
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

An Efficient Algorithm for Maxdominance, with Applications An Efficient Algorithm for Maxdominance, with Applications

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

S. Rao Kosaraju

Report Number:
86-641

Atallah, Mikhail J. and Kosaraju, S. Rao, "An Efficient Algorithm for Maxdominance, with Applications"
(1986). Department of Computer Science Technical Reports. Paper 557.
https://docs.lib.purdue.edu/cstech/557

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN EFFICIENT ALGORITHM FOR
MAXDOMINANCE, WITH APPLICATIONS

Mikhail J. AtaUah
S. Rao Kosaraju

CSD-TR-641
November 1986

Revised May 1987

AN EFFICIENT ALGORITHM FOR MAXDOMINANCE, WITH APPliCATIONS

Mikhail J. Atallaht

•S. Rao Kosaraju

Dept of Computer Science
Purdue University

West Lafayette, IN 47907

Abstract. Given a planar set S of n points, maxdominance problems consist of computing, for

every pES I some function of the maxima of the subset of S that is dominated by p. A number of

geometric and graph-theoretic problems can be formulated as maxdominance problems, including

the problem of computing a minimum independent dominating set in a permutation graph, the

related problem of finding the shortest maximal increasing subsequence, the problem of comput-

ing a maximum independent set in an overlap (and hence circle) graph. the problem of enumeratw

ing restricted empty rectangles, and the related problem of computing the largest empty rectangle.

We give an algorithm for optimally solving a class of maxdominance problems. A slraightfor-

ward application of our algorithm. yields improved lime rounds for the above-mentioned prob-

lems. The techniques used in the algorithm are of independent interest, and include a linear-time

tree computation that is likely to arise in other contexts.

t This research was supponcd by !he Office ofNavalRcsc.arch under Grants NOOOI4-84-K-OS02 and NOOOI4-86-K.Q689.

and the Nal.ionaiScicncc Foundal.ion underGnmt DCR-8451393. with malching funds {rom AT&T.

• This research was mpponcd by lheNatiOllaiSciCllcc Foundation onder Granl DCR-856361

-2-

1. Introduction

A pointp is said to dominate a point q iffX(P)~(q), Y(p)~Y(q),and p;<q , where X(P)

and Y(p) respectively denote the x and y coordinates of point P . If S is a set ofpoinlS and p is a

point. we use DOMs (P) to denote the subset of points in S that are dominated by point p. A

point of S is a maximum in S iff no other point ofS dominates it. We use MAK(S) to denote the

set of maxima of S, listed by increasing x coordinates (and hence by decreasing y coordinates).

We abbreviate MAX (DOMs(P» as MDs (p). A number of geometric and graph-theoretic prob-

lerns can be fOImulated as one of the following two maxdominance problems PI and P2 (problem

P2 being substantially more difficult than PI).

Problem PI. Given a set S of n points in the plane, compute MDs (P) for every pES.

We solve the above problem in O(nlogn+t) time where t is the size of the output, i.e.

t=L IMDs(P)) I·
peS

Problem P2. For a set S of points in the plane with a real weight w (P) associated with every

PES, the problem is to compute the label and predecessor of every point in S, where the label

function is defined as follows:

[abel (P) = w (p) ifDOMs(P)=0,

[abe[(p) =w(p) + Min {/abe[(q) : qeMDs(p)) otherwise.

The predecessor of point p is anyone of the points which gave p its label, Le. it is a point

qeMDs(p) such that /abe/(p)=w(p}t[abe/(q) (ifDOMs(P)=0 thenp has no predecessor).

We solve problem P2 in 0 (nlogn) time and 0 (n) space, which is optimal since sorting is a

trivial special case of P2.

It is the algorithm for P2 that is the main contribution of this paper (pI is solved by a much

simplified version of the algorithm for P2).

The paper is organized as follows. Section 2 establishes some preliminary results, and Sec-

tion 3 gives a result on tree computations which is needed in our solution to P2 (it is also of

- 3 -

independent interest}. Section 4 gives OUf 0 (nlogn) time. 0 (n) space algorithm for problem P2.

Section 5 gives an o(nlogn+t) algorithm for problem Pl. Section 6 lists problems for which

improved complexity bounds follow from our results, and Section 7 concludes.

2. Preliminaries

Throughout this section, L and R are two planar sets of points separated by a vertical line

and such that L is to the left of R; S denotes L UR. To simplify the exposition, we assume that

no two points have same x coordinate (similarly fory coordinates).

Recall that in the list MDs (P), the points are in increasing x coordinate value. For every

peS, /eaders(P) denotes the leftmost (Le. highest) point in MDs(P) (if MDs (P)=0 then

leaders(p)=0). In Figure I, MD. (p)={u ,v ,w}, MDs(P)={b ,e ,d ,C ,u ,v ,w}, leader. (p)=u, and

leaders (p)=b.

For every peR, StriPL(P.R) denotes the points of L that are below p and above

leaderR (P); BeginL (p .R) and EndL(P .,R) denote the leftmost (i.e. highest) and righunost (i.e.

lowest) points on MAX (StriPL (p,R)), respectively (if StriPL (p,R)=0 then

BeginL(P,R)=EndL(p,R)=0). For example, in Figure I, StripL(P,R)={a,b,c,d,e,f},

MAX(StriPL(p,R))={b,e,d,c}, BeginLfp,Rl=b, and EndL(P,R)=C. Observe that for every

peR, the list MDs(P) is the concatenation of MAX (StriPL(P,R)) withMDR(P).

We define G(S) as the directed acyclic graph whose vertex set is S and such that (p ,q) is

an edge in G(S) iff there exists a point weS such that q immediately follows P on the list

MDs(w), in which case we say that edge (p ,q) is caused by w. An edge may be caused by more

than one point, but G (S) has a single copy of such an edge. In Figure I, edge (u;v) is in G (S)

and is caused by points k., ,g and h. Note also that (u ,w) is not an edge of G (S). Let E (L ,R)

be the subset of edges of G(S) lhat have both ends in L and are caused by at least one point in R .

That is,

-4-

E(L,R)={(p ,q) : peL,qeL, (p,q) is caused by some weR}.

Observation 1. The graph (L.E (L.R» is a forest.

Proof. A node in this graph has out-degree at most one. 0

Note that for every peR, MAX(StriPL(P,R)) is the path in the forest (L,E(L,R)) from

BeginL(P,R) to EndL (p ,R).

Let CROSS (L,R) be the subset of edges of G(8) that have one endpoint in L and one in R .

Observation 2. 1CROSS (L,R) 1SIR I.

Proof. An edge in CROSS(L,R) can only be caused by apoint inR. Moreover, a point in R can

cause at most one edge in CROSS (L,R). Thus 1CROSS(L,R)lSIR I. 0

Note that ifpeR causes the edge (c ,u)e CROSS (L.R), then c=EndL (P,R) (see Figure 1).

Two points p and q are comparable iff one of them dominates the other. A set of points

forms a chain iff every two points in it are comparable. MAXREV (8) denotes the subset of S

such that p eMAXREV(S) ilino other point of S is both above p and to its left. We assume that

the elements of MAXREV(S) are listed by increasing x coordinates (and hence by increasing y

coordinates, since they form a chain). In Figure I, MAXREV (R)={l,u Ik}.

Lemma 1. Given the lists QL and QR containing the points of L and R. respectively, sorted by

increasing y coordinates, E (L,R) and CROSS (L,R) can be computed in 0 (I L 1+IR I) time. In

addition, for all peR, BeginL(P,R) and EndL(p,R) can also be computed in 0 (IL I+IR I) time.

Proof. Let QR=\qlo' .. ,q ,R ,), Y(q,)<· .. <Y(q,R ,). Initialize E(L,R) and CROSS (L,R) to 0.

We compute the edges in E(L,R) by scanning the list QR, maintaining on a stack STACK the

MAXREV of the subset of R encountered so far by the scan; i.e. when we are at qj, STACK con~

tains the elements of MAXREV({q I, ... •qi}) stored by increasing y coordinates. Note that qj is

the highest point in {q I• ... ,qi} and hence it belongs to MAXREV ({q 1, . .. ,qi}) and is at the top

of STACK. When tile scan advances from qj to qi+I' we do tile following: we add to E(L,R) and

CROSS (L,R) the edges that are caused by qj+1 and are not caused by any of {q 1, . .. ,qi} (Le. the

- 5 -

"new" edges), update the contents of STACK so that it contains MAXREV({qr.··· ,Qj+rJ). and

compute BeginL(qi+I.R) and EmiL (qi+l.R). The details are as follows.

(I) Obtain the elements of SlTiPL (q,,R) in sorted order. This takes a (IStripL(q,,R) I) time by

scarming QL until a point of L higher than ql is reached. (Note. Since leaderR(ql)=0.

SlTipL(q,,R}=DOMdq,).) Compute MAX(SlTipL(q,,R»; sioee the points in StripL(q,,R)

are already sorted, this takes O(ISlTipL(q,,R)1) time IOV]. Add IMAX(StriPL(q,,R»I-1

edges to E(L,R), one for each pair of adjacent points in MAX(StriPLCqt.R»; i.e. if q

innnediately follows P in MAX(StriPL(q,,R» then we add edge (p,q) to E(L,R). If

StripdqloR):#0 then set BeginL(Ql,R) and Enth(ql,R) to be the lefonost and rightmost

points on MAX(StriPL (qIJ~». respectively. If StripL(qI.R)=0 then set BeginL (q 1ft) and

EndL(q,,R) to be 0.

Seli=1 and repeat the followiog Steps (2)-(5) until i> IR I :

(2) Advance along QL until a point of L higher than qj+l is reached. The sequence of points

encountered, excluding the last one, yields the subset H of points in L that are above qi and

below qi+h sorted by their y components. Compute MAX(H); since the points in H are

already sorted, this takes O(IH J) time IOV]. Add to E (L,R) an edge for eaeh eoosecutive

pair of points in the list MAX (H) (these edges of E(L,R) are caused by qj+1 and not caused

by any of {q I • ... ,qi}). Ifqi+l dominates qi then go to Step (3), otherwise go to Step (4).

(3) Since qj+l dominates qj, qj is leaderR(qj+l) and lliereforeH=StriPL(qi+I/{) and all the new

edges of E(L.R) caused by qi+l were already added in Step (2). If H'#0 then set

Begindqj+I,R) (resp. EndL (qj+I,R» to be the leftmost (resp. rightmost) point on MAX(H),

then add to CROSS(L,R) the edge (EndL(q,+"R),qi). If H=0 then set

BeginL(q,+,,R)=EndL(q,+,,R}=0. Go to Step (5).

(4) Since qj+l does not dominate qi. qj+l is above and to the left of qj: Pop from STACK all the

points that are below and to the right of qi+l> and let PI>· .. '~k be the sequence of points so

popped (see Figw-e 2). Note that PI=Qi. and that the P/s form a chain and are the top k

-6-

points on MAXREV ({q 11 " •. ,qj}). Let Uo denote MAX(H), and let Uj denote

MAX(StripL(~j,R» (I<;j,g,). Su!>-step (4.1) below computes BeginL(q,.,,R) and

EndL(q,.,,R), while su!>-step (4.2) linds any additional edges of E(L,R) that are caused by

qi+l (for example, an edge between the rightmost point of Uj and the point immediately to

its right on Uj +1). We do not need to add to CROSS (L,R) the edge (if there is one) caused

by qi+h because such an edge would also be caused by ~k and thus would already have been

added when processing Pk .

•
(4.1) If UUy=0 then set BeginL(Qi+I.R) and Enddqi+l,R) to be 0. Otherwise set

j=lJ

BeginL(qj+l,R) to be the highest point on the highest nonempty Uj (05:j9:), and set

•
EndL(qi+I.R) to be the rightmost point on UUjo That this sub-step takes OCk) time

j=lJ

can be seen by noting that we already know BeginLC!3j,R) and EndLC13j,R), and hence

testing whether Uj =0 takes constant lime (by testing whether BeginL <Pi.R)=0).

•(4.2) If uUr=0 then go to Step (5). Otherwise let U a. be the highestnonempty Uj (l~j$k).

j=lJ

Repeat the following (i)-(iii):

(i) Let v be the rightmost point of U a.' Let Uy be the highest nonempty Uj that is

below Ua. (i.e. a<y5k) and has its rightmost point to the right of v; if no such Uy

exists then go to Step (5). Locating Uycan clearly be done in 0 (y-a.) time.

(ii) Start at the leftmost point of Uy and trace it left-to-right until the fin;t point (say, w)

to the right of v is reached: stop the scan of Uy at w and add edge (v,w) to

E(L,R). We "charge" the cost of tracing the portion of Uy that is to the left ofv to

the points so traced (one unit per point traced).

(iii) Set a:=y and go to (i).

Note: Sub-steps (4.1) and (4.2) can be combined; we chose to keep them separate for ease

of exposition.

-7-

The cost of sub-step (4.2) is 0 (k) plus the cost of the "charges" done in (ii). Let us count

the overall cost of the charges done in ell). A point (say, u) that gets charged one unit in (ii)

will never get charged again in the future, because when executing Step (4) for a future qj+l

(i <j), U will be "shielded" by v; i.e. U will not belong to lbe MAX(SlTipL (~.II)) of any ~ in

MAXREV({q" ... ,qj }). Thus lbe cost of all "charges" done in (ii) is 0 (lL I).

(5) Push qi+l on STACK ,then set i:=i+l.

To analyze the time complexity of the above procedure, simply observe that qjER gets pushed

on STACK exactly once (once such a point qj is removed from STACK. it cannot belong to the

MAXREV of the subset of points of QR already scanned. since at least one point of this subset is

above it and to its left). Thus the total time taken by the above procedure is 0 (I L I+ IR I). 0

Corollary 1. G (S) has 0 (nlogn) edges and can be built in 0 (nlogn) time. where n=1 S I.

Proof. Choose IL I=IR l=n/2, and let !(n) denote the maximum number of edges that G(S)

can have. The edge set of G(S) consists of the (not necessarily disjoint) union of E(L,R),

CROSS (L.II), and lbe edge sets of G (L) and G (R). The number of edges in each of G (L) and

G (R) is at most! (nl2). By observations 1 and 2, E(L,R) and CROSS (L,R) have at most n/2-1

and n/2 edges, respectively. Therefore j(n)Qj(n/2)+n-I, and hence j(n)=O(nlogn). The

O(nlogn) time bound for constructing G(S) is by a straightforward divide and conquer, with

Lemma 1 giving the needed linear time conquer step. 0

Observation 3. There exists an S such that G (S) has .Q(n logn) edges.

Proof. Let g(n) denote the number of edges that G (S) has by our construction. Construct three

identical sets of n/3 points each (call them S 108208 3), each of which individually gives rise to a

G(Sj) that has g (n/3) edges. Now, stack S 1's2's 3 on top of one another so that the lowest point

in S 1 is higher than the highest point in S2, the lowest point in S 2 is higher than the highest point

in S 3, and each point of S 1 has same x-coordinate as the corresponding point of S 2 or S3. Now,

disturb the above situation as follows: shift every point of S I to the right by an extremely small

amount E, and simultaneously shift every point of 8 2 to the left by the same amount e (the points

- 8 -

in S3 don't move). Let S be the set of points consisting of the union of the new (shifted) S 10 the

new S2. and S3. The slight shifting of S 1 to the right and S2 to the left means that for each point

Xl of SI. the corresponding point of 52 (call it xi) is to its left by a 2e amount, and the

corresponding point of S 3 (call it X3) is to its left by an E amount. Thus in G(S), each XI causes

the edge (X2.x3) to be present. Thus G(S) has at least 3g(n/3)+n/3 edges. and hence

g (n)~3g(n/3}tn/3. resulting in g (n)=il(nlogn). 0

Let the label of a point pES with respect to set S (henceforth denoted labels (P» be as in

the definition of problem P2.

Let S be partitioned into four subsets A I.AZ.A3.A<!. where Ai is to the left of A j +1. For

every peAi +1• let Left1tJ(P .Ai+l) be the smallest labels(q) over all q that are on the portion of

MDs(P) that lies inA j ; that is,

LeftA;(P ,A,+,FMln {Iabels(q) : qeMAX (SuIPA;(P ,A,+,))} if SUIPA;(P ,A'+I)¢0.

LefcAt(P .Ai+l)= 00 otherwise.

Observation 4. LetpeA 2. IfDOMs(p):;to, then

labels (P)=w (P }tMln {LeftA ,(P ,A ,),Min {labels (q):q eMDA,(P))}.

Proof. An immediate consequence of the definitions and the fact that MDs (P) is the concatena

tion of MAX(SuipA,(P,A,)) withMDA,(P). 0

Observation S. For every peA 3• we have

LeftA,ljA,(P ,A ,FMIn {LeftA, (P ,A2uA,)UtA,(P ,A ,)}.

Proof. An immediate consequence of the fact that MAX (StripAluA/P,A 3)) is the concatenation

of MAX (StriPA,(P ,A2UA ,)) with MAX (SUipA,(P ,A,»). 0

3. A Special Class of Tree Computations

Chazelle [C] has given a general technique which, given any n paths on a free tree that has

-9-

a real label associated with each node, computes the smallest label on each of these n paths in

o (nlogn) time. In our algorithm for solving problem P2 (given in the next section), we will

need a similar computation on a rooted ttee in which the n paths have a nested property (defined

below). In Lemma 2, we establish that this can be done in D(n) time.

Definition 1. Let C={P I •... .PI) be a sequence of descendent-to-ancestor paths in a rooted tree

T; path Pi begins at Uj and ends at Wj, where Wj is an ancestor of Uj. We say that C has the

nestedproperty iff

(i) i <j and Pi (lPj'#0 imply that Wj is ancestor ofWi. and

(ii) i <j <k and P j (1Pj nPk'#.0 imply thatPjnPk~jnPk.'

For example. in the tree shown in Figure 3, if P1=a,b,c, P-ru,v,b,c,d, P3=a,b,c,d,e, and

p 4=W ,v ,b ,e ,d ,e .f • then (P 1.P20P 4) has the nested property but (P 2'p3.P 4) does not.

Lemma 2. Let T be an n-node rooted tree represented by parent pointers. In addition to

parent(v), each node v also has a reallabell(v) associated with it Let C={P lI ··· .Pn) be a

sequence of descendent-to-ancestor paths in T. Let f (l) be the smallest 1(v) over all v on path

Pi. If C has the nested property, then! (1).((2),((n) can be computed in 0 (n) time.

Proof. We use the path compression technique previously used to solve the UNION-FIND prob

lem [AHU]; the nested property will be crucial in proving that the algoritlun actually runs in

linear time. Assign to each node p of T a temporary label Temp (P), initially set to 1(P); the

significance of these Temp labels is that as we do path compression on T, the f (i) of every Pi

yet to be traced equals the smallest Temp label on it (this is certainly true initially, and will be

maintained as we do path compressions). In what follows, we use Toto denote the initial (i.e.

unmodified) tree T, and we view a path P j as being defined by its two endpoints Uj and Wi rather

than by a sequence of nodes in To (path compression on T may shorten a palh in T but does not

change its endpoints).

We process the n paths in lhe order P 1,p". To process Pi, we first trace it on T and

compute the smallest Temp (q) over all q on it, which is f (i). Then we modify T by doing path

-10 -

compression along the path just traced. as follows. First, by tracing Pi once in the backward

direction (from Wi to Uj). we compute for all p ePj I the quantity g (p)=Min {Temp (q):q is on the

path from Wj to p}. Once this is done. we modify T by making every pePj-{wj} a child ofwj.

and changing its temporary label by doing Temp (P):=Min {Temp (p),g(p n. Figore 4 illustrates

the effect of this on T if Pj=a ,b ,e ,d (in that figure. lhe numbers between parentheses are Temp

values).

A Pj yet to be processed (Le. one with j>i) may have been "shortened" by the path

compression made along Pi; however, because of property (i) (of Definition 1) and because of the

the way the Temp labels are updated, f (j) is still the smallest Temp on the Uj-to-Wj path in the

modified tree T. This modification of T maintains the nested property for the sequence of paths

yet to be processed. Le. for the sequence (Pi+lI' .. .Pn) where every Pj U>i) is the urro-Wj path

in the modified tree T; to see this, observe that every such Pj U>i) ends at a Wj whose parent

pointer is the same as the one in To (because of property (i) and the order in which we are pro

cessing the Pi '5). We now must show that the sum of the lengths of all the P j '5 traced in this

manner is 0 (n). We say that an edge e of To is first traced by Pj iff e belongs to Pj but not to

any other Pk with k <j. When we trace P j in the path-compressed tree T that resulted from pro

cessing paths Pit· .. .Pi-lI we partition the cost of tracing P j into two components: The strict

cost is that of traversing the edges first traced by Pj • and the extra cost is that of tracing the other

edges (the latter may include edges first traced by Pj's with j <i as well as edges previously

added by the path compression process). The sum of the strict costs of all the Pj's is triVially

O(n). We now prove that the total extra cost is also O(n). Let Cj denote the set of paths that

were processed before Pi and have a nonempty intersection with Pi in To. i.e. Cj={Pj : j <i and

PjnPj¢0 in To}. Let Pa and Pb be paths in Cj; we say that Pa beats Pb iff a>b and

Pa (1Pb "1=0 in To_ Note that if Pa beats Pb in Ci , then the nested property implies that

PbnPir;;;.Pa nPj in To. For every PjE Cj, let Cjj denote the subset of Ci each of whose ele

ments has a nonempty intersection with Pi in To (see Figure 5). The nested property implies that,

-11-

for every PtECjj • PmaxU,/c) beats PminU,t). PathPj is said to be a chief in Cj iff it beats every

PkECij , Le. iff j >max.{k :PkECij}. In Figure 5. the chiefs in Cj arePa and Pt:. LetDi be the

subset of Cj that contains only the chiefs. The extra cost of tracing Pi in T is equal to IDi I,

because the path compression that was done after processing each chief in Cj has reduced the

intersection of that chief with Pi to exactly one edge; we "charge" a unit of this extra cost to each

chief. A chief in Cj (say, Pa) will be prevented by Pi from ever being chief in a subsequent Cj

U>i); to see this, note that if such a Pj U>i) intersects Pain To then it must also intersect Pi in

To (because a<i<j), and therefore P j will belong to Cja and will beat Pa in Cj. Hence the

overall extra cost is at most n. 0

4. Computing the labels(p)'s

In this section we give an 0 (nlogn) time, 0 (n) space algorithm for solving problem P2.

Let S={PI.··· ,Pn} be the set of input points whose labels(P)'s we wish to compute. To

simplify the notation, we assume that the Pi'S are given already sorted by increasing x coordi

nates, i.e. X(Pl)<X(PiJ<·· - <X(Pn)' The algorithm that follows omits the computation of

predecessors(P) (including it would have unnecessarily cluttered the exposition). The interested

reader can easily modify the algorithm so that it computes predecessors (P) as well as labels (P)

for all peS. The algorithm is initially called with R=S and Lejt0(P,S)==o for all p eS, and it

returns with labels (P) computed for all pES.

Algorithm MAXDOM(R)

Input: A contiguous m-subset R of S, i.e. R={p,,··· ,p,+m-l}; for every peR, LeftL (P.R),

where L={p 1> ••• ,P,-I}. In addition, the input includes the list QR containing the points of R

sorted by increasing y coordinates.

Output: The labels labels (P,), ... ,labels(P,+m_I).

Overview of Algorithm: The algorithm partitions R into subsets A and B such that

IA I=IB 1=m/2 and A is to the left of B. Since LeftL(P,A) is given for all peA (it equals

- 12-

LeftL(P fi», the algorithm can recursively call itself for set A, obtaining labels(P) for every

peA. Then, using the labels so computed, the algorithm computes LejtLljA(p,B) for every

peB, in linear time. After that, the algorithm recursively calls itself for set B (it can do so

because it now knows LeftLl)A (p,B) for all p eB). The trick is how to compute LeftLlJA (p,B)

for all peB in linear time, knowing LeftL (P.R) for every p eR and 1abe1s(P) for every p eA;

lemmas 1 and 2 are used for achieving this.

Slep 1. Ifm=1 then set labels (P,):=w (p,}+-LeftL (p,,R) if LeftL (P"R)" ~; set labels (P,):=w(P,)

if LeftL(Pr.R)= 00. Then return. Ifm>1 then proceed to Step 2.

Step 2. LetA={pp" . ,Pr+m/2-1}, B={Pr+mfl>' .. ,pr+m-I}. Extract from QR the lists QA and QB

containing the points ofA and B • respectively. sorted by increasing y components.

Step 2 takes 0 (m) time.

Step 3. Since we have QA and LeftL(P.A) for every peA (it equals LejlL(P.,R », we can recur

sively solve the problem for the set A by doing MAXDOM(A). This recursive call returns

labels (Pr), ... ,/abelS(Pr+mfl-I)'

Step 4. This step computes the forest F=(A,E(A,B)) together with BeginA(P,B) and

EndA (P,B) for everyp E B. By Lemma I, this can be done in in 0 (m) time.

Step 5. Let QB"'.b lo ••• ,bm r2> where y(b,)<··· <Y(bmr2>, and let Path (b i) denote the path

from BeginA (bj,B) to EndA(b;,B) in F. Use the forest F =(A ,E (A ,B)) created by the previous

step to compute, for every peB such that BeginA(P,B)::I=0, the quantity LeftA(P,B)=

Min {labels(q):q ePath (b; n. Lemma 3 (given at the end of this section) shows that the sequence

of paths Path(b I), ... ,Path (bmrV has the nested property. This and Lemma 2 imply that Step 5

can be done in 0 (m) time.

Step 6. For everyp eB, setLeAIJA (p ,B):~in [LeftL(p,R),LeftA(P ,B)}.

This step takes 0 (m) time, and its correctness follows from Observation 5 (in Section 2).

-13 -

Step 7. Recursively solve the problem for set B by doing MAXDOM(B). TIlls returns

labels (Pr+mriJ.labels (Pr+m-l)'

(End of Algorithm)

Theorem 1. MAXDOM(S) returns labels(P) for every peS (and thus solves problem P2) in

o (nlogn) time and O(n) space.

Proof. The running time T (m) of procedure MAXDOM satisfies the recurrence

T (m)QT(m /2)+0 em) and hence T (m)=O (m logm). The space S (m) satisfies the recurrence

S(m)~(ml2)+O(m). and thus S(m)=O(m). Correctness is easily established by induction on

IR J I using observations 4 and 5. 0

Lemma 3. The sequence Path (b I), ... ,Parh (bmnJ of descendent-ta-ancestor paths in F has the

nested property.

Proof. We first prove property (i) of Definition 1. Let i <j and assume that

Path (bj)nPath (bj }::t:.0. Since j>i. hj is above h... If hj were to the right of hi then the inter

section ofPath (hi) with Path (hj) would be empty, hence hj must be to the left of hi. Therefore

leaders (bj) is not above leaders (bi). This, and the fact that Path (bj)nPath (bj):;!0, imply that

Y(EndA(bj.B))~Y(EndA(bi.B)). Hence EndA(bj.B) is an ancestor of EndA(bi.B). We now

prove that property (ii) of DefInition I also holds. Let i <j <k and assume that

Path (b,)nPath(bj)nPath (b,)oI0. Property (i) implies that EndA(b,.B) is ancestor of

Endll (bj.B), which is itself ancestor of Endll (bj,B). Because bi is below bj , which is below bk,

we also have

Y(BeginA (b,.B))~Y(BeginA (bj .B))~Y(BeginA (b,.B)).

This implies that the first (i.e. geomebically highest) point on Path (bi)nPath (bk) is an ancestor

of the fitst point on Path (bj)nPath (b,). 0

5. Computing the MDs(p)'s

- 14 -

In this section we briefly sketch how the algorithm of the previous section can be modified

to solve proWem Pl. This problem is considerably easier than P2, and the algorithm (given

below) correspondingly simpler.

Algorithm MD_LIST

Input: A set S containing the points p ,•... •P. where X(p ,)<X (p,)< ... <X (p.).

Output: The lists MDs(Pl)," . ,MDs(Pn), together with the list Qs containing the points of S

sorted by increasing y coordinates.

Step 1. Un=! then output MDs (p 1)=0 and return. If n>l then proceed to Step 2.

Step 2. Recursively solve the problem for the set A ={p I •... ,pnJ2}. This recursive call rehJrns

MDs(P I), ... MDS(PnrV' together with the list QA containing the points of A sorted by increas

ing y coordinates.

Step 3. Recursively solve the problem for the set B={PnJ2+1•... ,p,,}. This recursive call returns

MDB(Pnl2+I)' ... ,MDB(Pn), together with the list QB containing the points of B sorted by

increasing y coordinates.

Note. For every p eB. the list MDs(P) is the concatenation of MAX (StriPA (P .8» with the

already compnted list MDB(P). MAX (StriPA (P ,8» is the path from BeginA (P,8) to EndA(p,8)

in the forestF={A ,E(A.8 ».
Step 4. Construct the forestF. together with BeginA (P,8) and EndA (P JJ) for every P eB. This

is done in O(n) time (by Lemma 1).

Step 5. Use the forest F created by the previous step to compute, for every peB. the list

MAX (StriPA (P JJ ». This list is obtained by simply tracing the path in F from BeginA (p,8) to

EndA (p,8) (no path compression is needed since we are interested in the paths themselves rather

than in some function of them).

Step 6. For every peB, compute MDs(P) by concatenating MAX (SrriPA(P ,8» with MDB(P).

This takes constant time per concatenation, for a total of 0 (n) time.

- 15 -

Step 6. Merge QA and QB into Qs and return. This takes 0 (n) time.

(End of Algorithm)

Correctness of the above algorithm is easily established by induction on n. We analyze its

time complexity by charging some of the time to the output, and using T(n) to denote the time

not charged to the output Thus the total time will be o(T(n)H) where t= ~ IMDs(p) I. The
pES

cost of Step 5 is completely charged to the output, since every MAX(StrjpA(PJ]» is part of

MDs(P). Since the cost charged to T(n) includes 2T(nI2) plus an additional 0 (n) time. we have

T(n)=O (nlogn). Thus we have established the following.

Theorem 2. AlgorilhmMD USTcorrectly solves problem PI, and runs in time O(nlogn+t).

6. Applications

In this section we discuss some problems for which improved algoritluns follow from our

solution to the maxdominance problems PI and P2.

5.1. Permutation graphs and subsequence problems

For any undirected graph G=(V,E), a subset H of the venex set V is called a dominating

sec iff for every UE V there exists v E H such that U is adjacent to v. Set H is independent iffno

two vertices in H are adjacent. The problem of finding a minimum independent dominating set

(MIDS for short) is NP-hard for general graphs, however for the class of permutation graphs an

Oen 3) time solution was given in [FK], later improVed to O(nOogn)2) in [AMU]. We now

briefly point out how our solution to problem P2 implies an O(nlogn) time solution for the

MillS problem.

In [AMU] the MillS problem is reduced to that of computing a particular subsequence of a

sequence of length n. Given a sequence a.=ata2··· all of numbers, a subsequence of ex. is a

sequence l3=ai,ai, ... aio such that i 1<i2<·..<ik . If, in addition, ai, <aj~<...<ai". then we say that ~

is an increasing subsequence of Cl. An increasing subsequence of 0: is maximal iff it is not a

- 16 -

proper increasing subsequence of any increasing subsequence of a. A maximwn increasing

subsequence is one of maximum length. Note that a maximum increasing subsequence is also

maximal, but that a maximal increasing subsequence may not be maximum. For example, in the

sequence 2,1,4,5,3 the increasing subsequence 1,3 is maximal but not maximum (for this example

the length of a maximum increasing subsequence is three, e.g. 2,4,5). In [AMU] it was pointed

out that MIDS can be reduced to the problem of computing a shortest maximal increasing subse

quence (from now on called SMIS) of a sequence of n numbers. We now point out how our solu

tion to problem P2 implies an o(nlogn) time solution to the SMIS (and hence MIDS) problem.

For the sake of generality, we consider the weighted version of the problem, Le. where every ele

ment aj has an associated weight Wj, and the problem is then to compute a minimum-weight

maximal increasing subsequence of the input sequence (J;::=(ll •.• an. This is done as follows:

create a set of points S={P h ... ,Pn} where Pi'=(i ,aj), and let the weight W (Pi) of pointPi be wi.

Let the label of every point in S be defined as follows:

label(p) = w(P) ifDOMs (P)=0,

label(p) = w(P) + Min (Iabel(q) : qeMDs(P)} otherwise.

As in P2, the predecessor of pointp is any of the points which gave p its label. It is not hard to

see that (i) the minimum-weight shortest maximal increasing subsequence of a. has a weight

equal to Min {label(p) : P eMAX (S)}, and (ii) the corresponding subsequence of a. can be

retrieved by beginning at the smallest-labeled point in MAX (S) and following the chain of prede

cessor pointers. These observations imply that our solution to problem P2 implies a solution to

SMIS (and hence~S) having complexity 0 (nlogn) time and 0 (n) space.

The known 0 (n logn) time solutions to the well studied problem of computing a maximum

increasing subsequence [D,DMS] cannot be modified to solve the SMIS problem, which is con

siderably more difficult in spite of the apparent similarity.

5.2. Empty rectangle problem

- 17 -

Given a rectangle R and a set S of n points in R I a valid rectangle is one which is con

tained in R, has its sides parallel to those of R I and does not contain any of the points in S. Con

sider the problem of enumerating all the restricted rectangles, where a restricted rectangle (RR

for short) is a valid rectangle such that each of its four edges either contains a point of S or-coin

cides with an edge of R. Let s denote the number ofRR's. i.e. the size of the output Naamad et

al. [NLH] prove that 8=0 (n 2) and give an example in which s=E>(n2). They also show that when

the points are drawn from a uniform dislribution, the expected value of s is 0 (nlogn).

In. [AF] it was shown that any o (T(n)+r) time algorithm for problem PI would immedi

ately imply an 0 (T en)+s) time algorithm for enumerating all the RR's (recall that t is the size of

the output to PI). The solution that was given in [AF] had T(n)=n(logn)2. Since our solution to

PI has T(n)=nlogn, it automatically implies an O(nlogn+s) time solution to the problem of

enumerating all RR's. TIlis is an improvement over the 0 (n(logn)2+s) time algorithm given in

[AF] and over the 0 (min(n 2,slogn)) time algorithm given in [NLH].

Since the expected value of s is O(nlogn), our result implies an improvement by a factor

of logn in the best known average case time complexity for the related problem of computing the

largest (i.e. maximum area) RR. Similar bounds (using a different method) were recently

independently established in [BE,O,PR]. A worst-case time bound of o (n(logn)3) for finding

the largest RR was given in [CDL], recently improved to 0 (n (logn)2) in [AS].

5.3. Independent Sets in Overlap or Circle Graphs

Given n intervals III ... J" on the line, their corresponding overlap graph is the undirected

graph having the h's as vertices, and such that there is an edge between intervals I j and I j iff

these two intervals overlap but neither one contains the other. The problem of computing a

maximum-weight independent set for such graphs (which are the same as circle graphs) was con

sidered in [AH] and an algorithm of time complexity 0 (nd) was given, whered~ is a quantity

whose expected value is proportional to n. Thus the average case time complexity of the algo

rithm given in [AH] is o(n 2). Our solution to problem PI makes possible an o(nlogn+t) time

- 18 -

implementation of the same algorithm that was given in [AH], where t can still be quadratic in

the worst case but has expected value O(nlogn) (the algorithm is essentially the same as that of

[AH] and we therefore refer the interested reader to that paper).

7. Conclusion

We gave asymptotically optimal algorithms for two maxdominance problems. These in

tum implied improvements in the time complexities of a number of graph~theorctic and

geometric problems. The techniques we used arc of independent interest, and we have reason to

believe they will be useful for solving other problems as well.

Acknowledgements. The authors are grateful to the referees for many useful comments. In par-

tieular. one of the referees pointed out a flaw in an earlier proof ofLemma 1.

References

[AF] M.J. Atallah and G.N. Frederickson, "A Note on Finding a Max.imum Empty Rectangle,"
D~creteApplied Mathematics, Vol. 13, No.1, January 1986, pp. 87-91.

[AH] A. Apostolico and S. E. Hambrusch, "New Clique and Independent Set Algorithms for
Circle Graphs," Purdue CS Tech. Rept. # 608, june 1986.

[AHU] A.V. Aha, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algo
rithms, Addison-Wesley, Reading, Mass., 1974.

[AMU] M.J. Atallah, G.K. Manacher and J. Urrutia, "Finding a Minimum Independent Dominat
ing Set in a Permutation Graph",Purdue C.S. Tech. Rept

[AS] A. Aggarwal and S. Suri, "Fast Algorithms for Computing the Largest Empty Rectan
gle," to appear in Proc. of3rd ACM Symposium on Computational Geometry, June 87.

[BE] B. BhattachaIja and H. E1Gindy, "Fast Algorithms for the Maximum Empty Rectangle
Problem," U. ofPenn. and Simon Fraser U. Tech. Repts., March 1987.

[C] B. Chazelle, "Computing on a Free Tree Via Complexity-Preserving Mappings", Proc.
25th Annual IEEE Symposium on Foundations ofComputer Science, pp. 358-368, 1984.

[CDL] B. Chazelle, R.L. Drysdale and D.T. Lee, "Computing the Largest Empty Rectangle",
SIAM J. on Computing, Vol. 15, No. I, pp. 300-315 (1986).

£OMS] R.B.K. Dewar, S.M. Merritt and M. Sharir, "Some Modified Algorithms for Dijkstra's
Longest Upsequence Problem",ActaInformatica, Vol. 18, No. 1, pp.1-15 (1982).

[D] E.W. Dijkstra, "Some Beautiful Arguments Using Mathematical Induclion", Acta Infor
matica, Vol.13, No. I, pp. 1-8 (1980).

[FK] M. Farber and J. Mark Keil, "Domination in Permutation Graphs", Journal of Algo
rithms, 6, pp. 309-321 (1985).

- 19 -

[NLH] A. Naamad, D.T. Lee and W.-L. Hsu, "On the Maximum Empty Rectangle Problem",
Discrete Applied Mathematics, 8, pp. 267-277 (1984).

[0] M. Orlowski, "A New Algorithm for the Largest Empty Rectangle Problem,"
manuscript.

[OV] M.H. Ovennars and J. Van Leeuwen, "Maintenance of Configurations in the Plane",
Journal of Computer and Systems Sciences, Vol. 23, pp. 166-204 (1981).

[PRJ T. H. k. Prasad and C. P. Rangan "An Improved AlgoriLhm for the Maximum Empty
Rectangle Problem," lIT Madras Tech Rept., March 1987.

o

o
k
o

oh
o

g

o

o

d
o

e
o

o
p

.............. ij ························0

o

a
o

f
o c

o
u

.•••••••.••.•••••••••••••••••••••••••••••••••••••.•.•••• 4 •••• 0
v
o

o

o
o

o w
o o

I
o

L R

Figure 1. illustrating the basic definitions

o

o

o

o

o

o

o

o

o

o

o

o
--,

--~

o

o

,,,,,,,,,
..:....9b+1,,,

..~ ~ ~ r 1 ! ~~=qi
,,,,,,,,,,

.. ··········1···················0,,,

o~ !
... l ~

o
o

o

o o

......•... ···········0

o

L
R

Figure 2. Illuslraling Step 4 of the proof ofLemma 1.

f

e

d

a

c

b

v

u w

Figure 3. lllustrating Definition 1.

d (3)

(2) a

d (3)

b (2)

before after

Figure 4. Illustrating how the Temp labels are updated.

Pi

Figure 5. Here Cj contains seven paths. All paths shown are in To.

	An Efficient Algorithm for Maxdominance, with Applications
	Report Number:
	

	tmp.1307986960.pdf.YtVVN

