each time
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instant nT , and each signal component lays in the fact that
for the confidence intervals Dm(n, l − 1) and Dm(n, l) which
do not intersect, the inequality (16) is not satisfied for at
least one h from H [25]. This is caused by the estimation
bias being too large when compared to the variance (what
is contrary to the condition in inequality (15)) [25]. Thus,
the largest h for which (18) is satisfied is considered to give
the optimal bias-to-variance tradeoff resulting in a reduced
estimation error [24].

3.2. IF Estimation Method Based on the Improved Sliding
Pairwise ICI Rule. In this section, the above-described
algorithm for adaptive frequency smoothing window size
selection is improved and modified such that it can be used
in multicomponent IF estimation.

The quantile of the standard Gaussian distribution κ
value plays a crucial role in the ICI method in the proper
window size calculation, and hence in estimation accuracy
[40]. Various computationally demanding methods for its
selection were proposed, such as the one using cross-
validation [41]. As it was shown in [42], smaller κ values
give too short window widths, while large κ values (for
which P(κ) → 1) result in oversized window widths, both
disturbing the estimation accuracy.

One of the ways to improve the proper window width
selection using the ICI rule is to track the amount of overlap
between the consecutive confidence intervals (unlike the ICI
method which only requires their overlap). Furthermore, as
opposed to the adaptive window size selection procedure
given in [40] (which demands the intersection of current
confidence interval with all previous intervals in order for
it to be a candidate for the finally selected window width for
the considered time instant nT), this new proposed method
requires only a pairwise intersection of two consecutive
confidence intervals, same as in [24, 25].

Here, we introduce the Cm(n, l) as the amount of overlap
between two consecutive confidence intervals

Cm(n, l) = |Dm(n, l)∩Dm(n, l − 1)|. (19)

In order to have a measure of the confidence intervals overlap
belonging to a finite interval, the Cm(n, l) can be normalized
with the size of the current confidence interval, defining the
Om(n, l) as the following ratio

Om(n, l) =
Cm(n, l)

|Dm(n, l)|
. (20)

Thus, the Om(n, l) value, unlike the Cm(n, l), always belongs
to the interval [0, 1], making it easy to introduce the preset
threshold value Oc as an additional criterion for the most
appropriate window width selection

Om(n, l) ≥ Oc, (21)

where

Om(n, l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, Cm(n, l) = 0

1, Cm(n, l) = |Dm(n, l)|

〈0, 1〉 elsewhere.

(22)

Table 1: IF estimation MAE and MSE comparison obtained using
the MBD for methods based on the ICI and improved ICI rule for
the signal x1(n) (β = 0.1, κ = 1.75, Oc = 0.97, ǫc = 0.2, ǫd = 0.01,
adaptive rectangular time, and lag windows).

20 log(A/σǫ)

2 5 10 15 20

Component 1

MAE

ICI 23.55 20.71 14.76 14.16 13.74

Imp. ICI 22.35 19.31 14.44 14.04 13.75

Imp. [%] 5.11 6.79 2.14 0.80 −0.12

MSE

ICI 6442.9 5635.7 4170.0 4121.6 4043.5

Imp. ICI 6466.5 5639.8 4171.0 4121.3 4043.5

Imp. [%] −0.37 −0.07 −0.02 0.01 0.00

Component 2

MAE

ICI 15.49 11.53 9.35 8.76 8.44

Imp. ICI 15.28 11.36 9.27 8.75 8.44

Imp. [%] 1.37 1.51 0.92 0.17 0.00

MSE

ICI 3352.9 2621.9 2216.8 2113.6 2065.8

Imp. ICI 3344.1 2616.9 2215.9 2113.6 2065.8

Imp. [%] 0.26 0.19 0.04 0.00 0.00

Component 3

MAE

ICI 7.56 6.29 4.90 4.44 4.35

Imp. ICI 7.04 5.71 4.77 4.43 4.34

Imp. [%] 6.89 9.14 2.73 0.39 0.29

MSE

ICI 404.0 284.2 220.4 204.3 203.9

Imp. ICI 394.8 275.9 219.2 204.3 203.9

Imp. [%] 2.26 2.91 0.54 0.00 0.00

This additional criterion defined in (21) sets more strict
requirements for the window width selection (when com-
pared to the ICI rule which requires only the intersection
of confidence intervals and does not consider the amount
of their intersection), reducing the estimation inaccuracy
by preventing oversized window widths selection, as it was
shown in [26, 42].

Unlike the monocomponent IF estimation methods
in [24–26], the multicomponent IF estimation method
proposed in this paper combines the modified component
extraction method with the above-described improved ICI
rule. The method proposed in [6], however, is based on the
original ICI rule and an unmodified component tracking
algorithm. Apart from a set of the IF estimates calculated
with fixed-size frequency smoothing window widths, this
improved adaptive algorithm based on the improved ICI
rule was then used to select the best IF estimate for each
time instant. The method results in enhanced components
IF estimation accuracy in terms of both mean absolute error
(MAE) and mean squared error (MSE) for various SNRs and
different window types when compared to the ICI method,
as it is shown in the Section 4.

3.3. Summary of the Newly Proposed Multicomponent IF
Estimation Method. Before we illustrate the use of the pro-
posed algorithm on several examples, we will first summarize
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Table 2: IF estimation MAE and MSE comparison obtained using
the RIDB for methods based on the ICI and improved ICI rule
for the signal x1(n) (κ = 1.75, Oc = 0.97, ǫc = 0.2, ǫd =

0.01, rectangular time smoothing window of size N/4 + 1, adaptive
rectangular frequency smoothing window).

20 log(A/σǫ))

2 5 10 15 20

Component 1

MAE

ICI 11.52 10.38 7.36 5.31 4.13

Imp. ICI 8.23 7.80 5.68 4.84 4.10

Imp. [%] 28.60 24.85 22.81 8.77 0.87

MSE

ICI 1586.7 1591.5 882.4 670.0 426.5

Imp. ICI 1512.8 1548.9 863.4 666.6 426.8

Imp. [%] 4.66 2.67 2.15 0.50 −0.07

Component 2

MAE

ICI 7.00 5.82 4.75 4.12 3.90

Imp. ICI 6.05 5.12 4.44 4.08 3.89

Imp. [%] 13.61 11.95 6.50 0.94 0.38

MSE

ICI 210.8 166.3 110.4 85.6 74.6

Imp. ICI 166.7 136.4 103.6 85.2 74.5

Imp. [%] 20.92 18.00 6.20 0.45 0.10

Component 3

MAE

ICI 5.64 5.40 4.22 3.96 3.95

Imp. ICI 4.10 3.91 3.69 3.83 3.93

Imp. [%] 27.29 27.73 12.59 3.16 0.47

MSE

ICI 162.8 185.8 193.8 244.1 265.0

Imp. ICI 136.5 161.5 187.8 242.7 264.8

Imp. [%] 16.17 13.10 3.11 0.56 0.06

the key steps of our newly proposed multicomponent IF
estimation method.

Step 1. Calculate a set of RIDs for various frequency
smoothing window lengths.

Step 2. Extract the signal components from each RID using
the method described in Section 2.3.

Step 3. For each component, calculate its IF using (12).

Step 4. For each time instant and each component, choose
the best IF estimate from the set of estimates calculated
for different frequency smoothing window lengths using
the multicomponent IF estimation method based on the
improved ICI rule presented in Section 3.2.

As it is shown in Section 4, a significant IF estimation
accuracy enhancement has been achieved (especially in low
SNRs environments) by combining the proposed compo-
nents extraction procedure with the improved ICI rule.

4. Multicomponent IF Estimation
Simulation Results

This section gives the results obtained by the proposed
multicomponent IF estimation method for two multicom-
ponent signals of the form in (11): a three component signal

Table 3: IF estimation MAE and MSE comparison obtained using
the RIDB for methods based on the ICI and improved ICI rule for
the signal x1(n) (20log(A/σǫ) = 10, κ = 1.75, Oc = 0.97, ǫc =
0.2, ǫd = 0.01, time smoothing window of size N/4 + 1, adaptive
frequency smoothing window).

MAE MSE

ICI Imp. ICI Imp. [%] ICI Imp. ICI Imp. [%]

Component 1

Rectangular 7.36 5.68 22.81 882.4 863.4 2.15

Hamming 7.61 6.67 12.39 1060.5 1046.4 1.32

Hanning 8.31 7.59 8.59 1213.7 1198.9 1.22

Triangular 8.24 7.27 11.82 1061.9 1051.9 0.94

Gauss 8.74 9.72 −11.27 1112.8 1110.0 0.24

Component 2

Rectangular 4.75 4.44 6.50 110.4 103.6 6.20

Hamming 4.42 3.81 13.95 104.1 83.9 19.46

Hanning 4.51 3.70 18.00 114.1 87.6 23.23

Triangular 3.97 3.57 10.05 74.3 65.7 11.61

Gauss 4.79 4.36 9.02 163.2 139.4 14.59

Component 3

Rectangular 4.22 3.69 12.59 193.8 187.8 3.11

Hamming 4.36 3.72 14.65 170.2 167.0 1.85

Hanning 4.31 3.70 14.18 148.3 143.7 3.14

Triangular 5.20 4.49 13.72 324.3 314.3 3.09

Gauss 5.32 5.95 −11.85 311.5 332.2 −6.64

with components of equal amplitudes x1(n) = z1(n) +
z2(n) + z3(n), where zm(n) = Am exp( jφm(n)) (Am = 1),
and the echolocation sound emitted by a bat signal, x2(n),
with components of different amplitudes. The achieved
estimation error reduction in terms of MAE and MSE
is compared to the ICI-based IF estimation method for
various window types and different noise levels (defined as
20 log(A/σǫ) [25]).

The signal x1(n) (of length N = 128) contains two
sinusoidal FM components and one linear FM component
with different time supports (which partially overlap); the IF
law of each component is ω1(n) = 0.35 + 0.05 cos(2π(n −
N1/2)/N1 − π/2), ω2(n) = 0.05 + 0.3(n − 1)/(N2 − 1), and
ω3(n) = 0.075 + 0.025 cos(2π(n − N3/2)/N3 − π/2). The
component lengths are N1 = 96, N2 = 48, and N3 = 48.

The TFDs we have used are the MBD and the RID defined
in (7) and (8), respectively, calculated and plotted using
the Time-Frequency Signal Analysis Toolbox (see Article 6.5
in [1] for more details), with varying frequency smoothing
window lengths belonging to the set H which contains 25
increasing window lengths, the time smoothing window
length is N/4+1 (found to be, based on extensive simulations,
a suitable choice for broad classes of signals), and the number
of frequency bins N f = 4N . The component separation and
extraction procedure was done using ∆ f = F/2 = N f /8,
ǫc = 0.2, and ǫd = 0.01. The parameter κ value used
in both IF estimation methods, based on the ICI and the
improved ICI rule, was set to κ = 1.75 (as in [24, 25]). Based
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Figure 5: IF estimation MAE over a range of noise levels using the methods based on the ICI and the improved ICI rule for the signal x1(n)
(κ = 1.75, Oc = 0.97, ǫc = 0.2, ǫd = 0.01). (a) First component IF MAE obtained using the MBD. (b) Second component IF MAE obtained
using the MBD. (c) Third component IF MAE obtained using the MBD. (d) First component IF MAE obtained using the RIDB. (e) Second
component IF MAE obtained using the RIDB. (f) Third component IF MAE obtained using the RIDB.

on numerous simulations performed on various classes of
signals, the threshold Oc = 0.97 was shown to result in the
largest estimation error reduction, as shown in [26].

Tables 1 and 2 show, respectively, that the IF estimation
MAE and MSE (averaged over 100 Monte Carlo simulations
runs) for the ICI and the improved ICI-based method using
both the MBD and the RIDB with the rectangular time
and frequency smoothing windows for different noise levels
20 log(A/σǫ) = [2, 5, 10, 15, 20]. As it can be seen from the
Tables 1 and 2, the RIDB was shown to be more robust
for IF estimation from multicomponent signals in additive
noise, outperforming the estimation error reduction results
achieved by using the MBD. Furthermore, the largest MAE
and MSE improvement for each component was obtained
for the low SNR while for the higher SNRs both methods
perform almost identically. This MAE improvement using
the improved ICI method when compared to the ICI-based
method varies from around 1% to 28% while the MSE
reduction goes from around 0% to 23%. As the IF estimation
of signals for low SNRs is much more complex than in the
case of high SNRs, the improvements in estimation error
reduction using this new proposed method show the strength
of the method over other similar approaches [43]. The same

conclusion can be drawn from Figure 5 which shows the IF
estimation MAE as a function of the noise intensity for both
the ICI-based and the improved ICI-based method.

Table 3 gives the MAE and MSE results obtained using
the ICI method and its modification proposed in this
paper for 20 log(A/σǫ) = 10 and different window types
(rectangular, Hamming, Hanning, triangular, and Gauss). As
it can be seen, the improved ICI-based method results in
reduced MAEs by up to 22% and MSE reduced by up to 23%.

The noisy three component signal x1(n) in additive
noise (20 log(A/σǫ) = 10) is shown in Figure 6(a) while
its magnitude and phase spectrum is given in Figure 6(b).
The magnitude and phase spectra give information of the
signal frequency content, but not the times when certain
frequencies are present in the signal. This information can
be obtained from the signal TFD. The signal time-frequency
representation using the RIDB with rectangular frequency
smoothing windows of the fixed lengths h1 = N/8 + 1 and
h25 = N/2 + 1, and its corresponding IFs ω̂m(n,h1) and
ω̂m(n,h25) calculated using (12) are shown in Figures 6(c),
6(d), 6(e), and 6(f), respectively. The IFs estimated using
the ICI and improved ICI-based methods are, respectively,
given in Figures 6(g) and 6(h). The IF estimation error
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Figure 6: (a) Noisy multicomponent signal x1(n) in time (20 log(A/σǫ) = 10). (b) Signal magnitude and phase spectrum. (c) The signal

RIDB for h1. (d) The signal RIDB for h25. (e) Estimated IFs for h1. (f) Estimated IFs for h25. (g) Estimated IFs using the ICI-based method.

(h) Estimated IFs using the improved ICI-based method. (i) IFs estimation MAE for h1. (j) IFs estimation MAE for h25. (k) IFs estimation

MAE using the ICI-based method. (l) IFs estimation MAE using the improved ICI-based method. (m) Components window size for the

ICI-based method. (n) Components window size for the improved ICI-based method.
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Figure 7: (a) The bat signal x2(n) in time. (b) The bat signal magnitude spectrum. (c) The bat signal phase spectrum. (d) The RIDB of
the bat signal for fixed-size rectangular time smoothing window h = N/4 + 1. (e) The bat signal first component. (f) The bat signal second
component. (g) The bat signal third component. (h) IFs of the bat signal components obtained using the ICI-based method. (i) IFs of the bat
signal components obtained using the improved ICI-based method. (j) Window size for the first component (obtained by the ICI-based and
improved ICI-based method). (k) Window size for the second component (obtained by the ICI-based and improved ICI-based method). (l)
Window size for the third component (obtained by the ICI-based and improved ICI-based method).

of each component is shown in Figures 6(i), 6(j), 6(k),
and 6(l). Finally, the window size used by the ICI and
the improved ICI-based method for each component as a
function of time is given in Figures 6(m) and 6(n). As it can
be seen, the improved ICI rule, due to its more strict criterion
in the window size selection, uses shorter window widths
when compared to the ICI rule, resulting in a significant IF
estimation accuracy improvement.

Figures 7(a), 7(b), 7(c), and 7(d) show the bat echolo-
cation signal in time, its magnitude spectra, phase spectra,
and the RID with the fixed-size rectangular time smoothing
window h = 33, respectively. The extracted signal com-
ponents using the modified method described in Section 4

are shown in Figures 7(e), 7(f), and 7(g), which show that
each component is correctly detected and extracted, followed
by the components IF estimation. The estimated IFs using
the ICI and the improved ICI-based method are shown in
Figures 7(h) and 7(i). The adaptive varying window sizes
used by the two methods are given in Figures 7(j), 7(k), and
7(l) for each component, respectively.

A comparison of the noisy multicomponent signal
x1(n) MBD, RIDB, and the TFD reconstructed from the
components IFs estimated using the improved ICI-based
method is given in Figure 8. It can be observed, that once
the components are extracted and their IF laws are estimated
using the proposed method, we are able to get a cross-terms
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Figure 8: (a) Noisy multicomponent signal x1(n) MBD with rectangular time and lag window of length N/4 + 1 (20 log(A/σǫ) = 10). (b)
The signal RIDB with rectangular time and frequency smoothing windows of length N/4 + 1. (c) The noisy signal components IFs obtained
using the improved ICI-based method. (d) The signal reconstructed TFD from the estimated components IFs obtained using the improved
ICI-based method.

free and high time-frequency resolution multicomponent
signal TFD, shown in Figure 8(d).

The bat echolocation signal x2(n) MBD, RIDB, and the
TFD reconstructed from the components IFs estimated using
the method described in Section 3.2 is given in Figure 9.
As for the signal x1(n), a cross-terms free and high resolution
TFD is again obtained from the estimated components IFs.

5. Conclusion

A novel multicomponent signal instantaneous frequency (IF)
estimation method has been presented. A modification of
the blind (i.e., without a priori information) components
separation method for separation and extraction of compo-
nents from a noisy signal mixture was combined with the
IF estimation method based on the improved intersection
of confidence intervals (ICI) rule. This new method was

compared to the ICI-based IF estimation method, demon-
strating significant IF estimation quality improvements in
terms of the mean absolute error (MAE) and the mean
squared error (MSE) reduction in spite of the artifacts
present in the time-frequency distribution of the analyzed
noisy nonstationary signal. The new method’s performance
was analyzed for different signal-to-noise ratios (SNRs) and
various window types used in the reduced interference
distribution calculation, resulting in an estimation error
reduction in terms of the MAE by up to 28% and the
MSE reduction by up to 23% when compared to the
unmodified ICI-based method. Furthermore, the best results
have been achieved for low SNRs, making the proposed
method an efficient technique for multicomponent signals IF
estimation in high-noise environments, when other similar
existing approaches are known to fail. This new proposed
method can be applied to the IF estimation of fast varying
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Figure 9: (a) The bat echolocation sound signal x2(n) MBD with rectangular time and lag window of length N/4 + 1. (b) The signal RIDB
with the rectangular time and frequency smoothing windows of length N/4 + 1. (c) The signal components IFs obtained using the improved
ICI-based method. (d) The signal reconstructed TFD from the estimated components IFs obtained using the improved ICI-based method.

frequency-modulated multicomponent signals in low SNR,
as illustrated by the examples presented in this paper.
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