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Abstract

Learning application-specific distance metrics from la-
beled data is critical for both statistical classification
and information retrieval. Most of the earlier work in
this area has focused on finding metrics that simultane-
ously optimize compactness and separability in a global
sense. Specifically, such distance metrics attempt to
keep all of the data points in each class close together
while ensuring that data points from different classes
are separated. However, particularly when classes ex-
hibit multimodal data distributions, these goals conflict
and thus cannot be simultaneously satisfied. This paper
proposes a Local Distance Metric (LDM) that aims to
optimize local compactness and local separability. We
present an efficient algorithm that employs eigenvector
analysis and bound optimization to learn the LDM from
training data in a probabilistic framework. We demon-
strate that LDM achieves significant improvements in
both classification and retrieval accuracy compared to
global distance learning and kernel-based KNN.

Introduction
Distance metric learning has played a significant role in both
statistical classification and information retrieval. For in-
stance, previous studies (Goldberger et al. 2005; Wein-
berger, Blitzer, & Saul 2006) have shown that appropriate
distance metrics can significantly improve the classification
accuracy of the K Nearest Neighbor (KNN) algorithm. In
multimedia information retrieval, several papers (He et al.
2003; 2004; Muller, Pun, & Squire 2004) have shown that
appropriate distance metrics, learned either from labeled or
unlabeled data, usually result in substantial improvements in
retrieval accuracy compared to the standard Euclidean dis-
tance. Most of the work in distance metrics learning can be
organized into the following two categories:
• Unsupervised distance metric learning, or manifold

learning. The main idea is to learn a underlying
low-dimensional manifold where geometric relationships
(e.g., distance) between most of the observed data points
are preserved. Popular algorithms in this category include
ISOMAP (Tenenbaum, de Silva, & Langford 2000), Lo-
cal Linear Embedding (Saul & Roweis 2003), and the
Laplacian Eigenmap (Belkin & Niyogi 2003).
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Figure 1: Multimodal data distributions prevent global dis-
tance metrics from simultaneously satisfying constraints on
within-class compactness and between-class separability.
(a) shows the original data distribution. (b) shows the data
distribution adjusted by a global distance metric.

• Supervised/semi-supervised distance metric learning.
Most approaches in this category attempt to learn met-
rics that keep data points within the same classes close,
while separating data points from different classes. Ex-
amples include (Hastie & Tibshirani 1996; Domeniconi
& Gunopulos 2002; Xing et al. 2003; Zhang, Tang, &
Kwok 2005; Goldberger et al. 2005; Weinberger, Blitzer,
& Saul 2006; Shalev-Shwartz, Singer, & Ng 2004).

This paper focuses on learning distance metrics in a super-
vised setting. Most of previous work in this area attempts to
learn global distance metrics that keep all of the data points
in each class close together, while ensuring that those from
different classes remain separated. However, particularly
when classes exhibit multimodal data distributions, these
goals conflict and cannot be simultaneously satisfied. Fig-
ure 1(a) illustrates this point with a simple two-class exam-
ple where the labeled data belong either to class A or class B
(denoted by the positive signs and squares, respectively).
Note that each class has two distinct modes, and one mode of
each class is sandwiched between the two modes of the other
class. Given such a layout, any global metric that attempts to
bring the two modes of class A closer together will inadver-
tently separate the two modes of class B; conversely, bring-
ing the two modes of class B together results in a separa-
tion of class A. Figure 1(b) is the distribution of Figure 1(a)
adjusted by a global distance metric. Clearly, we see that
bringing the modes of each class closer together collapses
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the entire data set into a straight line where the data from the
two classes is mixed together. It is not surprising that such
a global distance metric leads to a significant degradation in
classification accuracy for the K Nearest Neighbor (KNN)
from 71.0% down to 55.5%. In order to solve the above
problem, this paper presents a novel probabilistic framework
that learns a local distance metric (LDM); rather than satis-
fying all of the pair-wise constraints, our algorithm focuses
on the “local” pairs:
• bringing pairs from the same mode of a class closer;
• separating nearby pairs from different classes.
Imposing the notion of locality on the data pairs enables
us to generate distance metrics that accommodate multiple
modes for each class. Learning a local distance metric for
the dataset shown in Figure 1(a) significantly increases the
KNN classification accuracy from 71.0% up to 76.5%.

The key challenge in local distance metric learning is the
chicken-and-egg dilemma: on one hand, to learn a local dis-
tance metric, we need to identify the local pairwise con-
straints; on the other hand, to identify the local pairwise
constraints, we need to know the appropriate local distance
metric. To resolve this problem, we propose a probabilistic
framework for local distance metric learning that explicitly
addresses the chicken-and-egg problem through an EM-like
algorithm. Furthermore, this paper presents an algorithm
based on eigenvector analysis and bound optimization to ef-
ficiently learn such local distance metrics.

In the remaining sections, we first present a brief intro-
duction to the problem of supervised distance metric learn-
ing and reviews related work; Then we introduce the prob-
abilistic framework for local distance metric learning and
present an efficient algorithm for learning them from data.
Finally experimental results are presented on two applica-
tion domains (image classification and text categorization).

Supervised Distance Metric Learning
Unlike typical supervised learning, where each training ex-
ample is annotated with its class label, the label information
in distance metric learning is usually specified in the form of
pairwise constraints on the data: (1) equivalence constraints,
which state that the given pair are semantically-similar and
should be close together in the learned metric; and (2) in-
equivalence constraints, which indicate that the given points
are semantically-dissimilar and should not be near in the
learned metric. Most learning algorithms try to find a dis-
tance metric that keeps all the data pairs in the equivalence
constraints close while separating those in the inequivalence
constraints.

The work of (Xing et al. 2003) formulates distance metric
learning as a constrained convex programming problem. It
learns a global distance metric that minimizes the distance
between the data pairs in the equivalence constraints sub-
ject to the constraint that the data pairs in the ineqivalence
constraints are well separated. This algorithm is further ex-
tended to the nonlinear case in (Kwok & Tsang 2003) by the
introduction of kernels. In addition to general purpose algo-
rithms for distance metric learning, several papers have pre-
sented approaches to learn appropriate distance metrics for
the KNN classifier. The approach presented in (Domeniconi

& Gunopulos 2002) tries to find feature weights that adapt
to individual test examples. Although it attempts to address
a similar problem as this paper, their hand-crafted local dis-
tance metric is unable to fully exploit the training data. The
research most related to this paper is neighborhood compo-
nent analysis (NCA) (Goldberger et al. 2005) and the large
margin nearest neighbor classifier (Weinberger, Blitzer, &
Saul 2006). Both focus on learning a distance metric from
the local neighborhood, which is similar to the motivation
of this paper. However, both of these attempt to learn com-
plete distance metrics from the training data, which is com-
putationally expensive and prone to overfitting (Weinberger,
Blitzer, & Saul 2006); instead, our proposed method ap-
proximates the distance metric using the direct product of
the principal eigenvectors extracted from both the labeled
and the unlabeled data. Our approach has several impor-
tant advantages. First, it significantly improves computa-
tional efficiency. Second, it enhances the robustness of the
learned distance metrics, which is critical for problems such
as text classification that involve a large number of features.
Third, instead of using general-purpose optimization algo-
rithms, such as greedy ascent or semi-definite programming,
we present an efficient algorithm that is specifically targeted
to our optimization problem, and is guaranteed to converge
to a local optimum. Finally, and most importantly, our ap-
proach provides a natural means of effectively exploiting un-
labeled data, which can further enhance the quality of the
learned distance metrics.

Supervised Local Distance Metric Learning
This section introduces the notion of a local distance metric,
(LDM). As discussed in the introduction, it may be impos-
sible to simultaneously satisfy all of the given constraints
in a global sense. We present a probabilistic framework
for distance metric learning that focuses on “local” con-
straints. The essential idea is to first identify a subset of
constraints that only involve points that are relatively close
together. Then, we can learn a distance metric that satisfies
this subset of constraints. To accomplish this, we employ an
iterative procedure based on the bound optimization algo-
rithm (Salakhutdinov & Roweis 2003). Specifically, we ini-
tialize our algorithm by using the Euclidean metric to iden-
tify the initial set of local constraints. Then we alternately
iterate between the step of local distance metric learning and
the step of refining the subset of local constraints until con-
vergence is reached.

A Probabilistic Framework for LDM
Our probabilistic framework is based on leave-one-out eval-
uation using the kernel-based KNN classifier. To facilitate
our discussion, we first introduce some necessary notation.
Let C = {x1,x2, ...,xn} be a collection of data points,
where n is the number of samples and each xi ∈ Rm is a
vector of m features. Let the set of equivalence constraints
and the set of inequivalence constraints denoted by

S = {(xi,xj)| xi and xj belong to the same class}
D = {(xi,xj)| xi and xj belong to different classes}
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respectively. Let the distance metric be denoted by matrix
A ∈ Rm×m, and the distance between two points x and y
be expressed by d2

A(x,y) = ‖x−y‖2
A = (x−y)�A(x−y).

Consider a data point x that is involved in one of the
constraints in the set S and the set D. Let ΦS(x) =
{xi|(x,xi) ∈ S} include all of the data points that pair with
x in the equivalence constraints. Similarly, let ΦD(x) =
{xi|(x,xi) ∈ D} include all of the data points that pair with
x in the inequivalence constraints. Now, according to the
kernel-based KNN, the probability of making the right pre-
diction for x, denoted by Pr(+|x), can be written as

Pr(+|x) =

∑
xi∈ΦS(x)

f(x,xi)

∑
xi∈ΦS(x)

f(x,xi) +
∑

xj∈ΦD(x)

f(x,xj)
(1)

where the kernel function f(x,x′) is defined as

f(x,x′) = exp
(
−‖x− x′‖2

A

)
. (2)

Using leave-one-out estimation and Equation 1, we can
write the log likelihood for both S and D as

Ll(A) =
∑

x∈T
log Pr(+|x) (3)

=
∑

x∈T

log





∑
xi∈ΦS(x)

f(x,xi)

∑
xi∈ΦS(x)

f(x,xi) +
∑

xj∈ΦD(x)

f(x,xj)





where the set T = {x1, . . . ,xn} includes all of the data
points involved in the constraints given in sets S and D. Us-
ing maximum likelihood estimation, we cast local distance
metric estimation into the following optimization problem

min
A∈Rm×m

Ll(A)

s. t. A � 0. (4)

Remark: Note that in Equation 4, it is the ratio between the
kernel function f(x,xi) evaluated at different data points xi

that determines the probability Pr(+|x). When a data point
xi is relatively far from x compared to other data points
in Φ(x)S and Φ(x)D , its kernel value f(x,xi) will be rel-
atively smaller than the kernel value of other data points.
Hence, data pairs that are far away from each other will have
a smaller impact on the objective function Ll(A) than data
pairs that are close to each other.

The Optimization Algorithm
The difficulty with solving Equation 4 lies in the positive
semi-definitive constraint A � 0. To simplify our com-
putation, we model the matrix A using the eigenspace of
the training instances. Let M = 1

n

∑n
i=1 xixT

j be the pair-
wise correlation matrix, and {vi}K

i=1 be the top K (K ≤ m)
eigenvectors of the matrix M. Then A is assumed to be a
linear combination of the top K eigenvectors:

A =
K∑

i=1

γivivT
i , γi ≥ 0, i = 1, . . . , K (5)

where (γi, . . . , γK) are the non-negative weights in the lin-
ear combination. Using the parametric form in Equation 5,
the log likelihood function in Equation 3 simplifies to:

Le
l ({γi}K

i=1) =

∑

xi∈T
log




∑

xj∈ΦS(xi)

exp

(
−

K∑

k=1

γkwk
i,j

)

 (6)

−
∑

xi∈T
log





∑
xj∈ΦS(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)
+

∑
xj∈ΦD(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)



 .

where wk
i,j = ((xi − xj)Tvk)2. Optimizing the objective

function in Equation 6 is challenging because this function
is not concave. Hence, standard approaches, such as con-
jugate gradient and Newton’s method, may not converge.
We apply the bound optimization algorithm (Salakhutdinov
& Roweis 2003) to search for the optimal local distance
metric. The main idea is to divide the optimization pro-
cedure into multiple steps. In each iteration, we approxi-
mate the difference between the log likelihood of the current
iteration and of the previous iteration by a concave func-
tion. Then, a standard convex programming technique, such
as Newton’s method, is applied to efficiently find the so-
lution that maximizes the approximate difference. We it-
erate until the procedure converges at the local maximum.
More specifically, for two consecutive iterations parameter-
ized by {γ′

i}K
i=1 and {γi}K

i=1, the difference between their
log likelihood functions, denoted by ∆({γ′

i}K
i=1, {γi}K

i=1) =
Le

l ({γi}K
i=1) − Le

l ({γ′
i}K

i=1), can be lower-bounded by the
following expression:

∆({γ′
i}K

i=1, {γi}K
i=1)

≥ ∆0({γ′
i}K

i=1) +
∑

xi∈T

∑

xj∈ΦS(xi)

φi,j

K∑

k=1

γkwk
i,j

−
∑

xi∈T
log





∑
xj∈ΦS(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)
+

∑
xj∈ΦD(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)



 ,

where

φi,j =

exp(− PK
k=1 γkwK

i,j)
P

xj∈ΦS(xi)
exp(− P

K
k=1 γkwK

i,j)

1 +
P

xj∈ΦD(xi)
exp(− PK

k=1 γkwK
i,j)

P
xj∈ΦS(xi)

exp(− PK
k=1 γkwK

i,j)

, (7)

and ∆0({γ′
i}K

i=1) is a constant independent from the param-
eters γs. Extracting the part of the lower bound depending
on γ, we have the following objective function for each iter-
ation:

Q({γi}K
i=1) =

∑

xi∈T

∑

xj∈ΦS(xi)

φi,j

K∑

k=1

γkwk
i,j (8)

−
∑

xi∈T
log





∑
xj∈ΦS(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)
+

∑
xj∈ΦD(xi)

exp
(
−

∑K
k=1 γkwk

i,j

)



 .
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Initialize Assign random values to {γi}K
i=1.

Loop
• Compute φi,j for each equivalence constraint

(xi,xj) using Equation 7.
• Re-estimate the parameters {γi}K

i=1 by optimizing
function Q({γi}K

i=1) in Equation 8.
Until {γi}K

i=1 converges to a stable solution.

Figure 2: Algorithm for local distance metric learning

Note that the objective function Q({γi}K
i=1) is a con-

cave function in terms of all γs because of the convex-
ity of the log-sum-of-exponential function (Boyd & Van-
denberghe 2004). Hence, the optimal solution that maxi-
mizes Q({γi}K

i=1) can be efficiently obtained using New-
ton’s method. We refer to this algorithm as “Local Distance
Metric Learning”, or LDM for short. Figure 2 summarizes
the detailed steps for automatically learning a local distance
metric from pairwise constraints.

Remark 1: In the objective function Q({γi}K
i=1), each

pairwise equivalence constraint (xi,xj) is weighted by φi,j .
As shown in Equation 7, the closer a data point xj is to xi,
the larger is its kernel value φi,j . Hence, by multiplying φi,j

with the corresponding equivalence constraint, we are able
to weight the local constraints more than the constraints that
involve pairs of distant points. As a result, the local con-
straints have more impact than other constraints on the op-
timal solution to the function Q({γi}K

i=1). Thus, the step of
computing φi,j can also be viewed as the step of identifying
the local constraints based on the current distance metric.

Remark 2: The simplified form of the matrix A also al-
lows us to exploit unlabeled training data. Rather than com-
puting the matrix M based on the labeled data alone, we can
incorporate additional unlabeled data T ′(x′

1, . . . ,x
′
n′) using

M = 1
n+n′

(∑n
i=1 xixT

i +
∑n′

i=1 x′
i(x

′
i)

T
)

. Note that the

top K eigenvectors now depend on both the labeled T and
the unlabeled data T ′. Our experiments show the significant
improvement provided by unlabeled data for distance metric
learning.

Application to Multi-Class Classification

This section discusses the application of distance metric
learning to multi-class classification. Let C{(xi, yi), i =
1, . . . , n} be the training examples for multi-class learning,
where x ∈ Rm and yi ∈ {1, . . . , C}. We convert the train-
ing set C into pairwise equivalence and inequivalence con-
straints as follows:

S = {(xi,xj)|yi = yj}, D = {(xi,xj)|yi �= yj}.

These constraints are used to train the local distance metrics
described above. To predict the class label for a test data
point x, we follow the kernel-based KNN algorithm by esti-
mating the probability that x belongs to the j-th class as

Pr(j|x) =
∑n

i=1 δ(j, yi) exp
(
−‖x− xi‖2

A

)
∑n

i=1 exp (−‖x− xi‖2
A)

.

Evaluation
This section presents experiments that evaluate the effective-
ness of local distance metric learning. To this end, two eval-
uation metrics are used in our experiments:
• Classification Accuracy. We apply the multi-class learn-

ing approach outlined above with a 10-fold cross valida-
tion to estimate the average classification accuracy and its
variance.

• Retrieval accuracy. In addition to classification accuracy,
which is determined collectively by all of the training data
points in the neighborhood of the test points, we evaluate
the retrieval accuracy for a distance metric, which is more
focused on individual training examples in the neighbor-
hood of test points. In particular, for a test point x, we
rank all of the training data in ascending order of distance
to x. If the class label of the test point x is y, and the class
labels of the ranked training examples are (y′

1, . . . , y
′
n),

then the retrieval accuracy at a given rank position k

(1 ≤ k ≤ n) is calculated as: r(k|x) = 1
k

∑k
i=1 δ(y, y′

i).
The reported retrieval accuracy is averaged over 10-fold
cross validation.

Experimental Data

Our experiments employ two real-world datasets:
• Image Classification. We randomly choose five categories

from the COREL dataset and randomly select 100 exam-
ples from each category, resulting in an image collection
of 500 images. Each image is represented by 36 differ-
ent visual features that belong to three categories: color,
edge, and texture.

• Text Categorization. We randomly select five categories
from the Newsgroup dataset (Yang 1999) for text cate-
gorization and randomly select 100 documents for each
category, resulting in 500 documents. The mutual infor-
mation (Yang 1999) is used to identify the top 100 most
informative words for the five classes.

Baseline Approaches

We compare the proposed method against three established
approaches. The first is kernel-based KNN using the Eu-
clidean distance metric. Given two data points x and
x′, their similarity under the RBF kernel is calculated as:

K(x,x′) = exp
(
− ‖x−x′‖2

2
λ

)
. Parameter λ is determined

by a cross validation using a 20/80 split of the training data.
The second baseline is the Support Vector Machine (SVM)
using the RBF kernel (Vapnik 1998). The third baseline ap-
proach is based on the global distance metric learning algo-
rithm (Xing et al. 2003). Specifically, we assume a logistic
regression model for estimating the probability that two data
points xi and xj belong to the same class:

Pr(yi,j |xi,xj) =
1

1 + exp (−yi,j(‖xi − xj‖2
A − µ))

, (9)

where yi,j =
{

1 (xi,xj) ∈ S
−1 (xi,xj) ∈ D
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Table 1: Classification accuracy (%) on image data compar-
ing our method (LDM) vs. Euclidean (EDM), probabilistic
global metric (PGDM) and support vector machine (SVM).

Distance Metrics Accuracy (%)
EDM KNN 79.8 ± 8.94

PGDM KNN 77.8 ± 8.60
SVM with RBF kernel 73.8 ± 6.14

LDM w/o unlabeled data 81.0± 6.78
KNN w/ unlabeled data 82.0± 8.77

0 5 10 15 20
0.55

0.6

0.65

0.7

0.75

0.8
LDM with unlabled data
LDM without unlabled data
Euclidean Distance
PGDM

Figure 3: Retrieval accuracy for image data.

and the parameter µ is a threshold. Then, the overall log
likelihood for both the equivalence constraints S and the in-
equivalence constraints D can be written as:

Lg(A, µ) = log Pr(S) + log Pr(D)

= −
∑

(xi,xj)∈S

log
(
1 + exp

(
−‖xi − xj‖2

A + µ
))

−
∑

(xi,xj)∈D

log
(
1 + exp

(
‖xi − xj‖2

A − µ
))

.(10)

Using the maximum likelihood estimation, the global dis-
tance metric A is determined by maximizing the log-
likelihood in Equation 10. Similar to the local distance met-
ric learning algorithm, we can assume the parametric form
for the distance metric A as in Equation 5. We refer to
this algorithm as “Probabilistic Global Distance Metric
Learning”, or PGDM for short.

Experimental Results for Image Classification
Classification Accuracy The classification accuracy using
Euclidean distance, the probabilistic global distance metric
(PGDM), and the local distance metric (LDM) is shown in
Table 1. Clearly, LDM outperforms the other two algorithms
in terms of the classification accuracy. Surprisingly, the
classification accuracy of the PGDM algorithm is slightly
worse than EDM, indicating that the global distance metric
learned by the PGDM algorithm may be less effective than
the straightforward Euclidean distance on this task. Finally,
compared to the support vector machine, we observe that
all of the KNN methods (using any distance metric) outper-
form the SVM noticeably. This may be because the decision

0 100 200 300 400 500
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b)

Figure 4: Examples of distribution for φi,j in LDM (blue
curves). In both (a) and (b), the red curves show the uniform
distribution of the posterior probability in PGDM.

boundaries in image classification are complicated (Goh,
Chang, & Cheng 2001) and difficult to capture using SVMs.

Retrieval Accuracy The retrieval accuracy results on the
image data are shown in Figure 3. First, we observe that
both of the learned distance metrics achieve significantly
better retrieval accuracy than the Euclidean distance met-
ric for most ranks. It is interesting to observe that, for the
first few ranks (ranks 1 to 4), the retrieval accuracy of the
global distance metric learned by PGDM is slightly worse
than the Euclidean distance metric. Only after rank 5 does
the global distance metric start to outperform the Euclidean
distance metric. This observation can be explained by the
tradeoff between the local and global compactness. Since
a global distance metric attempts to simultaneously satisfy
global compactness and global separability, it may sacrifice
local compactness for improved global separability. This
tradeoff leads to PGDM’s poor performance for the first few
ranks. In contrast, we note that the retrieval accuracy based
on the local distance metric is always better than that based
on the Euclidean distance metric. Second, we observe that
the local distance metric achieves higher retrieval accuracy
than the global one until rank 15. This is consistent with
the motivation of LDM — to learn a metric from the lo-
cal pairwise constraints where data points are not far apart
from each other. To highlight this point, we show the exam-
ples of the distribution of φi,j in Figure 4. In both panels of
Figure 4, the blue curves show us that, among all the same-
labeled pairs, φi,j = 0 for most of the pairs in LDM, while
φi,j is uniformly distributed for PGDM, as illustrated by the
flat red curves.

Incorporation of Unlabeled Data We also incorporate
unlabeled data into the local distance metric learning algo-
rithm, by randomly selecting 1500 images from 15 cate-
gories of the COREL database in addition to the 500 images
for classification. We estimate the top eigenvectors based
on the mixture of labeled and unlabeled images, and these
eigenvectors are used to learn the local distance metric. The
classification accuracy and the retrieval accuracy of the local
distance metric learning with unlabeled data are presented in
Table 1 and Figure 3. We observe that both the classification
and retrieval accuracy improve noticeably when unlabeled
data is available.

Experimental Results for Text Categorization

Table 2 shows the classification accuracy for the three dis-
tance metrics. We clearly see that LDM achieves signifi-
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Table 2: Classification accuracy (%) on text comparing our
method (LDM) vs. Euclidean (EDM), probabilistic global
metric (PGDM) and support vector machine (SVM).

Distance Metrics Accuracy (%)
EDM KNN 91.8 ± 4.90

PGDM KNN 90.8 ± 4.24
SVM 96.8 ± 2.70

LDM KNN with unlabeled data 95.2 ± 1.00

0 5 10 15 20
0.7

0.75

0.8

0.85

0.9

0.95

1
LDM with unlabeled data
PGDM
Euclidean Distance

Figure 5: Retrieval accuracy for the text data.

cantly better classification accuracy than the other two dis-
tance metrics, and a similar classification accuracy as SVM
(which is regarded as the best method for text classifica-
tion (Joachims 1998)). Figure 5 presents the text retrieval
accuracy of the three distance metrics for the top 20 ranks.
Again, we observe that the retrieval accuracy of the local
distance metric is significantly better than that of the global
distance metric and the Euclidean distance metric. It is inter-
esting to note that the retrieval accuracy of LDM at rank 10
compares favorably to that of the other algorithms at the first
rank!

Conclusion
This paper proposes a probabilistic framework for local dis-
tance metric learning. It differs from the existing approaches
in that only the local pairwise constraints impact the cal-
culation of the distance metric. Unlike existing algorithms
that must learn a full distance metric from the near neigh-
bors of training examples, the proposed local distance met-
ric learning algorithm avoids the computational difficulty
by employing eigenvector analysis. Furthermore, an effi-
cient learning algorithm, based on bound optimization, is
employed to automatically learn local distance metrics from
pairwise constraints. Experiments on two real-world ap-
plications show significant gains over both Euclidean and
global learned distance metrics.
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