Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

An Efficient Algorithm for Maxdominance, with Applications

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

S. Rao Kosaraju

Report Number:
86-641

Atallah, Mikhail J. and Kosaraju, S. Rao, "An Efficient Algorithm for Maxdominance, with Applications”
(1986). Department of Computer Science Technical Reports. Paper 557.
https://docs.lib.purdue.edu/cstech/557

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN EFFICIENT ALGORITHM FOR
MAXDOMINANCE, WITH APPLICATIONS

Mikhail J. Atallah
S. Rao Kosaraju

CSD-TR-641
November 1986
Revised May 1987

AN EFFICIENT ALGORITHM FOR MAXDOMINANCE, WITH APPLICATIONS

Mikhail J. Atallah
S.Rao Kosaraju*
Dept. of Computer Science

Purdue University
West Lafayette, IN 47907

Abstract. Given a planar set § of n points, maxdominance problems consist of computing, for
every peS, some function of the maxima of the subset of S that is dominated by p. A number of
geometric and graph-theoretic problems can be formulated as maxdominance problems, including
the problem of computing a minimum independent dominating set in a permutation graph, the
related problem of finding the shortest maximal increasing subsequence, the problem of comput-
ing a maximum independent set in an overlap (and hence circle} graph, the problem of enumerat-
ing restricted empty rectangles, and the related problem of computing the largest empty rectangle.
We give an algorithm for optimally solving a class of maxdominance problems. A straightfor-
ward application of our algorithm yields improved time bounds for the above-mentioned prob-
lems. The techniques used in the algorithm are of independent interest, and include a linear-time

ree computation that is likely to arise in other contexts.

t This rescarch was supporicd by the Office of Naval Rescarch under Grants NOGO14-84-K-0502 and N00OD14-86-K-0689,
and the National Science Foundation under Grant DCR-8451393, with maiching funds from AT&T.
* This research was supported by the National Science Foundation under Grant DCR-856361

1. Introduction

A point p is said to dominate a point g iff X(p)2X(g), Y (p)=Y (g), and p#q, where X {p)
and ¥ (p) respectively denote the x and y coordinates of pointp. If S is asetof pointsand p is a
point, we use DOM;(p) to denoie the subset of points in S that are dominated by point p. A
point of §' is a maximum in S iff no other point of S dominates it. We use MAX (S) to denote the
set of maxima of S, listed by increasing x coordinates (and hence by decreasing y coordinates).
We abbreviate MAX (DOMgs(p)) as MDg{p). A number of geometric and graph-theoretic prob-
lems can be formulated as one of the following two maxdominance problems P1 and P2 (problem

P2 being substantially more difficult than P1).
Problem P1. Given aset§ of n points in the plane, compute MDg(p) forevery peS.

We solve the above problem in O (nlogn+t) time where ¢ is the size of the output, i.c.

t=3, |IMDs(p))|.

peES
Problem P2. For a set S of points in the plane with a real weight w(p) associated with every
PSS, the problem is 10 compute the label and predecessor of every point in S, where the lzbel

function is defined as follows:

label(p)=w(p) if DOM;(p)=2,

label(@) =w(p) + Min{label(q) : qeMDg(p)} otherwise.
The predecessor of point p is any one of the points which gave p its label, ie. it is a point
g€ MDgs(p) such that label (p y=w (p +label (g) (if DOM(p =2 then p has no predecessor).

We solve problem P2 in O (nlogn) time and O (n) space, which is optimal since sorting is a
trivial special case of P2.

It is the algorithm for P2 that is the main contribution of this paper (P1 is solved by a much
simplified version of the algorithm for P2).

The paper is organized as follows. Section 2 establishes some preliminary results, and Sec-

tion 3 gives a result on tree computations which is needed in our solution to P2 (it is also of

-3-

independent interest). Section 4 gives our O (zlogn) time, O (n) space algorithm for problem P2.
Section 5 gives an O (nlogn+t) algorithm for problem P1. Section 6 lists problems for which

improved complexity bounds follow from our results, and Section 7 concludes,

2. Preliminaries

Throughout this section, L and R are two planar sets of points separated by a vertical line
and such that L is to the left of R; § denotes L\ R. To simplify the exposition, we assume that

no two points have same x coordinate (similarly for y coordinates).

Recall that in the list MDs(p), the points are in increasing x coordinate value. For every
peS, leaders(p) denotes the leftmost (i.e. highest) point in MDg(p) (if MDs(p)=J then
leaders(p)=0). In Figure 1, MDgp(p)={u,v.w} MDs(p)¥={b.e.d.c .,y w}, leadery(p)}=u, and
leaders(p =b.

For every peR, Stripy(p.R) denotes the points of L that are below p and above
leaderp (p); Beging (p R) and End; (p ,R) denote the leftmost (i.e. highest) and rightmost (i.e.
lowest) points on MAX(Strrip.(p.R)), respectively Gf Stripp(p.R)=Z then
Begin (p R)=End; (p R)»=2). For example, in Figure 1, Strip.(p.R)={a.b.c.d.ef}l
MAX (Stripp (p R)={b,e.d,c}, Begin (p R)=b, and End;(p R)}=c. Observe that for every
pER, the list MDs (p) is the concatenation of MAX (Strip; (p ,R)) with MDy (p).

We define G(S) as the directed acyclic graph whose vertex set is § and such that (p ,g) is
an edge in G(S) iff there exists a point weS§ such that 4 immediately follows p on the list
MDg(w), in which case we say that edge (p,g) is caused by w. An edge may be caused by more
than one point, but G (S) has a single copy of such an edge. In Figure 1, edge (u,v) is in G(S)
and is caused by points £ ,p,g and k. Note also that (z ,w) is not an edge of G(S). Let E(L.R)
be the subset of edges of G () that have both ends in L and are caused by at least one pointin R .

That is,

-4-

ELR)={(p.q) :pel.gel,(p.q)iscaused by someweR }.
Observation 1. The graph (L ,E(L ,R)) is a forest.
Proof. A node in this graph has out-degree at most one. [

Note that for every peR, MAX (Strip, (p .R)) is the path in the forest (L,E(L,R)) from
Beging (p R) 10 Endr(p ,R).

Let CROSS (L R) be the subset of cdges of G (§) that have one endpoint in L and one in R .
Observation 2, |CROSS (L .R)[<|R].

Proof. Anedgein CROSS(L ,R) can only be caused by a point in R. Moreover, a point in R can

cause at most one edge in CROSS (L .R). Thus |CROSS(L ,R)|<|R|. O
Note that if pe R causes the edge (c ,u)e CROSS (L. ,R), then c=Endy (p ,R) (see Figure 1),

Two points p and g are comparable iff one of them dominates the other. A set of points
forms a chain iff every two points in it are comparable. MAXREV (S) denotes the subset of §
such that p e MAXREV (§) iff no other point of § is both above p and to its left. We assume that
the elements of MAXREV (S) are listed by increasing x coordinates (and hence by increasing y

coordinates, since they form a chain). In Figure 1, MAXREV (R)={l ,u k}.

Lemma 1. Given the lists Q; and Qp containing the points of L and R, respectively, sorted by
increasing y coordinates, E (L ,R) and CROSS (L.,R) can be computed in O(|L |+|R |) time. In

addition, for all pe R, Beginy (p .R) and End, (p R) can also be computed in O (| L |+]|R |) time.

Proof. Let Qp=(q1, " .qr). Y(q1)< - <¥(qr). Initialize E(L,R)and CROSS(L,R)to Q.
We compute the edges in E(L,R) by scanning the list Qp, maintaining on a stack STACK the
MAXREYV of the subset of R encountered so far by the scan; i.e. when we are at g;, STACK con-
tains the elements of MAXREV ({g,, - - - .q: P stored by increasing y coordinates. Note that g; is
the highest point in {g,, - - - ,¢: } and hence it belongs to MAXREV ({q,, - - - ,q; P and is at the top
of STACK. When the scan advances from g; (o g1, we do the following: we add to E(L ,R) and

CROSS (L ,R) the edges that are caused by ¢;,; and are not caused by any of {g1,- - - ,4:} (i.e. the

-5.

"new" edges), update the contents of STACK so that it contains MAXREV ({q1, ' - * .gi+1 D). and

compute Beginy (g;+1,.R) and End; (g;41.R). The details are as follows.

1)

@)

3

@

Obtain the elements of Strip; (g 1,R) in sorted order. This takes O (| Strip;(g,./)|) time by
scanning @; until a point of L higher than g, is reached. (Note. Since leaderp (g)=,
Strip; (g 1,R)=DOM; (q1).) Compute MAX (Stripr (g 1,R)); since the points in Strip; (g1.R)
are already soried, this takes O ([Stripr (g ,R)|) time [OV]. Add |MAX (Strip; (g1.R))|-1
edges to E(L.R), one for each pair of adjacent points in MAX (Strip; (¢1.R)); i.e. if ¢
immediately follows p in MAX(Strip.(q;.R)) then we add edge (p.g) to E(L,R). If
Stripr (q1.R)2 then set Beging (g,,R) and End; (,,R) to be the leftmost and rightmost
points on MAX (Stripy, (q1,R)), respectively. If Strip (g1,R =2 then set Beging (q1.R) and
Endp (g R)tobe @.

Set =1 and repeat the following Steps (2)-(S)until i >|R |:

Advance along @y, until a point of L higher than g, is reached. The sequence of points
encountered, excluding the last one, yields the subset # of points in L that are above g; and
below g;41, sorted by their y components. Compute MAX (H); since the points in H are
already sorted, this takes O (| & |) tdme [OV]. Add to E (L R) an edge for each consecutive
pair of points in the list MAX (H') (these edges of E (L R) are caused by ¢;,; and not caused

by any of {g, ' - - . }). If ;41 dominates g; then go to Step (3), otherwise go to Step (4).

Since g;,; dominates g;, q; is leaderg(g;,,) and therefore H=Strip; (g;,,/t) and all the new
edges of E(L.R) caused by ¢;,, were already added in Step (2). If H#J then set
Begin; (g; 1.7 (resp. Endy (g; 11,8) 10 be the lefimost (resp. rightmost) point on MAX (i),
then add to CROSS(L.R) the edge (End;(g;41.R)q:;). If H=J then set
Beging (g;1.R0)=Endy (g;41,R }=2. Go to Step (5).

Since ¢;41 does not dominate g;, ¢;4; is above and to the left of ¢;: Pop from STACK all the
points that are below and to the right of ¢;,,, and let f}y, - - - ,B; be the sequence of points so

popped (sec Figure 2). Note that $;=¢;, and that the ;s form a chain and are the top &

-6-

points on MAXREV({g1.--.¢;}). Let Up denote MAX(H), and let U; denote
MAX (Strip, (B;,R)) (1<j<k). Sub-step (4.1) below computes Beging(g;.1,R) and
Endy (g;41.1t), while sub-step (4.2) finds any additional edges of E (L ,R) that are caused by
gi41 (for example, an edge between the rightmost point of U; and the point immediately to
its right on U;,;). We do not need to add to CROSS (L ,R) the edge (if there is one) caused
by ¢;.1, because such an edge would also be caused by B and thus would already have been

added when processing 3.

P
4.1y 1If \YU;=& then set Begin; (¢i,1.R) and End;(q:;,1.R) to be . Otherwise set
j=0

Beginy (g;41,R) to be the highest point on the highest nonempty U; (0<j<k), and set

k
Endy (g;,1,R) to be the rightmost point on \ JU/;. That this sub-step takes O (k) time
j=0

can be seen by noting that we already know Begin; (B;.R) and End; (B;,R), and hence

testing whether ;= takes constant time (by testing whether Begin; (B;.R =2).

k
(4.2) If\U;=2 then go to Step (5). Otherwise let U 4 be the highest nonempty U; (1<j<k).
j=0

Repeat the following (i)-(iii):

(i) Let v be the rightmost point of U,. Let Uy be the highest nonempty U; that is
below Uy (i.e. a<y<k) and has its rightmost point (o the right of v; if no such U,
exists then go to Step (5). Locating U can clearly be done in O (y-c) time.

(ii) Start at the leftmost point of U, and trace it left-to-right until the first point (say, w)
to the right of v is reached: stop the scan of U, at w and add edge (v,w) 1o
E(L,R). We "“charge" the cost of tracing the portion of U that is to the left of v to
the points so traced (one unit per point traced).

(iii) Set o:=yand go to (i).

Note: Sub-steps (4.1) and (4.2) can be combined; we chose to keep them separate for ease

of exposition.

-7-

The cost of sub-step (4.2) is O (k) plus the cost of the "charges" done in (ii). Lei us count
the overall cost of the charges done in (ii). A point (say, u) that gets cﬁarged one unit in (if)
will never get charged again in the future, because when executing Step (4) for a future g;,4
(i <j), u will be "shielded" by v; i.e. u will not belong to the MAX (Strip; (B,R)) of any B in

MAXREV ({1, - - .q;). Thus the cost of all "charges" done in (ii) is O (| L |).
(5) Push g;;1 on STACK , then set i :=i+1.

To analyze the time complexity of the above procedure, simply observe that g;eR gets pushed
on STACK exactly once {(once such a point g; is removed from STACK, it cannot belong to the
MAXREYV of the subset of points of Op already scanned, since at least one point of this subset is
above it and to its left). Thus the total time taken by the above procedure is Q(|L |+|R). O
Corollary 1. G(S) has O (nlogn) edges and can be built in @ (nlogn) time, where n=|S|.
Proof. Choose |L |=|R |=n/2, and let f (n) denote the maximum number of edges that G(S)
can have. The edge set of G(S) consists of the (not necessarily disjoint) union of E(L,R),
CROSS (L R), and the edge sets of G(L) and G (R). The number of edges in each of G(L) and
G (R)is at most f (n/2). By observations 1 and 2, E(L ,R) and CROSS (L .R) have at most n/2-1
and n/2 edges, respectively. Therefore f (n)<2f (n/2+Hn—1, and hence f (n)=0 (nlogn). The
O (nlogn) time bound for constructing G (S) is by a straightforward divide and conquer, with

Lemma 1 giving the needed linear time conquer step. O
Observation 3. There exists an S such that & (S) has Q2(nlogn) edges.

Proof. Let g{n) denote the number of edges that G () has by our construction. Construct three
identical sets of n/3 points each (call them §,,5,.,8 1), each of which individually gives rise to a
G (S5;) that has g (n/3) edges. Now, stack 51,552,853 on top of one another so that the lowest point
in S is higher than the highest point in §, the lowest point in S5 is higher than the highest point
in S3, and each point of §; has same x-coordinate as the corresponding point of S or §3. Now,
disturb the above situation as follows: shifi every point of §, to the right by an extremely small

amount g, and simultaneously shift every point of S5 to the left by the same amount € (the points

-8-

in §5 don’t move). Let S be the set of points consisting of the union of the new (shifted) S, the
new §,, and §3. The slight shifting of §; to the right and S5 to the left means that for each point
x; of §,, the comresponding point of S, (call it x3) is to its left by a 2& amount, and the
corresponding point of §4 (call it x3) is to its left by an € amount. Thus in G(S), each x; causes
the edge (x2,x3) to be present. Thus G(S) has at least 3g(n/34n/3 edges, and hence
g(n)23g(ni3)n/3, resulting in g (n =Q(nlogr). O

Let the label of a point peS with respect to set S (henceforth denoted labels(p)) be as in

the definition of problem P2.

Let § be partitioned into four subsets 4 |,A5,43,44, where 4; is to the left of A;,,. For
every ped;y, let Left, (p A;4y) be the smallest labelg(g) over all ¢ that are on the portion of
MDg(p) that lies in A;; that is,

Lefty,(p Ai)=Min {labels (q) : qe MAX (Strips (p A1)} if Strips,(p Aia)*D,

Lefty (p Aiv)= otherwise.

Observation 4. Letped,. If DOM¢(p)=D, then

labels (p y=w (p Y+Min {Leftn (p A2).Min {labels (g):q e MD 5 (p)}}.
Proof, Animmediate consequence of the definitions and the fact that MDg(p) is the concatena-

tion of MAX (Strip,,(p.A2)) with MD, (p). O
Observation 5. For every pe A5, we have
Lefty, alp AsyMin {Lefta (p Ao JAs)Lefin (p Agd}
Proof. An immediate consequence of the fact that MAX (Strip A.UA:(P A 1)) is the concatenation

of MAX (Strip, (p Ao _A=)) with MAX (Strip,(p ,A3)). O

3. A Special Class of Tree Computations

Chazelle [C] has given a general technique which, given any n paths on a free tree that has

-9.

a real label associated with each node, computes the smallest label on each of these n paths in
O(nlogr) time. In our algorithm for solving problem P2 (given in the nmext section), we will
need a similar computation on a rooted tree in which the n paths have a nested property (defined

below). In Lemma 2, we establish that this can be done in O (n) time.

Definition 1. Let C=(Py, - - ,P;) be a sequence of descendent-to-ancestor paths in z rooted tree
T, path P; begins at 4; and ends at w;, where w; is an ancestor of u;. We say that C has the
nested property iff

(i) i<j and P;~P;# imply that w; is ancestor of w;, and

(i) i<j<k and P;~\P;~\P#0 imply that P; PP \FPy.

For example, in the tree shown in Figure 3, if P=a,b,c, P=u,v,b,c,d, Py=a b ,c.d.e, and
P&w,v,b.c.d.ef,then (P P3P, has the nested property but (P ,,P3,P 4) does not.

Lemma 2. Let 7 be an n-node rooted tree represented by parent pointers. In addition to
parent(v), each node v also has a real label I(v) associated with it. Let C=(P,,---.,P,) be a

sequence of descendent-to-ancestor paths in 7. Let f (i) be the smallest /(v) over all v on path

P;. If C has the nested property, then f (1).f (2), - - - f () can be computed in O (») time,

Proof. We use the path compression technique previously used to solve the UNION-FIND prob-
lem [AHU]J; the nested property will be crucial in proving that the algorithm actually runs in
linear time. Assign to each node p of T a temporary label Temp (p), initially set to I(p); the
significance of these Temp labels is that as we do path compression on 7', the f (i) of every P;
yet to be traced equals the smallest Temp label on it (this is certainly true initially, and will be
maintained as we do path compressions). In what follows, we use T to denote the initial (i.e.
unmedified) tree T, and we view a path P; as being defined by its two endpoints u; and w; rather
than by a sequence of nodes in Ty (path compression on T may shorten a path in 7 but does not
change its endpoints).

We process the n paths in the order P, - - - ,P,. To process P;, we first trace it on T and

compute the smallest Temp () over all g on it, which is £ (). Then we modify T by doing path

-10-

compression along the path just iraced, as follows. First, by tracing P; once in the backward
direction (from w; to u;), we compute for all p € P;, the quantity g (p)=Min {Temp (g):q is on the
path from w; to p}. Once this is done, we modify T by making every pe P;—{w;} a child of w;,
and changing its lemporary label by doing Temp (p):=Min {Temp (p),g(p)}. Figure 4 illustrates
the effect of this on T if P;=a.b.c.d (in that figure, the numbers between parentheses are Temp

values).

A P; yet w0 be processed (i.e. one with j>{) may have been "shortened" by the path
compression made along P;; however, because of property (i) {of Definitdon 1) and because of the
the way the Temp labels are updated, £ (j) is still the smallest Temp on the u;-to-w; path in the
modified tree T. This modification of 7 maintains the nested property for the sequence of paths
yet (o be processed, i.e. for the sequence (Pi.y, - - * P,) where every P; (j>i) is the u;-to-w; path
in the modified tree T'; to see this, observe that every such P; (j>{) ends at a w; whose parent
pointer is the same as the one in Ty (because of property (i) and the order in which we are pro-
cessing the P;'s). We now must show that the sum of the lengths of all the P;’s traced in this
manner is O (n). We say that an edge ¢ of T'g is first traced by P; iff e belongs to P; but not to
any other P, with k<j. When we trace P; in the path—compressed. tree T that resulted from pro-
cessing paths P, - - - ,P;_;, we partilion the cost of tracing P; into two components; The strict
cost is that of traversing the edges first traced by P;, and the extra cost is that of tracing the other
edges (the latter may include edges first traced by P;’s with j<i as well as edges previously
added by the path compression process). The sumn of the strict costs of all the P;’s is trivially
0 (n). We now prove that the total extra cost is also O(n). Let C; denote the set of paths that
were processed before P; and have a nonempty intersection with P; in T, i.e. C;={P; : j<i and
P;\P;#0 in Tg }. Let P, and P, be paths in C;; we say that P, beats P, iff a>b and
P, Py#2 in Ty Note that if P, beats P, in C;, then the nested property implies that
Py \FPicP. P in Ty For every P;eC;, let Cj; denote the subset of C; each of whose ele-

ments has a nonempty intersection with P; in Tg (see Figure 5). The nested property implies that,

-11-

for every Pre Cyj, Ppuax(j x) bets Ppyn(j k). Path P; is said to be a chief in C; iff it beats every
PreCyj, ie. iff j>max{k ; Py eCy) InFigure 5, the chiefs in C; are P, and P.. Let D; be the
subset of C; that contains only the chiefs. The extra cost of tracing P; in T is equal to |D; |,
because the path compression that was done after processing each chief in C; has reduced the
intersection of that chief with P; to exactly one edge; we "charge" a unit of this extra cost to each
chief. A chiefin C; (say, P,) will be prevented by P; from ever being chief in a subsequent C;
(j>i); to see this, note that if such a P; (j>i) intersects P, in T then it must also intersect P; in
Ty (because a<i<j), and therefore P; will belong to Cj, and will beat P, in C;. Hence the

overall extra cost is at most 2. O

4. Computing the labelg(p)’s
In this section we give an O (zlogn) ime, O (n) space algorithm for solving problem P2.
Let S={p;, - - b, } be the set of input points whose /labelg(p)’s we wish to compute. To
simplify the notation, we assume that the p;’s are given already sorted by increasing x coordi-
nates, i.e. X(p1)<X(pa<---<X{p,). The algorithm that follows omits the computation of
predecessors (p) (including it would have unnecessarily cluttered the exposition). The interested
reader can easily modify the algorithm so that it computes predecessors(p) as well as labelg (p)
for aﬁpeS. The algorithm is initially called with R=S and Leftg(p ,S)== forall peS, and it
returns with labels (p) computed forall peS.
Algorithm MAXDOM(R)
Input: A contiguous m-subset R of S, ie. R={p,, ' Prim-1} for every peR, Lefty (p.R).
where L={py, - ,p,_;}. In addition, the input includes the list O containing the points of R

sorted by increasing y coordinates.
Cuiput: The labels labels(p,), - - - labels (D im-1).

Overview of Algorithm: The algorithm paritions R inio subsets A and B such that

|A |=IB |=m/2 and A is to the left of B. Since Lefty(p,A) is given for all peA (it equals

-12 -

Lefty (p .R)), the algorithm can recursively call itself for set A, obtaining labels(p) for every
peA. Then, using the labels so computed, the algorithm computes qu'th(u,B) for every
peB, in linear time. After that, the algorithm recursively calls itself for set B (it can do so
because it now knows Leftbw {(p.B)forall peB). The trick is how to compute Legf?‘[‘uml {.B)
for all peB in linear time, knowing Left, (p ,R) for every peR and labels(p) for every peA;
lemmas 1 and 2 are used for achieving this.

Step 1. If m=1 then set labels (p, y=w (o, HLeft, (p, R) if Left, (p, ,R)= o=} set labels (p,):=w(p,)
if Lefty, (p, R)= co. Then retum. If ;m>1 then proceed o Step 2.

Step 2. Let A={p,, ' " Primr-1}h B={Pramm> ' * " Pram-1} EXtract from Op the lists @4 and Qp
containing the points of A and B, respectively, sorted by increasing y components.

Step 2 takes O (m) time.

Step 3. Since we have Q4 and Lefty, (p,A) for every pe A (it equals Lefiy (p R)), we can recur-
sively solve the problem for the set A by doing MAXDOM (A). This recursive call retumns
labels (p,), - - - labels (Primp-1)-

Step 4. This step computes the forest F=(4 .E(A,B)) together with Begin,(p,B) and
End, (p.B)foreverypeB. By Lemma 1, this can be done in in O {m) time.

Step 5. Let Op=(b), " - .byp) where Y(b)< - - <¥ (b)), and let Path(b;) denote the path
from Beginy (b; ,B) t0 Endy (b;,B) in F. Use the forest F=(A ,E (A ,B)) created by the previous
step to compute, for every peB such that Begins(p,B)*J, the quantity Left,(p.B)=
Min {labels(g).q e Path(b;)}. Lemma 3 (given at the end of this secon) shows that the sequence
of paths Path(by), - - - JFPath (b) has the nested property. This and Lemma 2 imply that Step 5

can be done in O () time.

Step 6. Forevery peB, set L"’f‘;.w (p B y:=Min {Left; (p .R).Lefty (p ,B)}.

This step takes O () time, and its correciness follows from Observation 5 (in Section 2).

-13 -

Step 7. Recursively solve the problem for set B by doing MAXDOM(B). This returns
labels Pramm), - * * Jabels (Prim-1)-
(End of Algorithm)
Theorem 1. MAXDOM(S) retums labels(p) for every peS (and thus solves problem P2) in
O (nlogn) time and O (n) space.
Proof. The running time T(n) of procedure MAXDOM satisfies the recurrence
T(m)K2T (m/2+0 (m) and hence T(m)=0 (mlogm). The space S (m) satisfies the recurrence
S (m)<S (m/2+0 (m), and thus S(m)=0 (m). Correcmess is easily established by inducton on
|R |, using observadons 4 and 5. O
Lemma 3. The sequence Path (b)), - - - ,Path (b,) of descendent-to-ancestor paths in F has the
nested property.
Proof. We first prove propety (i) of Definition 1. Let i<j and assume that
Path (b;)\Path (b;)2D. Since j>i, b; is above b;. If b; were to the right of &; then the inter-
section of Path (b;) with Path (b;) would be empty, hence b; must be to the left of b;. Therefore
leaderp (b;) is not above leaderp (b;). This, and the fact that Path (b;)~\Path (b)%, imply that
Y (Endy (b; B)<Y (Endy (b;,B)). Hence End,(b;,B) is an ancestor of End,(b;.B). We now
prove that property (ii) of Definition 1 also holds. Let i<j<k and assume that
Path(b)yPath(b;)~Path (b y#0. Property (i) implies that End,(b,,B) is ancestor of
End, (b;,B), which is itself ancestor of EndA (b;.B). Because b; is below b;, which is below b,
we also have

Y (Beging (b; B)<Y (Beginy (b; B)<Y (Beging (be,B)).
This implies that the first (i.e. geometrically highest) point on Path (B;)~Path (b;) is an ancestor

of the first point on Path (b;)Path (). O

5. Computing the MDs(p)’s

-14 -

In this section we briefly sketch how the algorithm of the previous section can be modified
to solve problem P1. This problem is considerably easier than P2, and the algorithm (given
below) correspondingly simpler,

Algorithm MD_LIST

Input: Aset S conlaining the points py, - - - ,p, where X (p)<X (p)< - - - <X (p,).

Output: The lists MDs(p 1), - - -+ MDg(py), together with the list Qs containing the points of §
sorted by increasing y coordinates.

Step 1. If n=1 then output MDs (p)= and return. If n>>1 then proceed to Step 2.

Step 2. Recursively solve the problem for the set A={p,, " - * ,pn;2}. This recursive call returns
MDs(p1), - - - MDs(p,), together with the list O, containing the points of A sorted by increas-
ing y coordinates.

Step 3. Recursively solve the problem for the set B={p,,;, ' ** P} This recursive call returns

MDg (Pai2+1). * * * ~MDg(p,), together with the list Op containing the points of B sorted by
increasing y coordinates.

Note. For every peB, the list MDg(p) is the concatenation of MAX (Strip, (p,B)) with the
already computed list MDg(p). MAX (Strip,(p ,B)) is the path from Begin, (p .B) to End, (p ,B)
in the forest F=(A ,E(A ,B)).

Step 4. Construct the forest F, together with Begin, (p ,B) and End, (p ,B) for every peB. This
is done in O (n) time (by Lernma 1),

Step 5. Use the forest F created by the previous step to compute, for every peB, the list
MAX (Strips (p,B)). This list is obtained by simply tracing the path in F from Begin, (p ,B) to
End, (p B} (no path compression is needed since we are interested in the paths themselves rather
than in some function of them).

Step 6. For every pe B, compute MDs(p) by concatenating MAX (Strip,(p ,B)) with MDp{p).

This takes constant time per concatenation, for a total of O (n) time.

-15 -

Step 6. Merge 04 and Qp into Qs and return. This takes O (r) time.
(End of Algorithm)

Correctmess of the above algorithm is easily established by induction on n. We analyze its
time complexity by charging some of the time to the output, and using T'(n) to denote the time

not charged to the output. Thus the total time will be O (T(n)+t) where 1=Y |[MDs(p)|. The
peS

cost of Step 5 is completely charged to the output, since every MAX (Strips (p,B)) is part of
MDg(p). Since the cost charged to T(n) includes 2T (n/2) plus an additional O (n) time, we have

T(n)=0 (rlogn). Thus we have established the following,

Theorem 2. Algorithm MD_LIST correctly solves problem P1, and runs in time O (nlogn+t).

6. Applications

In this section we discuss some problems for which improved algorithms follow from our

solution to the maxdominance problems P1 and P2.
5.1. Permutation graphs and subsequence problems

For any undirected graph G=(V ,E), a subset H of the veriex set V is called a dominating
ser iff for every ue V there exists vef such that & is adjacent to v. Set H is independent iff no
two vertices in A are adjacent. The problem of finding a minimum independent dominating set
(MIDS for short) is NP-hard for general graphs, however for the class of permutation graphs an
O(n?) time solution was given in [FK], later improved to O (n(logn ¥ in [AMU]. We now
briefly point out how our solution to problem P2 implies an O (nlogn) time solution for the
MIDS problem.

In [AMU] the MIDS problem is reduced to that of computing a particular subsequence of a
sequence of length n. Given a sequence 0=a14; - * ' @, of numbers, a subsequence of o is a
sequence B=a;,a;, - * - g, such that i) <i;<...<i;. If, in addition, a; <q; <...<a;, then we say that B

is an increasing subsequence of ¢.. An increasing subsequence of « is maximal iff it is not a

-16 -

proper increasing subsequence of any increasing subsequence of a. A maximum increasing
subsequence is one of maximum length. Note that a maximum increasing subsequence is also
maximal, but that a maximal increasing subsequence may not be maximum. For example, in the
sequence 2,1,4,5,3 the increasing subsequence 1,3 is maximal but not maximum (for this example
the length of a maximum increasing subsequence is three, e.g. 2,4,5). In [AMU] it was pointed
out that MIDS can be reduced to the problem of computing a shortest maximal increasing subse-
guence (from now on called SMIS) of a sequence of n numbers. We now point out how our solu-
tion to problem P2 implies an O (nlogn) time solution to the SMIS (and hence MIDS) problem.
For the sake of generality, we consider the weighted version of the problem, i.e. where every ele-
ment @; has an associated weight w;, and the problem is then to compute a minimum-weight
maximal increasing subsequence of the input sequence o=g; - - a,. This is done as follows:
create a set of points S={p,, - - - ,p, } where p;=(i ,4;), and let the weight w (p;) of point p; be w;.

Let the label of every pointin S be defined as follows:

label () = w(p) if DOMs(p)=,
label(p)=w(p) + Min{label{g) : geMDs(p)} otherwise.

As in P2, the predecessor of point p is any of the points which gave p its label. It is not hard to
see that (i) the minimum-weight shortest maximal increasing subsequence of ¢ has a weight
cqual to Min{label(p) : pe MAX(S)}, and (ii) the comesponding subsequence of ¢ can be
retrieved by beginning at the smallest-labeled point in MAX (S) and following the chain of prede-
cessor pointers. These observations imply that our solution to problem P2 implies a solution to
SMIS (and hence MIDS) having complexity O (nlogn) time and O (1) space.

The known O (nlogn) time solutions t© the well studied problem of compuling a maximum
increasing subsequence [D,DMS] cannot be modified to solve the SMIS problem, which is con-

siderably more difficult in spite of the apparent similarity.

5.2. Emp1y rectangle problem

-17-

Given a rectangle R and a set S of n points in R, a valid rectangle is one which is con-
tained in R, has its sides parallel to those of R, and does not contain any of the points in §. Con-
sider the problem of enumerating all the restricted rectangles, where a restricted rectangle (RR
for short) is a valid rectangle such that each of its four edges either contains a point of § orcoin-
cides with an edge of R. Let s denote the number of RR’s, i.¢. the size of the output Naamad et
al. [NLH] prove that s=C (n2) and give an example in which §=0(n?). They also show that when

the points are drawn from a uniform distribution, the expected value of 5 is O (rlogn).

In [AF] it was shown that any O (7 (n)+:) time algorithm for problem P1 would immedi-
ately imply an O (T (n)+s) time algorithm for enumerating all the RR's (recall that ¢ is the size of
the output to P1). The solution that was given in [AF] had 7 (s }=n(logn 2. Since our solution to
P1 has T (n)=nlogn, it automatically implies an O (nlogn+s) ime solution to the problem of
enumerating all RR’s. This is an improvement over the O (rn(logn Y-s) time algorithm given in
[AF] and over the O (min(r?,slogn)) time algorithm given in [NLH].

Since the expected value of 5 is O(nlogn), our result implies an improvement by a factor
of logn in the best known average case time complexity for the related problem of computing the
largest (i.e. maximum area) RR. Similar bounds (using a different method) were recently
independently established in [BE,O,PR]. A worst-case time bound of O (r(logn)?) for finding

the largest RR was given in [CDL], recently improved to O (n (logn %) in [AS).
5.3. Independent Sets in Overlap or Circle Graphs

Given n intervals [, - - - ./, on the line, their corresponding overlap graph is the undirected
graph having (he /;'s as vertices, and such that there is an edge between intervals /; and [; iff
these two intervals overlap but neither one contains the other. The problem of computing a
maximum-weight independent set for such graphs (which are the same as circle graphs) was con-
sidered in [AH] and an algorithm of time complexity O (nd) was given, where d<n is a quantity
whose expected value is proportional to n. Thus the average case time complexity of the algo-

rithm given in [AH] is O (n?). Our solution to problem P1 makes possible an O (nlogn+t) time

-18 -

implementation of the same algorithm that was given in [AH], where ¢ can still be quadratic in

the worst case but has expected value O (nlogn) (the algorithm is essentially the same as that of

[AH] and we therefore refer the interested reader to that paper).

7. Conclusion

We gave asympiotically optimal algorithms for two maxdominance problems. These in

tum implied improvements in the time complexides of a number of graph-theoretic and

geometric problems, The techniques we used are of independent interest, and we have reason (0

believe they will be useful for solving other problems as well.

Acknowledgements. The authors are grateful to the referees for many useful comments, In par-

ticular, one of the referees pointed out a flaw in an earlier proof of Lemma 1.

References

[AF] M.J, Atallah and G.N. Frederickson, "A Note on Finding a Maximum Empty Rectangle,”
Discrete Applied Mathematics, Vol. 13, No. 1, January 1986, pp. 87-91.

[AH] A. Apostolico and S. E. Hambrusch, "New Clique and Independent Set Algorithms for
Circle Graphs," Purdue CS Tech. Rept. # 608, june 1986.

[AHU] A.V. Aho, IE. Hopcroft and J.D. Ullman, The Design and Analysis gf Computer Algo-
rithms, Addison-Wesley, Reading, Mass., 1974.

[AMU] M.J. Atallah, G.K. Manacher and J. Urrutia, "Finding a Minimum Independent Dominat-
ing Set in a Permutation Graph", Purdue C.S. Tech. Rept.

[AS] A. Aggarwal and S. Sur, "Fast Algorithms for Computing the Largest Empty Rectan-
gle," to appear in Proc. of 3rd ACM Symposium on Computational Geomerry, June 87.

[BE] B. Bhattacharja and H. ElGindy, "Fast Algorithms for the Maximum Empty Reclangle
Problem," U. of Penn. and Simon Fraser U, Tech. Repts., March 1987.

[C] B. Chazelle, "Computing on a Free Tree Via Complexity-Preserving Mappings", Proc.
25th Annual IEEE Symposium on Foundations of Computer Science, pp. 358-368, 1984.

[CDL] B. Chazelle, R.L. Drysdale and D.T. Lee, "Computing the Largest Empty Rectangle”,
SIAM J. on Computing, Vol. 15, No. 1, pp. 300-315 (1986).

[DMS] R.B.K. Dewar, S.M. Merritt and M. Sharir, "Some Modified Algorithms for Dijkstra’s
Longest Upsequence Problem", Acta Informatica, Vol. 18, No. 1, pp.1-15 (1982).

(D] E.W. Dijkstra, "Some Beautiful Arguments Using Mathematical Induction”, Acta Infor-
matica, Yol.13, No. 1, pp. 1-8 (1980).

[FK] M. Farber and J. Mark Keil, "Domination in Permutation Graphs", Journal of Algo-

rithms, 6, pp. 309-321 (1985).

-19-

[NLH] A. Naamad, D.T. Lee and W.-L. Hsu, "On the Maximum Empty Rectangle Problem",

(O]
[OV]

[PR]

Discrete Applied Mathematics, 8, pp. 267-277 (1984).

M. Orowski, "A New Algorithm for the Largest Empty Rectangle Problem,"
manuscript.

M.H. Overmars and J. Van Leeuwen, "Maintenance of Configurations in the Plane”,
Journal of Computer and Systems Sciences, Vol. 23, pp. 166-204 (1581).

T. H. k. Prasad and C. P. Rangan "An Improved Algorithm for the Maximum Empty
Rectangle Problem," IIT Madras Tech Rept., March 1987.

00

o0

p=16]

B O

Figure 1. Iustrating the basic definitions

Figure 2. Iliustrating Step 4 of the proof of Lemma 1.

Figure 3. Ilustrating Definition 1.

&b (2)

@a s

after

before

Figure 4. Mustrating how the Temp labels are updated.

Figure 5. Here C; contains seven paths. All paths shown are in T.

	An Efficient Algorithm for Maxdominance, with Applications
	Report Number:
	

	tmp.1307986960.pdf.YtVVN

