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Abstract. A data stream is a continuous, huge, fast changing, rapid, infinite 
sequence of data elements. The nature of streaming data makes it essential to 
use online algorithms which require only one scan over the data for knowledge 
discovery. In this paper, we propose a new single-pass algorithm, called DSM-
FI (Data Stream Mining for Frequent Itemsets), to mine all frequent itemsets 
over the entire history of data streams. DSM-FI has three major features, 
namely single streaming data scan for counting itemsets’ frequency information, 
extended prefix-tree-based compact pattern representation, and top-down 
frequent itemset discovery scheme. Our performance study shows that DSM-FI 
outperforms the well-known algorithm Lossy Counting in the same streaming 
environment. 

1   Introduction 

Mining frequent itemsets is an essential step in many data mining problems, such as 
mining association rules, sequential patterns, closed patterns, maximal pattern, and many 
other important data mining tasks. The problem of mining frequent itemsets in large 
databases was first proposed by Agrawal et al. [2] in 1993, and the problem can be defined 
as follows. Let Ψ = {i1, i2, …, in} be a set of literals, called items. Let database DB be a set 
of transactions, where each transaction T consists of a set of items, such that T ⊆ Ψ. Each 
transaction is also associated with a unique transaction identifier, called TID. A set X ⊆ Ψ 
is also called an itemset, where items within an itemset are kept in lexicographic order. A 
k-itemset is represented by (x1, x2, …, xk), where x1 < x2 < …< xk. The support of an 
itemset X, denoted sup(X), is the number of transactions in which that itemset occurs as a 
subset. An itemset X is called a frequent itemset if sup(X) ≥ ms*|DB|, where ms ∈ (0, 1) is 
a user-specified minimum support threshold and |DB| is the size of the database. Hence, 
the problem of mining frequent itemsets is to mine all itemsets whose support is no less 
than ms*|DB| in a large database. 

Recently, database and data mining communities have focused on a new data model, 
where data arrives in the form of continuous streams. It is often referred to data streams or 
streaming data. Many applications generate large amount of data streams in real time, 
such as sensor data generated from sensor networks, transaction flows in retail chains, 



Web record and click streams in Web applications, performance measurement in network 
monitoring and traffic management, call records in telecommunications, etc. Mining such 
streaming data differs from traditional data mining in following aspects [3]: First, each 
data element in streaming data should be examined at most once. Second, memory usage 
for mining data streams should be bounded even though new data elements are 
continuously generated from the data stream. Third, each data element in data streams 
should be processed as fast as possible. Fourth, the results generated by the online 
algorithms should be instantly available when user requested. Finally, the frequency errors 
of the outputs generated by the online algorithms should be constricted as small as 
possible. Hence, the nature of streaming data makes it essential to use online algorithms 
which require only one scan over the data for knowledge discovery. Moreover, it is not 
possible to store all the data in main memory or even in secondary storage. This motivates 
the design for in-memory summary data structure with small memory footprints that can 
support both one-time and continuous queries. In other words, data stream mining 
algorithms have to sacrifice the correctness of its analysis result by allowing some 
counting errors. Consequently, previous multiple-pass data mining techniques studied for 
traditional datasets cannot be easily solved for the streaming data domain.  

In this paper, we discuss the problem of mining frequent itemsets in data streams [8, 6, 9, 
4, 5]. According to the data stream processing model [10], the research of mining frequent 
itemsets in data streams can be divided into three fields: landmark windows model [8], 
sliding windows model [9,5], and damped windows model [6, 4], as described briefly as 
follows. The first scholars to give much attention to mining all frequent itemsets over the 
entire history of the streaming data were Manku and Motwani [8]. The proposed algorithm 
Lossy Counting is a first single-pass algorithm based on a well-known Apriori-property 
[2]: if any length k pattern is not frequent in the database, it length (k+1) super-patterns 
can never be frequent. Lossy Counting uses a specific array-representation to represent the 
lexicographic ordering of the hash tree, which is the popular method for candidate 
counting [2]. Teng et al. [9] proposed a regression-based algorithm, called FTP-DS, to 
find frequent itemsets in sliding windows. Chang and Lee [4] develop an algorithm estDec 
for mining frequent itemsets in streaming data in which each transaction has a weight and 
it decrease with age. In other words, older transactions contribute less toward itemset 
frequencies. Moreover, Chang and Lee [5] also proposed a single-pass algorithm for 
mining recently frequent itemsets based on the estimation mechanism of the algorithm 
Lossy Counting. Giannella et al. [6] developed a FP-tree-based algorithm [7], called FP-
stream, to mine frequent itemsets at multiple time granularities by a novel titled-time 
windows technique.  

In this paper, we present an efficient algorithm DSM-FI for mining all frequent itemsets 
by one scan of the streaming data. DSM-FI has three major features, namely single 
streaming data scan for counting itemsets’ frequency information, extended prefix-tree-
based compact pattern representation, and top-down frequent itemset discovery scheme. 
The experiments show that DSM-FI is efficient on both sparse and dense data streams. 
Furthermore, DSM-FI outperforms the well-known algorithm Lossy Counting for mining 
all frequent itemsets over the entire history of the data streams.  

2   Problem Definition 

Based on the estimation mechanism of the Lossy Counting algorithm [8], we propose a 
new single-pass algorithm for mining all frequent itemsets in data streams based on a 



landmark windows model when a user-specified minimum support threshold ms ∈ (0, 1), 
and a user-defined maximal estimated support error threshold ε ∈ (0, ms) are given. For 
mining all frequent itemsets, a data stream can be defined as follows. 

Let Ψ = {i1, i2, …, im} be a set of literals, called items. Let data stream DS = B1, B2, …, 
BN, …, be an infinite sequence of blocks, where each block is associated with a block 
identifier i, and N is the identifier of the “latest” block BN. Each block Bi consists of a 
timestamp tsi, and a set of transactions; that is, Bi =[tsi, T1, T2, …, Tk], where k ≥ 0. Hence, 
the current length (CL) of the data stream is defined as CL = |B1|+|B2|+…+|BN|. A 
transaction T consists of a set of items, such that T ⊆ Ψ. Moreover, each transaction is 
also associated with a unique transaction identifier, called TID. A set of items X is also 
called an itemset and an itemset X with k items is denoted as (x1x2…xk), such that X ⊆ Ψ. 

Due to the unique characteristics of streaming data, any one-pass algorithms have to 
sacrifice the correctness of their analysis results by allowing some errors. Hence, the True 
support of an itemset X, denoted by Tsup(X), is the number of transactions seen so far in 
which that itemsets occurs as a subset, and the Estimated support of the itemset X, denoted 
as Esup(X), is the estimated true support of X stored in the summary data structure 
constructed by the one-scan approaches, where Esup(X) ≤ Tsup(X). An itemset X is called 
a frequent itemset if Tsup(X) ≥ ms*CL. An itemset is called a sub-frequent itemset if 
ms*CL > Tsup(X) ≥ ε * CL. Furthermore, an itemset is called an infrequent itemset if ε*CL 
> Tsup(X). An itemset is called a maximal frequent itemset if it is not a subset of any other 
frequent itemsets generated so far. 

Hence, given a user-defined minimum support threshold ms ∈ (0, 1), a user-specified 
maximal estimated support error threshold ε ∈ (0, ms) and a data stream DS, our goal is to 
develop a single-pass algorithm to mine all frequent itemsets in the landmark windows 
model of the streaming data using as little main memory as possible. 

3 Algorithm DSM-FI  

Algorithm DSM-FI is composed of four steps: reading a block of transactions (step 1), 
constructing the summary data structure (step 2), pruning the infrequent information from 
the summary data structure (step 3), and top-down frequent itemset discovery scheme (step 
4). Step 1 and step 2 are performed in sequence for a new block. Step 3 and step 4 are 
usually performed periodically or when it is needed. 

3.1 Efficient Mining Frequent Itemsets in Data Streams by DSM-FI 

First of all, we define an in-memory summary data structure called IsFI-forest, and 
describe the construction of ISFI-forest. Then we use a running example to explore it.  
Definition 1: An Item-suffix Frequent Itemset forest (or IsFI-forest in short) is an 
extended prefix-tree-based summary data structure defined bellow. 
1. IsFI-forest consists of a Dynamic Header Table (or DHT in short) and a set of 

Candidate Frequent Itemset trees of item-suffixes (or CFI-trees(item-suffixes)in 
short). 

2. Each entry in the DHT consists of four fields: item-id, support, block-id, and head-
link, where item-id registers the identifier of item, support records the number of 
transactions containing the item carrying the item-id, the value of block-id assigned to 
a new entry is the identifier of current block, and head-link points to the root node of 



the CFI-tree(item-id). Notice that each entry e, for example, of DHT is an item-suffix 
and it is also the root node of the CFI-tree(e). 

3. Each node in the CFI-tree(item-suffix) consists of four fields: item-id, support, 
block-id, and node-link, where item-id is the identifier of the inserting item, support 
registers the number of transactions represented by a portion of the path reaching the 
node with item-id, the value of block-id assigned to a new node is the identifier of 
current block, and node-link links to the next node carrying the same item-id in the 
IsFI-forest. If no such node, the node-link is null. 

4. Each CFI-tree(item-suffix) has a specific Dynamic Header Table with respect to the 
item-suffix (denoted as DHT(item-suffix)); moreover, the DHT(item-suffix) is 
composed of four fields, namely item-id, support, block-id, and head-link. The 
DHT(item-suffix) operates the same as DHT except that node-link links to the first 
node carrying the item-id in the CFI-tree(item-suffix). Notice that |DHT(item-suffix)| = 
|DHT| in worst case, where |DHT| denotes the total number of entries in the DHT.   

The construction of IsFI-forest is described as follows. First of all, algorithm DSM-FI 
reads a transaction T from the current block. Then, DSM-FI projects this transaction into 
small transactions and inserts these transactions into DHT and IsFI-forest. In details, each 
transaction, such as T = (x1x2…xk), in the current block BN is projected into the IsFI-forest 
by inserting k item-suffix transactions in it. In other words, transaction T is converted into 
k small transactions; that is, (x1x2x3…xk), (x2x3…xk), …, (xk-1xk) and (xk). In this paper, these 
small transactions are called item-suffix transactions, since the first item in each 
transaction is an item-suffix of original transaction T. We called this step Item-suffix 
Projection, and denoted it as IsProjection(T) = {x1|T, x2|T, …, xk|T}, where x1|T = 
(x1x2…xk), x2|T = (x2x3…xk), …, xk-1|T = (xk-1xk), xk|T = (xk)}, and T = (x1x2…xk). Algorithm 
DSM-FI drop the original transaction T after IsProjection(T). Next, the set of items in 
these item-suffix transactions are inserted into these CFI-trees(item-suffixes) as a branch 
and updates these DHT(item-suffixes) according to the item-suffixes. If an itemset (i.e., 
item-suffix transaction) share a prefix with an itemset already in the tree, the new itemset 
will share a prefix of the branch representing that itemset. In addition, a support counter is 
associated with each node in the tree. The counter is updated when the next item-suffix 
transaction causes the insertion of a new branch. After pruning all infrequent information 
from the DHT, CFI-tree(item-suffix) and its corresponding DHT(item-suffix), and those 
CFI-trees containing this item-suffix, current IsFI-forest contains all essential information 
about all frequent itemsets of the stream seen so far. Let us examine an example as follows. 

Example 1. Let the first block B1 of the data stream DS be (acdef), (abe), (cef), (acdf), 
(cef), (df), the second block B2 be (def), (bef), (be), ms = 30%, and ε = 25%, where a, b, c, 
d, e, f are items in the stream. Hence, there are six transactions in B1, and four transactions 
in B2. Algorithm DSM-FI constructs the IsFI-forest with respect to the incoming block, 
and prunes all infrequent information from the current IsFI-forest in the following steps. 
Step 1. DSM-FI reads first block into main memory for constructing the IsFI-forest.  

(a) First transaction acdef: First of all, DSM-FI reads the first transaction acdef and calls 
the IsProjection(acdef). Then, DSM-FI inserts these item-suffix transactions, acdef, 
cdef, def, ef and f, into DHT, [CFI-tree(a), DHT(a)], [CFI-tree(c), DHT(c)], [CFI-
tree(d), DHT(d)], [CFI-tree(e), DHT(e)] and [CFI-tree(f), DHT(f)] respectively. The 
result is shown in Figure 1. In the following steps, from Figure 2 to Figure 6, we omit 
the head-links of each DHT(item-suffix) for concise representation. 



(b) Second transaction abe: First, DSM-FI reads the second transaction abe and calls the 
IsProjection(abe). Next, DSM-FI inserts these item-suffix transactions abe, be and e 
into DHT, [CFI-tree(a), DHT(a)], [CFI-tree(b), DHT(b)] and [CFI-tree(e), DHT(e)] 
respectively. The result is shown in Figure 2.  

(c) Third transaction cef: DSM-FI reads the third transaction cef and calls the 
IsProjection(cef). Afterward, DSM-FI inserts the item-suffix transactions cef, ef and f 
into DHT, [CFI-tree(c), DHT(c)], [CFI-tree(e), DHT(e)] and [CFI-tree(f), DHT(f)] 
respectively. The result is shown in Figure 3. 

(d) Fourth transaction acdf: DSM-FI reads the fourth transaction acdf and calls the 
IsProjection(acdf). Then, DSM-FI inserts these item-suffix transactions acdf, cdf, df 
and f into DHT, [CFI-tree(a), DHT(a)], [CFI-tree(c), DHT(c)], [CFI-tree(d), DHT(d)] 
and [CFI-tree(f), DHT(f)] respectively. The result is shown in Figure 4. 

(e) Fifth transaction cef: At this time, DSM-FI reads the fifth transaction cef and calls the 
IsProjection(cef). Then, DSM-FI inserts the item-suffix transactions cef, ef and f into 
DHT, [CFI-tree(c), DHT(c)], [CFI-tree(e), DHT(e)] and [CFI-tree(f), DHT(f)] 
respectively. The result is shown in Figure 5. 

(f) Sixth transaction df: At this time, DSM-FI reads the sixth transaction df and calls the 
IsProjection(df). Then, DSM-FI inserts the item-suffix transactions df and f into DHT, 
[CFI-tree(d), DHT(d)] and [CFI-tree(f), DHT(f)] respectively. The result is shown in 
Figure 6. 

Step 2. DSM-FI prunes all infrequent itemsets from the current IsFI-forest after processing 
the first block B1. At this time, DSM-FI deletes the CFI-tree(b) and its corresponding 
DHT(b), and prunes the entry b from the DHT, since item b is an infrequent item; that is, 
Esup(b) < ε * CL. Then DSM-FI reconstructs the CFI-tree(a) by eliminating the 
information about item b. The result is shown in Figure 7. 
Step 3. DSM-FI reads second block into main memory for constructing the IsFI-forest. 
The construction process of IsFI-forest with respect to block B2 is the same as Step 1 and 
Step2. The result is shown in Figure 8.  

The description, as stated above, is the construction process of IsFI-forest with respect 
to two incoming blocks over a continuous stream of transactions. From this process, we 
can see that one needs exactly one streaming data scan. Now, let us consider the frequent 
itemset discovery principle of DSM-FI discussed below. 

First of all, given an item i (from left to right) in the current DHT, DSM-FI generates 
candidates by a “top-down” approach for minimum enumerating the combination of 
frequent itemsets within the item range of DHT(i). Then DSM-FI checks these candidates 
whether they are frequent ones or not by traversing the CFI-tree(i). The CFI-tree 
traversing principle is described as follows. First, DSM-FI generates a candidate maximal 
frequent itemset, k+1-itemset, containing all items within the DHT(i) (assume that 
|DHT(i)| = k). Second, DSM-FI traverses the CFI-tree via the node-links of the frequent 
item whose support is minimal for counting the estimated support of the maximal 
candidate. After that if the candidate is not a frequent itemset, DSM-FI generates some 
sub-candidates with k items. Next, DSM-FI executes the same CFI-tree traversing for 
itemset counting, until it finds that these sub-candidates, j-itemsets where j ≥ 3, are 
frequent ones. Notice that we can find the set of frequent 2-itemsets by combining the 
item-suffix i with the frequent items within the DHT(i).  



Example 2. Let us mine the frequent itemsets from the current IsFI-forest in Figure 8. Let 
ms be 0.3; that is, minimum support threshold of frequent itemsets from B1 to B2 is 3, but 
in B2 is only 1.2. Now, we start the top-down frequent itemset discovery scheme from 
frequent item a.  At this moment, the frequent itemset is only (a), since the support of 
items, such as c, d, e and f, in the DHT(a) are less than ms * CL.  
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 Figure 3. IsFI-forest construction after inserting 
third transaction cef 
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fifth transaction cef 
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Next, we start the top-down frequent itemset discovery scheme on the frequent item c. 
DSM-FI generates a candidate maximal 3-itemset (cef), and traverses the CFI-tree(c) for 
counting its support. At a result, the candidate (cef) is a (maximal) frequent itemset, since 
its support is 3. Now, DSM-FI generates frequent itemsets {(c), (e), (f), (ce), (cf), (ef), (cef)} 
directly based on the frequent itemset (cef), and stores the maximal frequent itemset (cef) 
in memory for further performance improvement.  

Moreover, we start on the frequent item d, and generate a candidate maximal 3-itemset 
(def). By traversing the CFI-tree(d) using e’s node-link, we find that the candidate (def) is 
not a frequent itemset, since its support is 2. Then we directly generate two frequent 2-
itemsets, (de) and (df), based on the DHT(d). At this moment, DSM-FI generates three 
frequent itemsets {(d), (de), (df)} in CFI-tree(d). 

Furthermore, on item e and f, since their candidate maximal itemsets are subsets of 
previous maximal frequent itemset cef, we do not start the top-down frequent itemset 
mining process. This is because these frequent itemsets are already found by DSM-FI in 
previous phases.  

Finally, we start the top-down frequent itemset mining on item b. DSM-FI directly 
generates a maximal frequent itemset (be), since be is a 2-itemset in CFI-tree(b). 

3.2 Upper Bound of Space Requirement for Mining Data Streams  

For a given DHT generated by DSM-FI, let the number of frequent items in the DHT be k. 
Therefore, we know there are at most C ⎣ ⎦

k
k 2/

 maximal frequent itemsets in the data stream 

seen so far. If we construct an IsFI-forest for all these maximal frequent itemsets, the tree 
has height ⎣k/2⎦. In the first level, there are C ⎣ ⎦ 12/

1
+k  nodes, in the second level, there are 

C ⎣ ⎦ 22/
2
+k  nodes, in the i-th level, there are C ⎣ ⎦ ik

i
+2/  nodes, and in the last level, the ⎣k/2⎦ level, 

there are C ⎣ ⎦
k

k 2/  nodes. Thus, the total number of nodes is 

         C ⎣ ⎦ 12/
1
+k + C ⎣ ⎦ 22/

2
+k + C ⎣ ⎦ ik

i
+2/ +…+ C ⎣ ⎦

k
k 2/  =

⎣ ⎦
∑
=

2/

1

k

i
C ⎣ ⎦ ik

i
+2/         

□ 
The space requirement of DSM-FI consists of three parts: the working space needed to 

create a DHT, and the storage space needed for the set of CFI-trees(i) and their 



corresponding DHT(i), where i =1, 2, …, k. In worst case, the working space for DHT 

requires k entries. For storage, there are at most ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ nodes of the set of CFI-trees, 

and (k2−k)/2 nodes for all DHT(i). Hence, the upper bound of space requirement of DSM-
FI for mining frequent itemsets over the entire history of data streams is 

½(k2+k)+ ⎣ ⎦⎣ ⎦
∑ ∑
= =

+K

j

j

i

ij
iC

1

2/

1

2/ .  

Although the worst-case space complexity, as proved above, of DSM-FI is worse, 
DSM-FI performs better than Lossy Counting algorithm [7] in practice.  

3.3   Maximal Estimated Support Error Analysis 

In this section, we discuss the maximal supprot error of the frequent itemsets generated by 
DSM-FI. Let X.block-id is the block-id of itemset X stored in the current IsFI-forest. 
Moreover, we assume that the average size of each block is a constant value k for simplify 
discussion, that is, each block contains k transactions. Let current block-id of the incoming 
stream be block-id(N). Now, we have the following theorem of maximal error guarantee 
for DSM-FI’s outputs. 
Theorem 1 Tsup(X) − Esup(X) ≤ ε * (X.block-id −1) * k. 
Proof: We prove by induction. Base case (X.block = 1): Tsup(X) = Esup(X). Thus, Tsup(X) 
− Esup(X) ≤ ε * (X.block-id −1) * k. 

Induction step: Consider an itemset (X, X.support, X.block-id) that get deleted for some 
block-id(N)> 1. This pattern was inserted in the IsFI-forest when block-id(N+1) was being 
processed. The pattern X whose block-id is block-id(N+1) in the DHT could possibly have 
been deleted as late as the time when Esup(X) ≤ ε * (block-id(N+1) − X.block-id + 1)*k. 
Therefore, Tsup(X) of X when that deletion occurred was no more than ε * (block-id(N+1) 
− X.block-id + 1) * k. Furthermore, Esup(X) is the estimated true support of X since it was 
inserted. It follows that Tsup(X) which is the true support of X in first block though current 
block, is at most Esup(X) + ε * (block-id(N) −1) * k. Thus, we have Tsup(X) − Esup(X) ≤ ε 
* (X.block-id −1) * k. Hence, there are no false negatives in DSM-FI. 

4 Performance Evaluation 

All the experiments are performed on a 1GHz IBM X24 with 384MB, and the program is 
written in Microsoft Visual C++6.0. To evaluate the performance of algorithm DSM-FI, 
we conduct the empirical studies based on the synthetic datasets. In Section 4.1, we report 
the scalability study of algorithm DSM-FI. In Section 4.2, we compare the memory and 
execution time requested by DSM-FI with Lossy Counting algorithm. The parameters of 
synthetic data generated by IBM synthetic data generator [2] are described as follows. 
   IBM Synthetic Dataset: T10.I5.D1M and T30.I20.D1M. The first synthetic dataset 
T10.I5 has average transaction size T with 10 items and the average size of frequent 
itemset I is 5-items. It is a sparse dataset. In the second dataset T30.I20, the average 
transaction size T and average frequent itemset size I are set to 30 and 20, respectively. It 
is a dense dataset. Both synthetic datasets have 1,000,000 transactions. In the experiments, 
the synthetic data stream is broken into blocks with size 50K (i.e., 50,000) for simulating 



the continuous characteristic of streaming data, where 1K denotes 1,000. Hence, there are 
total 20 blocks in these experiments. 

4.1 Scalability Study of DSM-FI 

In this experiment, we examine the two primary factors, execution time and memory usage, 
for mining frequent itemsets in a stream environment, since both should be bounded online 
as time advances. Therefore, in Figure 9 (a), the execution time grows smoothly as the 
dataset size increases from 2,000K to 10,000K. The default value of minimum support 
threshold ms is 0.01%. The memory usage in Figure 9 (b) for both synthetic datasets is 
stable as time progresses, indicating the scalability and feasibility of algorithm DSM-FI. 
Notice that, the synthetic data stream used in Figure 9 (b) is broken into 20 blocks with 
size 50K. 
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Figure 9. Required resources of DSM-FI for IBM synthetic datasets: (a) execution time, (b) memory 
usage 
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Figure 10. Comparison of DSM-FI and Lossy Counting: (a) Execution time, (b) Memory Usage 



4.2 Comparison with algorithm Lossy Counting  

In this experiment, we examine the execution time and memory usage between DSM-FI 
and Lossy Counting by dataset T30.I20.D1M. In Figure 10 (a), we can see that the 
execution time incurred by DSM-FI is quite steady and is shorter than that of Lossy 
Counting. The experiment shows that DSM-FI performs more efficiently than Lossy 
Counting. In Figure 10 (b), the memory usage of DSM-FI is more stable and smaller than 
that of Lossy Counting. This is because DSM-FI does not need to enumerate all subsets of 
each incoming transaction. The amount of all subsets is an enormous exponential number 
for long transaction. Hence, it shows that DSM-FI is more suitable for mining long 
frequent itemsets in data streams.  

5     Conclusions 

In this paper, we proposed an efficient algorithm DSM-FI to find all frequent itemsets in 
data streams based on a landmark windows model. A new summary data structure IsFI-
forest is developed for storing essential information about frequent itemsets of the 
streaming data seen so far. Experiments with synthetic data datasets show that DSM-FI is 
efficient on both sparse and dense datasets, and scalable to very long data streams. 
Furthermore, DSM-FI outperforms the well-known single-pass algorithm Lossy Counting 
for mining frequent itemsets over the entire history of the data streams. 

References 

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of 
Items in Large Databases. In ACM SIGMOD Conf. Management of Data, 1993. 

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Conf. of the 
20th VLDB conference, pages 487-499, 1994. 

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data 
Stream Systems. In Proc. of the 2002 ACM Symposium on Principles of Database Systems 
(PODS 2002), ACM Press, 2002.9. 

4. J. Chang and W. Lee. Decaying Obsolete Information in Finding Recent Frequent 
Itemsets over Data Stream. IEICE Transaction on Information and Systems, Vol. E87-D, 
No. 6, June, 2004.  

5. J. Chang and W. Lee. A Sliding Window Method for Finding Recently Frequent Itemsets 
over Online Data Streams. Journal of Information Science and Engineering, Vol. 20, No. 
4, July, 2004.  

6. C. Giannella, J. Han, J. Pei, X. Yan and P. S. Yu. Mining Frequent Patterns in Data 
Streams at Multiple Time Granularities. In Proc. of the NSF Workshop on Next 
Generation Data Mining, 2002 

7. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In 
Proc. of 2000 ACM SIGMOD, pages 1-12, 2000. 

8. G. S. Manku and R. Motwani. Approximate Frequency Counts Over Data Streams. In 
Proc. of the 28th VLDB conference, 2002. 

9. W.G. Teng, M.-S. Chen, and P. S. Yu. A Regression-Based Temporal Pattern Mining 
Scheme for Data Streams. In Proc. of the 29th VLDB Conference, 2003. 

10. Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data Streams 
in Real Time. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002. 


