
An Efficient Algorithm for Mining Association Rules in

Large Databases

Ashok Savasere Edward Omiecinski Shamkant Navathe

College of Computing
Georgia In&ute of Technology

Atlanta, GA 30332

e-mail: {ashok, edwardo, sham}Qcc .gatech. edu

Abstract

Mining for a.ssociation rules between items in
a large database of sales transactions has been
described as an important database mining

problem. In this paper we present an effi-

cient algorithm for mining association rules

that is fundamentally different from known al-
gorithms. Compared to previous algorithms,
our algorithm not only reduces the I/O over-

head significantly but also has lower CPU
overhead for most cases. We have performed
extensive experiments and compared the per-
formance of our algorithm with one of the
best existing algorithms. It was found that
for large databases, the CPU overhead was re-

duced by as much as a factor of four and I/O
was reduced by almost an order of magnitude.

Hence this algorithm is especially suitable for
very large size databases.

1 Introduction

Database mining is motivated by decision support
problems faced by most business organizations and is
described as an important area of research [12, 131.
One of the main challenges in database mining is de-
veloping fast and efficient algorithms that can handle

Permission to copy without fee all OT part of this material i8

granted provided that the copies are not made OT distributed fog
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission o.f the Very Large Data Base

Endowment, To copy otherwise, OT to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference

Zurich, Swizerland, 1995

large volumes of data because most mining algorithms
perform computation over the entire database and of-
ten the databases are very large.

Discovering association rules between items over
baslcei data was introduced in [l]. Basket data typ-
ically consists of items bought by a customer along
with the date of transaction, quantity, price, etc. Such

data may be collected, for example, at supermarket
checkout counters. Association rules identify the set
of items that are most often purchased with another
set of items. For example, an association rule may
state that “95% of customers who bought items A and
B also bought C: and D.” Association rules may be
used for catalog design, ‘store layout, product place-
ment, target marketing, etc.

Ma.ny algorithms have been discussed in the lit,er-
ature for discovering, association rules [l, 8, 21. One
of the key features of all the previous algorithms is

that they requiqe multiple passes over the database.
For disk resident databases, this requires reading the
database completely for each pass resulting in a large
number of disk I/OS. In these algorithms, the effort
spent in performing just the I/O inay be considerable
for large databases. Apart from poor response times,
this approach also places a huge burden on the I/O
subsystem adversely affecting other users of the sys-
tem. The problem can be even worse in a client-server
environment.

In this paper, we describe an algorithm called Par-

tition, that is fundamentally different from all the pre-
vious algorithms in that it reads the database at most

two times to ge,nerate all significant association rules.

Contrast this with the previous algorithms, where the
database is not only scanned multiple times but the
number of scans cannot even be determined in ad-
vance. Surprisingly, the savings in I/O is not achieved

at the cost of increased CPU overhead. We have per-
formed extensive experiments and compared our algo-

432

rithm with one of the best previous algorithms. Our

experimental study shows that for computationally in-
tensive cases, our algorithm performs better than the
previous algorithm in terms of both CPU and I/O
overhead.

Ot.her related, but not direct.ly applicable work in

database mining are reported in [7, 10, 6, 9, 3, 14, 151.
The paper is organized as follows: in the next sec-

t.ion, we give a formal description of the problem.
In Section 2, we describe the problem and give an
overview of the previous algorithms. In section 3, we
describe our algorithm. Performance results are de-

scribed in section 4. Section 5 contains conclusion and
future work.

2 Problem Description

This section is largely based on t,he description of the
problem in [l] and [2]. Formally, the problem can be
stated as follows: Let Z = {il, ia, . . , im} be a set of
m. distinct literals called items’. 2) is a set of variable
length transactions over Z. Each transaction contains

a set. of items ii, ;j, , ik c 1. A transaction also
has an associated unique identifier called TID. An
association rule is an implication of the form X j Y,

where X, Y c Z, and X II Y = 0. X is called t.he
antecedent and Y is called t(he consequent of the rule.

In general, a set of items (such as the antecedent
or the consequent of a rule) is called an itemset. The
number of items in an itemset is called the length of an
itemset. Itemsets of some length k are referred to as
k-itemsets. For an itemset X . Y, if Y is an m-itemset
then Y is called an m-extension of X.

Each itemset has an associat#ed measure of sta-
tistical significance called support. For an itemset
ik- C 1, SUppOTt(x) = s, if t#he fraction of transactions

in 2, cont,aining X equals s. A rule has a measure

of its strength called confidence defined as the ratio
support(X U Y) / support(X).

The problem of mining association rules is to gener-
ate all rules that have support and confidence greater
than some user specified minimum support and min-
imum confidence thresholds, respectively. This prob-
lem can be decomposed into the following subprob-
lems:

I. All itemsets that have support above the user

specified minimum support are generated. These

itemset are called the large itemsets. All others
are said to be small.

2. For each large itemset, all the rules that

have minimum confidence are generated as fol-
lows: for a large itemset X and any Y C

l In this paper we use the terminology introduced in [l]

X, if support(X)/support(X - Y) 2 m.ini-

mum-confidence, then t,he rule X - Y j Y is
a valid rule.

For example, let Tl = {A, B, C}, Tz = {A. B, D},

T3 = {A, D,E} and T4 = {A,B. D} be the only
transactions in the database. Let, the minimum sup-
port and minimum confidence be 0.5 and 0.8 respec-
tively. Then the large itemsets are the following:

{A}, {B}, {D}, {AB}, {AD} and {ABD}. The valid
rules are B j A and D j A.

The second subproblem, i.e., generating rules given
all large itemsets and their supports, is relatively
straightforward. However, discovering all large item-
sets and their supports is a nontrivial problem if the
cardinality of the set of items, 1 Z 1, and the da.tabase,

V, are large. For exa.mple, if 1 Z 1 = m, the num-
ber of possible distinct itemsets is 2m. The problem is
to identify which of these large number of itemsets has
the minimum support for the given set of transactions.
For very small values of m, it is possible to setup 2m
counters, one for each distinct itemset, and count the
support for every itemset by scanning the dat,aba.se
once. However, for many applications m can be more
than 1,000. Clearly, this approach is impractical. To
reduce the combina,torial search space, all algorithms
exploit the following property: any subset of a large
itemset must also be large. Conversely, all extensions
of a small itemset are also small. This property is used
by all existing algorithms for mining association rules
as follows: initially support for all itemsets of length 1
(1-itemsets) are tested by scanning the database. The
itemsets that are found to be small are discarded. A
set of 2-itemsets called candidate item.sets are gener-
ated by extending the large 1-itemsets generated in
the previous pass by one (l-extensions) and t#heir sup-

port is tested by scanning the database. Itemsets that
are found to be large are again extended by one and
their support is t,ested. In general, some kth iteration
contains the following steps:

1. The set of candidate k-itemsets is generated by l-
extensions of the large (6 - l)-itemsets generated
in the previous iteration.

2. Supports for the candidate k-itemsets are gener-

ated by a pass over the database.

3. Itemsets that do not have the minimum sup-
port are discarded and the remaining itemsets are
called large k-itemsets.

This process is repeated until no more large itemsets

are found.

433

2.1 Previous Work

The problem of generating association rules was first
introduced in [l] and an algorithm called AIS was pro-
posed for mining all association rules. In [8], an algo-

rithm called SETM was proposed to solve this problem
using relational operations. In [2], two new algorithms

called Apriori and AprioriTid were proposed. These

algorithms achieved significant improvements over the
previous algorithms. The rule generation process was
also extended to include multiple items in the con-
sequent, and an efficient algorithm for generating the
rules was also presented.

The algorithms vary mainly in (a) how the candi-
date it,emsets are generated; and (b) how the supports
for the candidat,e itemsets are count,ed. In [l], the can-
didate itemset’s are generated on the fly during the pa.ss
over the database. For every transaction, candidate

itemsets are generated by extending the large item-
sets from previous pass with the it,ems in the transac-
tion such that, the new itemsets are contained in that
transaction. In [2] candidate it,emsets are generated
in a separate step using only the large itemsets from
the previous pass. It is performed by joining the set

of large itemsets with itself. The resulting candidate

set is further pruned to eliminate any itemset whose
subset is not contained in the previous large itemsets.

This technique produces a. much smaller candidate set
than the former technique.

Supports for the candidate itemsets are determined
as follows. For each transaction, the set of all candi-
date itemsets that are contained in that transaction
are identified. The counts for these itemsets are then

incremented by one. In [l] the authors do not de-
scribe the data structures used for this subset opera-
tion. Apriori and AprioriTid differ based on the data
structures used for generating the supports for can,di-
date itemsets.

In Apriori, the candidate itemsets are compared
with the transactions to determine if they are con-
tained in the transaction. A hashtree structure is used
t,o rest,rict, the set of candidate itemsets compared so
that subset testing is optimized. Bitmaps are used
in place of transactions to make the testing fast. In
AprioriTid. after every pass, an encoding of all the
la.rge itemsets contained in a transaction is used in
place of the transaction. In the next pass, candidate

l it,emset,s are tested for inclusion in a transaction by
checking whether the large itemsets used to generate

the candidate itemset are contained in the encoding
of the transaction. In Apriori, the subset testing is
performed for every transaction in each pass. How-
ever, in AprioriTid, if a transaction does not contain
any large itemsets in the current pass, that transaction
is not considered in subsequent passes. Consequently,

in later passes, the size of the encoding can be much
smaller than the actual database. A hybrid algorithm

is also proposed which uses Apriori for initial passes
and switches to AprioriTid for later passes.

3 Partition Algorithm

The idea behind Partition algorithm is as follows. Re-
call that the reason the database needs to be scanned
multiple number of times is because the number of
possible it,emsets to be t#ested for support is exponen-
tially large if it must be done in a single scan of the
database. However, suppose we are given a small set,
of potentially large itemsets, say a few thousand item-
sets. Then the support for them can be tested in one
scan of the database and the actual large itemsets can
be discovered. Clearly, this approach will work only if
the given set contains all actual large itemsets.

Partition algorithm accomplishes this in two scans
of the database. In one scan it generates a set of all po-
tentially large itemsets by scanning the database once.
This set is a superset of all large itemsets, i.e., it, may
contain false positives. But no false negatives are re-
ported. During the second scan, counters for each of
these itemsets are set ,up and their act*ual support is
measured in one scan of the database.

The algorithm executes in two phases. In the first
phase, the Partition algorithm logically divides the
database into a number of non-overlapping partitions.
The partitions are considered one at a time and all

large itemsets for that partition are generated. At the
end of phase I, these large itemsets are merged to gen-
erate a set of all potential large itemsets. In phase II,
the act,ual support for these itemsets are generated and
t,he large itemsets are identified. The partition sizes
are chosen such that each partition can be accommo-
dated in the main memory so that the partitions are
read only once in each phase.

We assume the transactions are in the form
(T’ID,ij,ik)...) in). The items in a transaction are
assumed to be kept sorted in the lexicographic order.
Similar assumption is also made in [2]. It is straight-
forward to adapt the algorithm to the case where the
transactions are kept normalized in (TID, item) form.
We also assume that the TIDs are monotonically in-
creasing. This is justified considering the nature of the
application. We further assume the database resides
on secondary storage and the approximate size of the

database in blocks or pages is known in advance.

Definition A partition p C V of the da.tabase refers
to any subset of the transactions contained in the
database V. Any two different partitions are non-

overlapping, i.e., pi I-I pi = O,i # j. We define local

support for an itemset as the fraction of transactions
containing that itemset in a partition. We define a

434

ci Set, of local candidate k-itemsets in partition p

L; Set of local large k-itemsets in partition p

LP Set, of all local large itemsek in partition p

ck” Set of global candidate k-itemsets

CG Set of all global candidate itemsets

L,G Set of global large k-itemsets

Table 1: Notation

1) P = partition-database(D)
2) n = Number of partitions

3) for i = 1 t,o n begin // Phase I

4) readin-partition@, E P)

5) L’ = gen-large-itemsets

6) end

7) for (i = 2; L;1 # 0, j = 1, 2, . . , n; i++) do

8) Cp = u~=~,z,...,~L~ // Merge Phase
10) for i = 1 to n begin // Phase II

11) readin-partition(pi E P)

12) for all candidates c E CG gen-count(c, p;)

13) end

14) LG = {c E CGlc.count, 2 minSup}

Figure 1: Partition Algorithm

local can.didate itemset to be an it#emset, that is being

test.ed for minimum support within a given partition.
A local large itemset is an itemset whose local support,

in a partition is at, least the user defined minimum

support’. A local large it.emset may or may not be

large in the cont,ext of the entire database. We define

global support, global large itemset, and global candi-

date itemset as above except they are in the context
of the entire database 2). Our goal is to find all global

large itemsets.

We use the notation shown in Table 1 in this pa-
per. Individual itemsets are represented by small let-
ters a.nd sets of itemsets are represented by capital
letters. When there is no ambiguity we omit the parti-

tion number when referring to a local itemset. We use

the hotation c[l].c[2]. . .c[/c] to represent a le-itemset c
consisting of items c[l], c[2], . ., c[lc].

Algorithm The Partition algorithm is shown in Fig-
ure 1. Initially the database 2) is logically partitioned

into n partitions. Phase I of the algorithm takes rz it-
erations. During iteration d only partition pi is consid-
ered. The function genlargeitemsets takes a par-
tition pi as input and generates local large itemsets of

all lengths, Li, Li, . . , Lj as the output. In the merge

2The minimum support is specified as a ratio, e.g., 2 %,

0.0037, etc

procedure gen_largeitemsets(p: database partition)
1) Ly = {large l-itemsets along with their tidlist,s}

2) for (k = 2; Lf # 0; k++) do begin

3) forall itemsets 11 E I,:-1 do begin

4) forall itemsets 12 E Li-, do begin

5) if 11[1] = 12[1] A 11[2] = 1,[2] A.. A

11[k - 21 = lz[k - 21 A 11[k - l] < lz[li - 1] then

6) c = 11 [l] . 11[2] . . .lI [k - 11 . lz[k - l]

7) if c cannot be pruned then

8) c.tidlist = 11 .tidlistnl, .tidlist,

9) if Ic.tidlist 1 / IpI 2 mirzSvp then

10) L; = LE u {c}

11) end

12) end
13) end
14) return UkLE

Figure 2: Procedure gen-largeitemsets

phase the local large itemsets of same lengths from
all n partitions are combined to generate the global
candidate itemsets. In phase II, the algorithm sets up

counters for each global candidate itemset, and counts
their support for the entire database and generat,es t#he
global large itemsets. The algorithm reads t,he entire
database once during phase I and once during phase

II.

Correctness The key to correctness of the above
algorithm is that any potential large itemset appears
as a large itemset in at least one of t#he partitions. A
more formal proof is given in [ll].

3.1 Generation of Local Large Itemsets

The procedure genlargeitemsets takes a. part.it,ion
and generat#es all large itemset,s (of all lengt#hs) for tha.t
partition. The procedure is shown in Figure 2. Lines
3-8 show the candidate generation process. The prune

step is performed as follows:

prune(c: k-itemset)
forall (Ic - 1)-subsets s of c do

ifs $ Lk-1 then

return “c can be pruned”

The prune step eliminates extensions of (% - l)-

itemsets which are not found to be large, from being
considered for counting support. For example, if L:

is found to be ((1 2 3}, (1 2 4}, (1 3 4}, (1 3 5}, (2
3 4}}, the candidate generation initially generates the

itemsets (1 2 3 4) and { 1 3 4 5). However, it,emset
{ 1 3 4 5) is pruned since { 1 4 5) is not in LE. This
technique is same as the one described in [2] except
in our case, as each candidat,e itemset is generated, its

count is determined immediately.
The counts for the candidate itemsets are generated

as follows. Associated with every itemset, we define

435

1) forall 1-itemsets do

2) generate the tidlist
3) for(k = 2; Cp # 0; k++) do begin

4) forall k-itemset c E Cf do begin

5) templist = c[l].tidlist nc[2].tidlist n . . . n c[k].t,idlist

6) c.count = c.count + 1 templist 1

7) end
8) end

Figure 3: Procedure gen-final-counts

a st,ructure called as tidlisf. A tidlist for itemset 1
cont,ains the TIDs of all transactions that contain the
itemset 1 wit,hin a given partition. The TIDs in a tidlist
are kept in sortsed order. Clearly, the cardinality of the
tidlist, of an itemset divided by the total number of
transactions in a partition gives the support for that
it,emset, in tha.t partition.

Initially, the tidlist,s for 1-itemsets are generated di-
rectly by reading the partition. The tidlist for a can-
didate k-itemset, is generat,ed by joining the tidlists of
the t,wo (Ic - l)- t i emsets that were used to generate the

candidate Ic-itemset. For example. in the above case
the tidlist for the candidate itemset (1 2 3 4) is gen-
erated by joining the tidlists of itemsets (1 2 3) and
(12 4).

Correctness It has been shown in [2] that the ca.n-

didate generation process correctly produces all poten-
tial large candidate itemsets. It is easy t,o see that the
intersection of tidlists gives t,he correct support for an

it#emset .

3.2 Generation of Final Large Itemsets

The global candidate set is generated as the union of
all local large itemsets from all partitions. In phase
II of t,he algorithm, global large itemsets are deter-

mined from the global candidate set. This phase also
t,akes n (number of partitions) iterations. Initially, a
counter is set up for each candidate itemsets and ini-
tialized to zero. Next, for each partition, tidlists for all

l-itemsets are generated. The support for a candidat,e
it,emset in that partition is generated by intersecting

the tidlists of all l-subsets of that itemset. The cumu-
lative count gives the global support for the itemsets.
The procedure genfinal-counts is given in Figure
3. Any other technique such as the subset operation
described in [2], can also be used to generate global

counts in phase II.

Correctness Since the partitions are non-

overlapping, a cumulative count over all partitions
gives the support for an itemset in the entire database.

3.3 Discovering Rules

Once the large itemsets and their supports are det,er-
mined, the rules can be discovered in a straight forward
manner as follows: if I is a large itemset, then for ev-
ery subset a of I, the ratio support(l) / support (a) is
computed. If the ratio is at least equal to the user spec-
ified minimum confidence, them t,he rule a =+ (1- a)
is output. A more efficient algorithm is described in

PI.
As mentioned earlier, generating rules given the

large itemsets and their supports is much simpler com-
pared to generating the large it,emsets. Hence we have
not attempted to improve this step further.

3.4 Size of the Global Candidate Set

The global candidate set contains many itemsets which
may not have global support (false candidates). The
fraction of false candidat,es in the global candidat,e set
must be as small as possible otherwise much effort may
be wasted in finding the global supports for those itsem-
sets. The number of false candidates depends on many

factors such as the characteristics of the data, how the
data is partitioned, number of partitions, and so on.
In t,his se&ion we study the effects of partition size
and data skew on the size of the global candidate set.

As t,he number of partitions is increased, the num-
ber of false candidates also increases and hence the
global candidate size also increases. However, its size
is bounded by n times the size of the largest set of local
large itemsets, where n is the number of partitions.

The local large itemsets are generated for the same

minimum support as specified by the user. Hence this
is equivalent to generating large itemsets with that
minimum support for a database which is same as the
partition. So, for sufficiently large partition sizes, the
number of local large itemsets is likely to be compara-
ble to the number of large itemsets generated for the

entire database.

Additionally, if the data characteristics are uniform
across partitions, then a large number of the itemsets
generated for individual partitions may be common.
Hence the global candidate set may be smaller than
the above limit.

In Table 2 we show the variation in the size of the
local large itemsets and the global candidate sets for

varying the number of partitions from 2 to 30. The
database contained 100,000 transactions3. The mini-
mum support was set at 0.75 %. It can be seen from
the table that as the number of partitions increases,
both the variation in the sizes of local large sets and
the size of the global candidate set increases. However,

there is a large overlap among the local large itemset,s.

3The dataset used was Tl0.14.100K described in Section 4.1

436

Number of Size of Average Size of CG

Partitions Largest Lp size of Lp
2 91 89.0 93

4 100 82.5 108

7 131 97.0 144

10 149 109.1 170

20 273 211.9 381

30 463 344.1 673

Table 2: Variation of Global and Local set#s against
the number of partitions.

For example, consider the case where number of parti-

tions is set to 10. The number of large itemsets for all
partitions combined is 109.1 x 10 = 1091. However,
the union of these itemsets (globa, candidate set) is
only 170.

It, should be noted t&hat when the partition sizes
are sufficiently large, the local large itemsets and the

global candidabe itemsets are likely to be very close
to the actual large itemsets as it t,ends to eliminate

the effects of local variations in data. For example,
when the number of partitions is 30 in Table 2, each

partition contains 100,000 / 30 = 3,333 transactions,
which is too small and hence t,he large variations.

3.4.1 Effect of Data Skew

The sizes of t,he local and global candidate sets ma,y
be suscept,ible t,o dat,a skew. A gradual change in
data characteristics, such the average length of trans-
actions, can lead to the generation of a large number

of local large sets which may not have global support.
For example, due to severe weather conditions, there
may be an abnormally high sales of certain items which
may not be bought during the rest of the year. If a
partition comprises of data from only this period, then
certain itemsets will have high support for that parti-
tion, but will be rejected during phase II due to lack of
global support. A large number of such spurious local
large itemsets can lead to much wasted effort,. Another
problem is that fewer itemsets will be found common
between partitions leading to a larger global candidate

set,.

The effect of data skew can be eliminated to a large

extent by randomizing the data allocated to each par-
tition. This is done by choosing the data to be read
in a partition randomly from the database. However,
to exploit sequential I/O, the minimum unit of data
read is equal to the extent size. Given the size of the
database in number of extents and the number of parti-
tions, the algorithm initially assigns extents randomly
to the partitions. No extent appears in more than one
partition.

The effect of sequentially reading the data vs. ran-

Table 3: Effect of data skew: generating partitions
sequentially vs. randomly

domly picking the blocks for a highly skewed dataset,
is shown in Table 3. To simulat#e data skew, the av-
erage lengths of transactions are varied from 5 to 20.
The size of the database is about 41 Mbytes cont,ain-
ing about 600,000 transactions. The minimumsupport
was fixed at 0.75 %. In the first set of experiments, we
generated the partitions by reading the blocks sequen-

tially. In the second set, the partitions are generated
by choosing the blocks randomly from the database.

The number of partitions was varied from 5 to 30. The
table shows the sum of local large itemset for all parti-
tions and the size of the global candidat,e set. It is clear
that randomly reading the pages from the dateabase is
extremely effective in eliminating data skew.

3.5 Data Structures and Implementation

In this se&on we describe the da.ta structures and the

implement,ation of our algorithm.

3.5.1 Generating Local Large Itemsets

To efficiently generate the candidate itemsets by join-
ing the large itemsets, we store the itemsets in sort#ed

order. We also store references to the itemsets in a
hash ta.ble for performing pruning efficiently.

For computation of the intersection, the tidlists are
maintained in sorted order and sort-merge join algo-
rithm is used. The resulting tidlists are also in the
sorted order. The intersection operation in this case
involves only the cost of traversing the two lists once.

3.5.2 Generating the Global Candidate Set

Initially the global candidate set is empty. All local

large itemsets of the first partition are added to the
global candidate set. For subsequent partitions the
local large itemsets are added only if the itemset is
not already included. The candidate itemsets are kept
in a hash table to perform this operat#ion efficiently.

It is possible to prune the global candidate set by
eliminating (a) itemsets for which the global support
is known and (b) itemsets which cannot possibly have

437

the required global support. The first case arises when

an itemset is reported as large in every partit,ion. Since
the counts for that itemset in every partition is known,

its global support is already known. The second case
arises when an itemset is reported as large only in very
few partitions and further their supports in those par-
titions are only slightly above the minimum support.
Many of these itemsets cannot possibly have the global
support. For example, suppose there are 20 partitions
and the minimum support in each partition is 500. If
an itemset is found to be large in only one partition

and its support in that partition is 510, then it cannot

have global support beca,use its support in all other
partitions can be at most 499 so that its global sup-
port is less than 10,000. For each local large itemset,
we maint,a.in its cumulative support and the number
of partitions it was reported as large during merging.
These counts are used to perform the pruning as de-
scribed in [ll].

3.5.3 Generating Final Counts

The data structures used for the final counting phase
are similar to those used during phase I. Initially, a

counter is set up for each itemset in the global candi-

date set. The tidlists for all 1-itemsets are generated
directly by reading in a partition. The local count,

for an itemset is generated by joining the tidlists of
all 1-itemsets contained in that itemset. For exam-
ple, to generate the count for (1 2 3 4) the tidlists of
itemsets {l}, {2}, (3) and (4) are joined. The cumu-
lative count from all partitions gives the support for
the itemset in the database.

To optimize the number of joins performed during

this st,ep, the counts for the longest itemsets are gen-
erated first. The intermediate join results are used to

set the counts for the corresponding itemsets. For ex-
ample, while generating the count for (1 2 3 4}, the
counts for itemsets { 1 2) and { 1 2 3) are also set. The
it,emset,s are kept in a hash table to facilit,ate efficient

lookup.
Unlike phase I, the partitions for this phase can be

obtained by reading the database blocks sequentially.
Additionally, the size of the partit#ions may be different

from those used in phase I.

3.6 Buffer Management

A key objective of the Partition algorithm is to re-

duce disk I/O as much as possible. To achieve this

objective, the partitions are chosen such that all data
structures can be accommodated in t#he main mem-
ory. However, the number of large itemsets that will
be generated cannot be estimated accurately. In some
situations it may be necessary to write the temporary

data to disk.

The buffer management technique in phase I is sim-

ilar to the one described in [a]. However, in Partition

algorithm there is no separate step for counting the
supports. As each local candidate k-itemset is gener-
ated, its count is also immediately generated. Hence in
some iteration k, we need storage for the large (Ic - I)-
itemsets that were generated in the previous iteration
and their associated tidlists. Among these, only those
itemsets for which the first L - 2 items are the same
are needed in main memory.

For the merge phase, we need space for at least

t,hose global candidate itemset,s and local large item-
sets that are of same length and have items in com-

mon. For phase II, we need space for the t,idlists of
only 1-itemsets and the the global candidat.e set,. We
t,ry to choose the partition sizes such that they can be
accommodated in the a.vailable buffer space.

3.7 Choosing the Number of Partitions

We have described how partitioning can be effectively
used for reducing the disk I/O. However, how do we
choose the number of partitions? In this section we
describe how to estimate the partition size from system

parameters and compute the number of partitions for
a given database size.

For a small database, we may process the entire

database as a single partition. As the database size
grows, the size of the tidlists also grows and we may no
longer be able to fit in main memory the tid1ist.s that
are being joined. This leads to thrashing and degra-
dation in performance. We must choose the partition
size such that at least those itemsets (and their tidlists)
that are used for generating the new large itemsets can
fit in main memory.

As noted in Section 3.6, in iteration k we need to

keep in main memory at least all large (k - 1)-itemsets
in which the first k - 2 items are common. We assume
the number of such itemsets is at most a few thousand.
We use heuristics to estimate the pa,rtition size based
on the available main memory size and the average
length of transactions.

Sampling can also be used to estimate the number of

large itemsets and their average support which can be
used t,o compute the partition size. We are exploring
this approach as part of the future work.

4 Performance Comparison

In this section we describe the experiments and the

performance results of our algorithm. We also com-
pare the performance with the Apriori algorithm. The
experiments were run on a Silicon Graphics Indy
R4400SC workstation with a clock rate of 150 MHZ
and 32 Mbytes of main memory. The data resided on
a 1 GB SCSI disk. All the experiments were run on

438

1) L1 = {large l-itemsets};
2) for (k = 2; L&-l # 0; k++) do begin

3) ck = apriori-gen(Lk-1);

4) forall transactions t E 2, do begin
5) Ct = subset,(Ck, t);

6) forall candidates c E C, do

7) c.count,++;

8) end

9) LI; = {c E Cklc.count > MinSup}
lO)end
ll)Answer = U&k;

Figure 4: Algorithm Apriori

synthetic data. For the performance comparison ex-

periments, we used t,he same synthetic data sets as in

PI.
Both Apriori and AprioriTid algorithms were im-

plemented as described in [2]. Our initial experiments
showed that the performance of Apriori is superior to
that of AprioriTid confirming the results reported in
[2]. Hence, in the following experiments we have lim-
it,ed the comparison to Apriori algorithm. The syn-
thetic data generation procedure is described in detail
in [a]. In the following section, we describe Apriori al-

gorithm and th e synthetic data generation procedure

for the sake of completeness.

The Apriori algorithm is shown in Figure 4. The

procedure apriori-gen is similar to the candidat,e
generation step described earlier. The subset oper-
ation is performed using bit fields and hashtree struc-
ture as described in [2].

4.1 Synthetic Data

The synt,het,ic data is said to simulate a customer buy-
ing patt#ern in a retail environment. The length of a
transaction is determined by Poisson distribution with

mean p equal to 17’1. The transaction is repeatedly
assigned items from a set of potentially maximal large
itemsets, 7 until the length of the transaction does
not exceed the generat#ed length.

The length of a.n itemset in 7 is determined accord-

ing to Poisson distribution with mean p equal t#o 111.
The items in an itemset are chosen such that a fraction
of the items are common to the previous itemset deter-
mined by an exponentially distributed random variable
with mean equal to a correlation level. The remain-

ing items are randomly picked. Each itemset in 7 has
an exponentially distributed weight that determines

the probability that this itemset will be picked. Not
all items from the itemset picked are assigned to the
transaction. It,ems from the itemset are dropped as

long as an uniformly generated random number be-
tween 0 and 1 is less than a corruption level, c. The
corruption level for itemset is determined by a normal

IDI Number of transactions
ITI Average size of transa,ctions
111 Average size of maximal potentially

large itemsets
IL/ Number of maximal pot)entially large itemsets
N Number of items

Table 4: Parameters

Name 1 ITI I III I IDI Size in MB
T5.12.100K 1 5 1 2 1 1OOK 1 2.4

Cilil;
Table 5: Parameter settings

distribution with mean 0.5 and variance 0.1.

4.2 Experiments

Six different data sets were used for performance
comparison. Table 5 shows the names a,nd paramet,er
settings for each dat,a set. For all data sets N was set,
to 1,000 and IL1 was set to 2,000. These datasets are
same as t#hose used in [2] for the experiments.

Figure 5 shows the execution times for the six syn-
thetic datasets for decreasing values of minimum sup-

port. Since the datasets contained about 100,000
transactions with the largest dataset, only about 8.4
MB, we could run the Partition algorithm sett.ing the
number of partitions to 1. However, for comparison,
we also ran the experiments setting the number of par-
titions to 10. These results are indicated as Partition-l
and Partition-10 in the figure. Since we have not, im-
plemented complete buffer and disk management,, we
did not include disk I/O times in the execution times
to keep the comparison uniform.

The execution times increase for both Apriori and
Partition algorithms a.s the minimum support is re-
duced because the total number of large and candi-
date itemsets increase. Also, as the average length of
transactions increase, the number of large and candi-
date itemsets also increase.

For these datasets, Partition-l performed better
than partition-10 in all cases as expected. The reason

is that the Partition-10 t.ests support, for more item-
sets which have only local support but are discarded
in phase II. Except for cases where the minimum sup-
port is high, Partition-l performed better than Apri-
ori. Even Partition-10 performed better than Apriori
in most cases for low minimum support settings. The
reason why Apriori performs better for higher mini-

439

T5.12.100K T10.12.100K

1
2 1.5 1 0.75 0.5 0.33 0.25

Minimum Support (%)

T10.14.100K
20

16

14

g

!z
12

.-
t-

10

a

6

2 1.5 1 0.75 0.5 0.33 0.25 2 1.5 1 0.75 0.5 0.33 0.25
Minimum Support (%) Minimum Support (%)

T20.14.100K
100

90

80

70

g 60

$ 50

40

30

10 I I I
2 1.5 1 0.75 0.5 0.33 0.25

Minimum Support (%)

H 9
5%

E a .- t

7

1 0.75 0.5 0.33 0.25
Minimum Support (%)

T20.12.100K
180

160

120

s a, 100
2

.E 80
I-

60

40 ___.._.. --*

20

T20.16.100K
500, m

450

400

350

c 300

5

if
250

k= 200

150

100

50

n
2 1.5 1 0.75

Minimum Sup:;; (%)
0.33 0.25

Figure 5: Execution times

440

mum support settings is that Partition has the over-
head of setting up the tidlist data structures. How-

ever, at these minimum supports the large and candi-
date itemsets are very few and in some cases none at
all. So, Partition does not benefit from setting up the
data structures. Partition-10 performed worse than
Apriori for the dataset T20.12.1OOK at minimum sup-

port of 0.25 %. The reason was that a large number
of itemsets were found to be locally large which later
turned out to be small. However, this behavior did

not repeat for any other case. We attribute it to the
characteristics of that particular dataset.

At the lowest minimum support setting, the least

improvement was 10 % (10 seconds for Apriori vs. 9

for Partition for TlO.12.100K). The best improvement

was about 81 % (707 seconds for Apriori vs. 97 for
Partition for T20.16.100K). This is an improvement

by a factor of 5.

It should be noted that the improvement in the exe-
cution times for Partition shown in Figure 5 is mainly
due to the reduction in the CPU overhead and not
due to the reduction in I/O. The reason is that the

database is only 8.4 Mbytes which is too small to sig-
nificantly affect the total execution time.

4.2.1 Explanation of Performance

As both Apriori and Partition use same candidate
itemset’ generation technique, the improvement is
mainly due to better technique for generating the

counts. In Apriori algorithm counts are generated
by the subset operation where itemsets from a can-
didate set are compared with all transactions during
each pass for inclusion to determine their counts. The
cost of subset operation per itemset increases in later
passes as the length of the itemsets increase. As an
illustration of the amount of work done for subset step
consider the following example. Assume the number
of candidate itemsets is 1,000 and that there are 1

million transactions in the database. Further, assume

that the hashtree structure eliminates 99 % of the can-
didate itemsets and on an average 4 comparisons are

required to determine if an itemset is contained in a
transaction. This requires 0.01 x 1,000 x 1 million x

4, or 40 million basic integer compare operations. The

cost of traversing the hashtree and initializing the bit
field for every transaction can add substantially to this
figure.

The partitioned approach in our algorithm allows
us to use more efficient data structures for computing
the counts for the itemsets. The cost of generating the
support decreases during later passes as the lengths
of the tidlists become smaller. To illustrate the effi-

ciency of counting using tidlists, consider the above
example. For the purpose of illustration, assume that

Table 6: Number of comparison operations

the number of partitions is 1. Then, in our algorithm
the operation of counting supports involves performing
just 1,000 intersection operations. Assume that each
transaction contains on an average 10 items and that
there are 1,000 distinct items. Then on an average the

length of a tidlist is 1 million x 10 / 1,000, or about

10,000. So the overall cost is about 1,000 x 10,000,
or about 10 million basic integer compare operations.

However, if the number of partitions is more than 1,
this value can be much larger. The above example as-
sumes a very simple scenario and does not include the
cost of setting up the data structures. The actual com-
parisons depend on the parameters used for building
the hashtree, characteristics of the data, etc. How-
ever, it explains why the Partition algorithm performs

better than Apriori.
We have compared the actual number of compar-

isons performed by Partition and Apriori algorithms

for some different support levels for T10.14.100K. The
results are shown in Table 6. It should be noted that

the actual execution times also include generation of
data structures, generation of candidate itemsets, and
in the case of Apriori, traversing the hashtree, etc.
and hence do not reflect the figures shown in the table
which compares only the cost of generating supports.

4.2.2 Improvement in Disk I/O

The Partition algorithm was motivated by the need to
reduce disk I/O. In this aspect it has a clear advantage
over the Apriori algorithm. The Partition algorithm
reads the database at most twice irrespective of (a) the

minimum support and (b) the number of partitions.
Apriori reads the database multiple number of times4.

The exact number depends on the minimum support
and the data characteristics and cannot be determined
in advance.

We measured the number of read requests for data
for both the algorithms for the datasets described in
Table 5. The page size was set to 4Kbytes. The re-
sults are shown in Figure 6. The best improvement

we found was about 87 % for T20.16.100K at mini-

mum support of 0.25 %. This is an improvement by a
factor of 8. The least improvement for this minimum
support was 60 % representing an improvement by a

*Actually when the minimum support is set very high, no
large itemsets are generated. In this case, both algorithms read

the database only once.

441

T5.12.100K T10.12.100K

Partitionf
Apriy -+--

7000

4000

3500

d3000
T)
I

%500

a”
B
-2000
d
E

z’l500

1000

500 I I

2 1.5 1 0.75 0.5 0.33 0.25
Minimum Support (%)

14000

12000

JO000
P
s?
glooo
zi

T10.14.100K

2ool t :-‘--I:\

2 1.5 1 0.75 0.25
Minimum

Sup$?t 0.33
(%)

T20.14.100K

FzZz/\

06000 -
3

,,,’

86000 -
,,,’

/*

$000 -

,/’

,f .._.... -...+,,,’

@ooo - /,’ ,,*’

~0000 5.;’
t

6000

6000 t

4000 1
2 1.5 1 0.75 0.5 0.33 0.25

Minimum Support (%)

,600O

P

k

B

:4000

s3000

k---- 2000

/
1000 ^

2 1.5 1 0.75 0.5 0.33 0.25
Minimum Support (%)

T20.12.100K
14000 ,,+ .-. +- Paimiii.6i+z .-.

,,,’ Apriori +-- -

12000

$1000

~0000

go00

@ooo
t7000

6000 -

5000 -

4000
2 1.5 1 0.75 0.5 0.33 0.25

Minimum Support (%)

T20.16.100K

,H’;j

0' I

2 1.5 1 0.75 0.5 0.33 0.25
Minimum Support (%)

Figure 6: Number of database read requests

442

fa.ct,or of 2.5. Even at t,he median minimumsupport of

O.T5 %, Pa.rtition showed an improvement over Apri-
ori, except for T5.12.100K in which bot,h algorithms
read the database twice. When the support level is
set, very high no itemsets are found to have the re-
quired support. In such cases, both algorithms rea.d
t,he database only once.

4.3 Scale-up Experiments

We have studied t,he scale-up characteristics of the
Partition algorithm by varying the number of trans-

actions from lOO,OOO,to 10 million. All other param-

eter settings were same as T10.14.100K. The results
are shown in Figure 7. The number partitions was
varied from 1 for 1OOK transactions to 100 for 10M
transactions for the Partition algorithm. The execu-
tion times are first normalized with respect to the size
of the database and then with respect execution times

t,aken by t,he Partition algorithm for 100,000 trans-
actions. The initial jump in the execution time (from
about 1.3 to 1.9) is due to the increase in the number of
partitions from 1 to 4. As expected, this increases the
size of the global candidate set and hence an increase
in the execution time. However, as the number of par-

titions is increased, size of the global candidate set
does not increase correspondingly as more and more
local large itemsets are common. The execution time
was relatively linear from 400,000 transactions to 10

million tr;nsactions.
I I

Partition, 0.75% +

r I(
x

AMiori, 0.75% -+--

3.5
Partltion, 0.25% q ---

n^
Apriori, 0.25% x

R =

g 3

r I i
v, I I

1

0.1 0.2 0.4 2
Number of t:ansactions (million?)

10

Figure 7: Number of transactions scale-up

We also studied the performance of the algorithm
for average transaction size and the average size of

maximal potentially large itemset scale-up. For this
experiment, we varied the transaction length from 5
to 50. The size of 111 was varied from 2 to 6. The

physical size of the database was kept roughly con-
stant by keeping the product of the number of trans-
action and t,he average t,ransaction size constant. The
number of transactions varied from 200,000 for the

%
” 40
g

i=
30

20

10

I I

5 IO 20 30 40 50
Transaction Size

Figure 8: Transaction size scale-up

dat#abase with an average transaction length of 5 to

20,000 for the database with the average transaction
length of 50. The minimum support level was fixed in
terms of the number of transactions. We ran the ex-
periments for minimum support levels of 750 and 250.
The results are shown in Figure 8. Partition exhibits
marginally inferior scale-up compared to Apriori when
the minimum support is high (750) as it spends more
and more t,ime initializing the data struct,ures with-
out deriving much benefit in processing cost. How-
ever, for lower minimum support (i.e., high processing
cost), the scale-up is superior to Apriori because the
processing cost increases slower than that of Apriori.

5 Conclusions

We have described an algorithm which is not only ef-
ficient but also fast for discovering associa.tion rules in
large databases. An import,ant, contribut,ion of our ap-
proach is that. it drastically reduces the I/O overhead
associat,ed with previous algorithms. This feat,ure may
prove useful for many real-life database mining scenar-
ios where the data is most often a centralized resource
shared by many user groups, and may even have to
support on-line transactions. Interestingly, this im-

provement in disk I/O is not achieved at the cost of
CPU overhead. We have demonstrated with exten-

sive experiments that the CPU overhead is actually
less than the best existing algorithm for low minimum
supports (i.e., cases which are computationally more
expensive). In addition, the algorithm has excellent.

scale-up property.

The problem of accurately estimating the number of
partitions given the available memory, however, needs
further work. We are currently addressing this prob-
lem. We are also exploring the possibility of combining
our algorithm with the previous algorithms to develop
a hybrid approa,ch which performs best for all cases. In

443

future, we also plan t,o extend t,his work by paralleliz-

ing the algorithm for a shared nothing multiprocessor

machine.

Acknowledgment

We wish to thank Dr. Rakesh Agrawal at IBM Al-

maden Research Center for providing the synthetic
data for running the experiments. The first author
also wishes to thank Sreenivas Gukal for his comments
and suggestions.

References

[l] R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIG-

MOD International Conference on Management

of Data, pages 207-216, Washington, DC, May

26-28 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules in large dat,abases. In
Proceedings of the 20th International Conference

on Very Large Data Bases, Santiago, Chile, Au-
gust 29-September 1 1994.

[3] T. M. Anwar, S. B. Navathe, and H. W. Beck.
Knowledge mining in dat,abases: A unified ap-
proach through conceptual clustering. Techni-
cal report, Georgia Institute of Technology, May

1992.

[4] J. Han, Y. Cai, and N. Cercone. Knowledge
discovery in databases: an at,tribute-oriented ap-
proach. In Proceedings of the 18th International

Conference on Very Large Data Bases, pages 547-
559, Vancouver, Canada, 23-27, August 1992.

[S] M. Holsheimer and A. Siebes. Data mining: The
search for knowledge in databases. Technical Re-
port CS-R9406, CWI, Amsterdam, The Nether-
la.nds, 1993.

[6] M. Houtsma and A. Swami. Set-oriented mining
of association rules. In Proceedings of the Inter-

national Conference on Data Engineering, Taipei,
Taiwan, March 1995.

[7] R. Krishnamurthy and T. Imielinski. Pract(itioner
problems in need of database research. ACM SIG-

MOD Record, 20(3):76-78, September 1991.

[9] A. Savasere, E. Omiecinski, and S. Navathe. An

efficient algorithm for mining association rules in
large databases. Technical Report GIT-CC-95-
04, Georgia. Institute of Technology, Atlanta. GA
30332, January 1995.

[lo] A. Silberschatz, M. Stonebraker, and J. Ullman.
Database systems: achievements and opportuni-
ties. Communications of the ACM, 34(10):110-
120, October 1991.

[ll] M. Stonebraker, R. Agrawal, U. Dayal, E. Nue-
hold, and A. Reuter. Database research at, a
crossroads: The Vienna update. In Proceedings of

the 19th International Conference on Very Large

Data Bases, pages 688-192, Dublin. Irela.nd, Au-
gust 1993.

[12] S. Tsur. Data dedging. IEEE Data Engineering

Bulletin, 13(4):58-63, December 1990.

[13] J. T-L. Wang, G-W. Chirn, T. G. Marr,
B. Shapiro, D. Shasha, and Ii. Zha,ng. Cobinat,o-
rial pattern discovery for scientific data: some pre-
liminary results. In Proceedings of the 1994 ACM

SIGMOD International Conference on Manage-

ment of Data, pages 115-125, Minneapolis, MN,
May 24-27 1994.

[8] G. Piatetsky-Shapiro and W. J. Frawley, editors.
Knowledge Discovery in Databases. MIT Press,
1991.

444

