
Research Article

An Efficient Algorithm for On-the-Fly Data Race Detection
Using an Epoch-Based Technique

Ok-Kyoon Ha1 and Yong-Kee Jun2

1Engineering Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju,
Gyeongsangnam-do 660-701, Republic of Korea
2Department of Informatics, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongsangnam-do 660-701, Republic of Korea

Correspondence should be addressed to Ok-Kyoon Ha; jassmin@gnu.ac.kr

Received 23 April 2015; Accepted 21 June 2015

Academic Editor: Rajiv M. Gupta

Copyright © 2015 O.-K. Ha and Y.-K. Jun. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Data races represent the most notorious class of concurrency bugs in multithreaded programs. To detect data races precisely and
e�ciently during the execution of multithreaded programs, the epoch-based FastTrack technique has been employed. However,
FastTrack has time and space complexities that depend on the maximum parallelism of the program to partially maintain
expensive data structures, such as vector clocks. �is paper presents an e�cient algorithm, called iFT, that uses only the epochs of
the access histories. Unlike FastTrack, our algorithm requires�(1) operations to maintain an access history and locate data races,
without any switching between epochs and vector clocks. We implement this algorithm on top of the Pin binary instrumentation
framework and compare it with other on-the-�y detection algorithms, including FastTrack,which uses a state-of-the-art happens-
before analysis algorithm. Empirical results using the PARSEC benchmark show that iFT reduces the average runtime andmemory
overhead to 84% and 37%, respectively, of those of FastTrack.

1. Introduction

Synchronization in parallel or multithreaded programs is an
enforcing mechanism used to coordinate thread execution
and manage shared data in various computational sys-
tems, including HPC (High Performance Computing). How-
ever, multithreaded programs may contain synchronization
defects such as data races, which occur when two concurrent
threads access a shared memory location without explicit
synchronization, and at least one of them is a write. It is well
known that data races are the hardest defect to handle in
multithreaded programs, because of their nondeterministic
interleaving of concurrent threads [1–4].

Dynamic techniques for detecting data races are usually
classi�ed into postmortem methods [4, 5], which analyze
traced information or replay the program a�er execution,
and on-the-�y methods, which use one of the following
techniques: happens-before analysis (like FastTrack [6],
SigRace [7], Dijit+ [3], �readSanitizer [8], etc. [9–13]),
lockset analysis (like Eraser [14]), or hybrid analysis (like

Visual�read [15], Hegrind+ [16–18], MultiRace [19],
AccuLock [20], RaceTrack [21], etc. [22]).

�e main drawback of dynamic detection techniques
is the additional overhead of monitoring program execu-
tion and analyzing every con�icting memory operation. A
sampling approach was introduced to solve the overhead
problem of dynamic data race detection. Sampling-based
techniques [23–25] can be performed e�ciently when testing
multithreaded programs via local thread burst-sampling [24]
or a global execution time sampling strategy [23]. Although
they provide signi�cantly reduced runtime overheads, these
techniques are still ine�ective in detecting data races when
the sampling rates are low.

FastTrack is a state-of-the-art happens-before algo-
rithm and is an improved version of the Djit+ algorithm
with vector clocks (VCs) [26, 27]. �is technique exploits
the idea that full generality of VCs is o�en unnecessary
for data race detection. �e technique replaces heavyweight
VCs with a lightweight identi�er, called an epoch, that
uses only the tuple of the clock value and the thread id.

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 205827, 14 pages
http://dx.doi.org/10.1155/2015/205827



2 Scienti�c Programming

Epoch-based happens-before analysis decreases the runtime
andmemory overhead of almost all VC operations from�(�)
to �(1) in the detection of data races, where � designates the
maximum number of simultaneously active threads during
an execution.However, FastTrack requires a time and space
overhead of �(�) for the shared read accesses to shared
memory locations. �erefore, the overhead problem still
exists, because the small fraction of shared read accesses
make it di�cult to dynamically analyze programswith a large
number of concurrent threads [13].

�is paper presents an e�cient algorithm, called �FT, that
uses only epochs to detect data races.�us, �FT represents an
improvement over the FastTrack method. Our algorithm
maintains only two epochs of earlier read accesses to shared
memory locations, instead of the full VCs, using the le�-of-
relation [11].�us, it requires only�(1) runtime andmemory
overhead to maintain the access history and locate data
races, without any switching between epochs andVCs, unlike
FastTrack. Furthermore, the technique is guaranteed to
report a subset of data races detected by FastTrack.

We implement the new algorithm on top of the Pin
instrumentation framework [28], which uses a just-in-time
(JIT) compiler to recompile target program binaries for
dynamic instrumentation. To compare the accuracy of �FT
for on-the-�y data race detection, we also implement two
other detection algorithms, Djit+ and FastTrack, on top of
the same framework, and employ the same optimized VC
primitives. We compare the e�ciency of �FT with Djit+ and
FastTrack, which use a happens-before analysis to detect
data races. �e experimental results on C/C++ benchmarks
using Pthreads show that our algorithm reduces the runtime
and memory overheads compared with the other algorithms,
while soundly detecting similar data races to FastTrack.

In summary, the contributions of our work are as follows:

(i) �FT provides a signi�cant improvement in e�ciency,
exhibiting an �(1) runtime and memory overhead
for each access history, whereas FastTrack requires
�(�) VC operations.

(ii) �FT matches the well-established precision of
FastTrack, although it uses only two epochs instead
of the full VCs for earlier read accesses to shared
memory locations.

(iii) �FT reduces the average runtime and memory over-
head to 84% and 37%, respectively, of those of
FastTrack.

�e remainder of this paper is organized as follows.
Section 2 discusses important concepts of happens-before
analysis with VCs, and Section 3 introduces the FastTrack
algorithm and its limitations. We present our improved algo-
rithm in Section 4 and evaluate it empirically in Section 5 by
comparing with existing techniques for data race detection.
We introduce some related work in Section 6 and conclude
our argument in Section 7.

2. Background

On-the-�y methods of detecting data races typically use
VCs to precisely analyze the happens-before relation. �is
section presents important rules for allocating VCs to the
concurrent thread segments introduced in this paper and
describes how VCs represent the happens-before relation
during the execution of multithreaded programs.

2.1. Execution of Multithreaded Programs. In this work, we
consider multithreaded programs using the POSIX thread
standard (Pthread) as amodel of concurrent threads. Pthread
is widely used not only on C/C++ applications, but also on
many Unix-like operating systems (Linux, Solaris, Mac OS,
FreeBSD, etc.), because it provides various APIs and libraries
for creating, manipulating, and synchronizing threads.

In a multithreaded program, a block of thread � that is
partially serially executed is represented as a thread segment,
denoted by �. �us, a thread can be represented as a set of
thread segments, denoted by � = �1, �2, . . . , �� (� ≥ 1). A
thread segment � is delimited by thread operations that can
take one of the following forms:

(i) ����(�) models the creation of a thread segment � and
the start of the execution of thread �.

(ii) �	
�(�, �) models the creation of a thread segment �
from the current thread segment � and the start of a
new thread segment �� on the same thread �.

(iii) 
	��(�, �)models the termination of a thread segment
� and the creation of a new thread segment �� on the
same thread � from the current thread segment �.

A thread segment � contains a �nite sequence � that consists
of at least one event �, denoted by � = �1, �2, . . . , ��. �� denotes
the sequence of events generated on a thread segment �. An
event takes one of the following forms:

(i) Access Events 
���(�) and�
���(�).�e formermod-
els the reading of a sharedmemory location�, and the
latter simulates the updating of �.

(ii) Mutual Exclusion Events ���(�, �) and 
��(�, �). �e
former models the acquisition of a lock � to enter a
critical section.�e latter models the release of a lock
� to leave a critical section and the start of a new thread
segment �� on the same thread �.

(iii) Condition Variable Synchronization Events ����(�, V)
and ���(�, V). �e former models the wait for con-
dition variable V until another thread wakes V and
the subsequent start of a new thread segment �� on
the same thread �. �e latter models the wake-up of
a thread waiting on V and the start of a new thread
segment �� on the same thread �.

(iv) Barrier Event ��

��
(�, �).�ismodels thewaiting of
multiple threads until the number of waiting threads
is � and the start of a new thread segment on each of
the waiting threads.

In this work, we consider the above thread operations and
events as synchronization primitives rather than access events.



Scienti�c Programming 3

2.2. VC-Based Happens-Before Analysis. Happens-before
analysis uses a representation of Lamport’s happens-before
relation [27] to determine the logical concurrency between
two thread segments. According to this relation, if a thread
segment �must happen at an earlier time than another thread
segment �, � happens before � or�� happens before ��, denoted
by � ℎ���→ � or ��

ℎ���→ ��. If neither � ℎ���→ � nor � ℎ���→ � is
satis�ed, we say that � is concurrent with � or �� is concurrent
with ��, denoted by � ‖ � or �� ‖ ��.

VCs are widely used to analyze the happens-before

relation
ℎ���→, because they can inform the execution order

of thread segments and the synchronization order of thread
operations and events. A vector clock��:Tid → Nat records
a clock value � for each threadwhile the program is executing.
�us, thread segment � maintains a VC �� = ⟨�1, . . . , ��⟩,
which has � entries if the maximum number of active threads
in the execution of a multithreaded program is �. �e VC of
each thread segment is partially ordered (⊑) pointwise, with a
minimum element ⟨0, . . . , 0⟩ and associated synchronization
primitives that de�ne pointwisemaximums. For instance, the
entry ��[�] for any thread segment � stores the latest clock
value of � that happened before the current synchronization
primitive of �.

During program execution, the VCs of the thread seg-
ments are maintained according to the following rules:

(i) init(�)

∀� : ��[�] ←� 0;
��[�] ←� 1;

(ii) fork(�, �)

%���(�);
∀� : ��[�] ←� max{��[�], ��[�]};
��[�] ←� ��[�] + 1;

(iii) join(�, �)

∀� : ��[�] ←� max{��[�], ��[�]};
��[�] ←� ��[�] + 1;

(iv) acq(�, �)

∀� : ��[�] ←� max{��[�], �	[�]},
where �	 is a vector clock for each lock �;

(v) rel(�, �)

�� ←� ��[�] + 1;
∀� : �	[�] ←� max{��[�], �	[�]}.

�e other synchronization events, ����(�, V), ���(�, V), and
��

��
(�, �), can be modeled with the 
	��() operation.

Figure 1 represents a multithread execution with syn-
chronization primitives as a directed acyclic graph, called a
Partial Order ExecutionGraph (POEG) [10, 11]. In the POEG,
a vertex is either a thread operation or a synchronization
event, and an arc represents a logical thread segment started

fork()

fork()

join()

acq()

rel()

acq()

rel()

join()

T

⟨2, 0, 0, . . . ⟩

⟨1, 0, 0, . . . ⟩

⟨1, 1, 0, . . . ⟩

⟨2, 1, 0, . . . ⟩

⟨2, 2, 0, . . . ⟩

⟨3, 0, 0, . . . ⟩
⟨2, 3, 0, . . . ⟩ ⟨2, 2, 1, . . . ⟩

⟨6, 0, 0, . . . ⟩ ⟨2, 4, 1, . . . ⟩

⟨7, 4, 1, . . . ⟩

t1

t2

t3

t6

t7

u1

u2

u3

u4

�1

V

U

r1

r2

r3

r5w4

w6

u
�
1

Figure 1: An example of multithread execution with synchroniza-
tion primitives.

by the synchronization primitives. �e dashed lines indicate
the synchronization order in the execution of the program.
�e events 
 and �, represented by small disks on the arcs,
denote read and write events at a shared memory location,
respectively. �e numbers attached to each thread segment
and event name indicate an observed order, and the VCs are
allocated for each thread segment by the above rules.

Using the VCs of each thread segment, we simply ana-
lyze the happens-before relation between any two thread
segments. If the clock value of a thread segment � is less
than or equal to the corresponding clock value of another
thread segment �, we can conclude that � happens before �.
Otherwise, � is concurrent with �. Formally,

� ℎ�����→ � ≡ ��
ℎ�����→ �� ≡ �� [�] ≤ �� [�]

� ‖ � ≡ �� ‖ �� ≡ (�� [�] >�� [�] ∨�� [�] <�� [�]) .
(1)

Obviously, ��[�] ≤ ��[�] means that thread segment � was
synchronized from an earlier thread segment � by one of the
synchronization primitives.�en,�� is partially ordered with
��, denoted by �� ⊑ ��, and is never involved in any race.
Finally, the happens-before analysis locates a data race during
the execution of a multithreaded program whenever any two
events on two concurrent thread segments access a shared
memory location, and at least one of the events is a write.



4 Scienti�c Programming

De	nition 1. Given two access events �� and �� to a shared
memory location from two distinct thread segments � and
�, respectively, if the two events are not synchronized (i.e.,
neither �� ⊑ �� nor �� ⊑ ��) and at least one of the events is
a write, there exists a data race between �� and ��.

For example, in Figure 1, consider two events 
3 and �4

on two di�erent thread segments �3 and �3, respectively. �e
two events constitute a data race, because neither ��3 ⊑ ��3
nor ��3 ⊑ ��3 is satis�ed, as ��3[�] = 3 > ��3[�] = 2 and
��3[�] = 0 < ��3[�] = 3, and therefore �3 ‖ �3.

3. FastTrack Algorithm

VC-based happens-before techniques, such as Djit+ [3],
obviously require �(�) space to maintain the VCs for each
thread segment and access history and also require�(�) time
for VC operations (e.g., join, copy, and comparison).

FastTrack [6], which improves on Djit+, exploits the
insight that the full generality of VCs is o�en unnecessary for
data race detection. �e key ideas behind this insight are as
follows: (1) all writes to a sharedmemory location� are totally
ordered by a happens-before analysis, which assumes no data
races have been detected on� so far, and (2)writing to� could
potentially con�ict with the last read of � performed by any
other thread, although reads are not totally ordered, even in
race-free programs. By exploiting these results, FastTrack
replaces heavyweight VCs with a lightweight identi�er for
a thread segment, called an epoch, using only the tuple of
clock value � (≡ ��[�]) and thread id �, denoted by �@�.
�us, FastTrack reduces the runtime and space overhead of
almost all VC operations from �(�) to �(1) in the detection
of data races.

For a shared memory location �, the FastTrack algo-
rithm de�nes an access history using two entries:

(i) 0
: it records a VC for all concurrent read events or
an epoch for the last read event of �.

(ii) 2
: it records only an epoch for the last write event to
�.

FastTrack reports data races by analyzing
ℎ���→ and simply

maintains epochs or VCs by updating the access histories. For

the algorithm, some notions are used to analyze
ℎ���→ using the

epoch.�e function3(�) is shorthand for �@�, and3(�) ⪯ ��
denotes that the epoch3(�) happens before a vector clock��,
where 3(�) ⪯ �� if and only if � ≤ ��[�].

When a new event �� occurs on thread segment �, the
algorithm for reporting data races and maintaining each
entry is as follows.

Upon a Read Event of � by 
read �

(1) If the epoch of the current �� is the same as that of 0
,
0
 = 3(�), the algorithm takes no action.

(2) If 0
 ̸= 3(�), then the algorithm checks 2
 ⪯ �� to
report a data race between an earlier write event and
��.

Table 1: Access history states for detecting data races in Figure 1
using the FastTrack algorithm.

�� 0
 2
 Races


1 2@�id ⊥�


2

⟨2, 1, 0, . . .⟩ ⊥�

3 ⟨3, 1, 0, . . .⟩ ⊥�
�4 ⊥� 3@�id 
3 − �4


5 1@Vid 3@�id �4 − 
5
�6 ⊥� 6@�id �4 − �6, 
5 − �6

(3) If 0
 ⪯ �� is satis�ed, only 3(�) is kept in 0
.
Otherwise, ��[�] is updated to 0
, which maintains
a full VC.

Upon a Write Event to � by 
read �
(1) If the epoch of the current �� is the same as that of2
,

2
 = 3(�), then the algorithm takes no action.
(2) If2
 ̸= 3(�), then the algorithm checks2
 ⪯ �� to

report a data race between an earlier write event and
��.

(3) If there exists only one epoch in 0
, then the algo-
rithm checks 0
 ⪯ �� to report a data race between
an earlier read event and ��. Otherwise, the algorithm
checks 0
 ⊑ �� for a full VC maintained in 0
.

(4) �e previous epoch or VC is removed from 0
, and
3(�) is inserted into2
.

Table 1 explains how the FastTrack algorithm reports
data races and manages the access history during the exe-
cution of the program shown in Figure 1. Initially,2
 starts
from ⊥�, indicating that the shared memory location � has
not yet been written. When the �rst read event 
1 occurs on
thread segment �2, the epoch 2@�id is recorded in 0
 instead
of a full VC, where �id indicates the thread id for �2. When the
second read 
2 on thread segment �1 accesses �, 
2 shares �
with the �rst read event 
1, because �2 ‖ �1, where we say
that � is in a Read Shared state. In this state, as read may
consist of either one or more data races with a later write
event, the VCs of all shared reads of � are kept in 0
. �us,
0
 switches to a VC representation ⟨2, 1, 0, . . .⟩ to record the
clocks of the last reads by the two thread segments in Table 1.
With this adaptive switching between epochs and VCs in
0
, FastTrack greatly reduces the overhead of the �(�) VC
operations.

When read event 
3 occurs on �3, ��[�] = 3 is directly
updated in the corresponding entry of 0
, although 0

maintains a VC for the Read Shared state. �us, the updating
takes �(1) time. A data race {
3-�4} is reported because
De�nition 1 is satis�ed (i.e., neither 0
 ⊑ ��3 nor ��3 ⊑ 0

is true) when a write event to � occurs. �e VC of prior read
events in 0
 is removed by resetting 0
 to ⊥�, and the epoch
for�4, 3@�id, is stored in2
. When a read of � occurs on V1,
only the epoch of 
5 is kept in0
, because the read event is not
shared with any others, and a data race {�4-
5} is reported.
Finally, three concurrent events, �4, 
5, and �6, give rise to



Scienti�c Programming 5

two data races, {�4-�6, 
5-�6}, because 3(�3) ⪯ ��6 and
3(V1) ⪯ ��6 are not satis�ed.

A common problem with using VCs for happens-before
analysis is the space and time overhead, which depends
on the number of threads in the multithreaded programs,
whereas the FastTrack algorithmprovides a signi�cant per-
formance improvement over the lockset analysis by utilizing
the lightweight epoch clock. Moreover, it suggests the design
of a hybrid technique with both precision and e�ciency,
such as AccuLock [20]. However, there is further room
for improvement, because the algorithm requires �(�) VC
operations to guarantee no loss of precision when shared data
enters the Read Shared state, such as 
2 and 
3 in Figure 1.
�erefore, the overhead problem still exists, because the
shared read accesses make it di�cult to dynamically analyze
programs with a large number of concurrent threads.

4. Efficient Data Race Detection

FastTrack precisely reports data races with signi�cantly
improved performance, because epochs require only a con-
stant space and a constant time for almost all VC operations.
However, the algorithm still needs VC operations whenever
a shared memory location has shared read events on concur-
rent thread segments. As this situation makes it impossible
to dynamically analyze programs with a large number of
concurrent threads [13], the overhead problem potentially
exists, with the space overhead being more critical than the
time overhead. �us, we e�ciently improve the FastTrack
algorithm to reduce this overhead problem.

Our improved FastTrack (�FT) algorithm reports data
races in a constant amount of time and space, even in the
worst case, because it maintains only two epochs instead of
full VCs for0
 using the le�-of-relation.�enotion of the le�-
of-relationwas originally suggested byMellor-Crummey [11].
Mellor-Crummey’s techniquemaintains two concurrent read
events in an access history to detect data races with a write
event. Techniques based on the le�-of-relation guarantee that
a program is free of data races, although it maintains only
two read events in each access history, because it locates at
least one data race (if any exist). However,Mellor-Crummey’s
technique does not support synchronization primitives other
than fork/join operations, such as thread locking and wait-
signals. Moreover, the le�-of-relation does not apply to VC-
based detectors, because VCs cannot analyze the logical
position of thread segments, unlike Mellor-Crummey’s OS
labeling [11].

We simply de�ne a le�-of-relation that is a partial
ordering of two concurrent thread segments �� and �� for two
distinct events �� on �� and �� on �� in an execution graph,
such as the POEGof Figure 1, and the events are not related to
�� ⪯ ��. To apply the le�-of-relation to the �FT algorithm, we
use a breadth value � instead of the thread id�id of the original
FastTrack algorithm. �e breadth value � is produced by
performing a le�-to-right preorder numbering or an English
Order numbering of the EH labeling scheme [29] and is used
to identify the position of a current thread considering its
sibling threads. If a thread segment �� precedes another thread

segment �� and �� ‖ �� in an execution of a multithreaded
program, �� for �� is less than �� for ��.

�us, an epoch 3(��) of thread segment �� is rede�ned
as the tuple of clock value �� and breadth value ��, denoted
by ��@��. Now, the le�-of-relation between any two thread
segments is simply analyzed by comparing their breadth
values from each epoch.

De	nition 2. Given two read events �� and �� to a shared
memory location on two concurrent thread segments �� and
��, respectively, if �� for 3(��) is less than �� for 3(��), one says
that �� is le� of ��, denoted by �� ⋞ ��. Formally,

�� ⋞ �� =
{
{
{

T (��) = T (��) = 0��� ∧
�� ‖ �� ∧ �� < ��,

(2)

where T(��) represents the event type (read or write) of ��.
By applying the le�-of-relation, we employ the le�most event,
denoted by �	, and rightmost event, denoted by �
, concepts
to maintain only two concurrent events in 0
. We use 0	

and 0

 to denote the le�most event and rightmost event,
respectively, in 0
. If the current event �� satis�es �� ⋞ �	 ⋞ �
,
�� is the le�most event.�is event is recorded in0	
 instead of
�	, where the prior event �	 always satis�es the le�-of-relation
with �
 in 0

; therefore, �	 ⋞ �
. Similarly, the current event
�� is the rightmost event and is recorded in 0

 instead of �
,
if it satis�es �	 ⋞ �
 ⋞ ��.

We now provide a detailed description of how �FT locates
three kinds of data races for concurrent events: read-write
races, write-write races, and write-read races.

Read-Write Races. Detection is possible because a write event
to a shared memory location � can con�ict with prior read
events of � performed by any other thread. To detect read-
write races, we consider two read states: (1) Exclusive state,
where a read event of � is performed exclusively on a thread
segment, and (2) Read Shared state, where � has read events
that are shared by two or more concurrent thread segments.
In the Exclusive state, because read events of � occur on the
same thread, they are totally ordered, and the epoch of the last
read event is recorded in 0
. Read events of � that are shared
bymultiple threads are unordered in a read-onlymanner, and
each read event may consist of a data race with a later write
event.�us, if � is in the Read Shared state, two epochs of the
two concurrent read events are recorded in 0
 by the le�-of-
relation.

Using 0
, which maintains only two epochs instead of a
full VC, �FT detects data races as well as FastTrack, because
it locates one or two of the read-write data races.

Lemma 3. If data races exist between earlier reads and a
current write event �, �FT locates one or two of those located
by FastTrack.



6 Scienti�c Programming

t1 t2 t3 t4

r1 r2 r3

w4 w5

(a)

t1 t2 t3 t4

r1

r2

r3

w4

aqu(l1)
aqu(l1)

aqu(l2)
aqu(l2)

rel(l1)

rel(l1)

rel(l2)
rel(l2)

(b)

sig()

wait()

t1 t2 t3 t4

r1

r2

r3

w4

aqu(l1)

aqu(l1)
aqu(l1)

rel(l1)

rel(l1)

rel(l1)

(c)

Figure 2: Examples of read-write data races.

Proof. Two distinct shared read events toward � are kept
in 0	
 and 0

 by the le�-of-relation. Since 0	
 ‖ 0

, we
guarantee the following:

(1) If 0	

ℎ���→ � and 0

 ‖ �, then �FT reports a data

race between0

 and�, because0	
 ⪯ �, and neither
0

 ⊑ � nor � ⊑ 0

 is satis�ed.

(2) If 0	
 ‖ � and 0


ℎ���→ �, then �FT reports a data

race between0	
 and�, because0

 ⪯ �, and neither
0	
 ⊑ � nor � ⊑ 0

 is satis�ed.

(3) If 0	
 ‖ � and 0

 ‖ �, then �FT reports two data
races between � and both shared read events.

(4) If 0	

ℎ���→ � and 0



ℎ���→ �, then �FT fails to report
any data races.

Figure 2 shows three examples of read-write data
races during the execution of a multithreaded program
with nondeterministic interleaving of concurrent threads.
In Figure 2(a), three shared read events, 
1, 
2, and 
3,
happen before the two write events, �4 and �5. �e le�most
event 
1 and the rightmost event 
3 are kept in 0	
 and 0

,
respectively, by the le�-of-relation. �us, �FT can report a
data race between 
3 and �4, because 
1

ℎ���→ �4 and 
3 ‖ �4.
When �5 occurs on thread segment �4 that is concurrent
with the others, �FT reports two data races {
1-�5, 
3-�5}.

In Figure 2(b), �1 and �4 are synchronized by a lock
variable �1, and �2 is also synchronized with �4 by a lock
variable �2. For the execution of Figure 2(b), �FT records two
read events 
1 and 
3 in 0	
 and 0

, respectively. It reports
only the data race {
3-�4} between 0

 and�4, because 0	
 ⪯
�4 is satis�ed. �erefore, 
1

ℎ���→ �4 by the synchronization
between �1 and �4. �FT records 
2 from �2 in 0	
 instead of 
1
if the acquiring lock �2 is reserved, because 
1

ℎ���→ 
2 by the
thread interleaving �1 → �4 → �2. Finally, �FT reports two
read-write data races {
2-�4, 
3-�4} for the execution.

In Figure 2(c), there are two kinds of synchronization

events, locking and a signal-wait. Because 
1
ℎ���→ 
3 is satis�ed

by lock variable �1, �FT records 
3 in 0	
 as the le�most event,

and 
2 is recorded in 0

. �us, �FT locates no data races,
because 
3

ℎ���→ �4 by the acquiring lock �1, and 
2
ℎ���→ �4

by the signal-wait event. If a pair of wait and signal events
does not occur between �2 and �4, �FT obviously locates the
data race {
2-�4}, as it analyzes that the rightmost event 
2 is
concurrent with �4.

Lemma 4. If data races exist between 0
 and a current write
event, the races located by �FT are a subset of those located by
FastTrack.

Proof. Suppose that the same �xed program execution order
is provided to both analyses. Let %race (Frace) be the set of races
located by �FT (FastTrack), and let %�
(�) (F�
(�)) be the
read events recorded in 0
 by �FT (FastTrack). Because
%�
(�) ∈ F�
(�) in the execution order, we guarantee the
following:

(1) If Frace = H, then %race = H is satis�ed because it is
impossible to satisfy %race ̸= H.

(2) If Frace ̸= H, then %race ̸= H is satis�ed because %race = H
cannot be satis�ed by Lemma 3.

�erefore, %race ⊆ Frace is satis�ed.

For example, in Figure 2(a), the three data races {
3-�4,

1-�5, 
3-�5} located by �FT are a subset of the �ve data races
{
2-�4, 
3-�4, 
1-�5, 
2-�5, 
3-�5} located by FastTrack.
Write-Write Races. �ese involve two concurrent write events
to �. All write events to � are totally ordered, with the
assumption that no data races have been detected on �. �us,
�FT records the epoch of the write event in2
 and locates a
write-write race between 2
 and a later write event to � by
analyzing the epoch of 2
 and the current VC of the write
event,2
 ⪯ ��.
Write-Read Races. �ese involve a write event to � that is
concurrent with a later read event of �. �FT locates such a data
race by analyzing2
 ⪯ ��.



Scienti�c Programming 7

(01) ReadCheck(�, �)
(02) if 3(�) = any epoch kept in 0
 then return;
(03) if2
 K �� then Report a data race;
(04) MaintainAH(0
, 3(�));
(05) End ReadCheck

(01)WriteCheck(�, �)
(02) if 3(�) = 2
 then return;
(03) if2
 K �� or 0
 K �� then Report a data race;
(04) MaintainAH(2
, 3(�));
(05) 0
 ← H;
(06) EndWriteCheck

(01)MaintainAH(NO, �P	�ℎ)
(02) if NO = H or IsMostL(NO, �P	�ℎ) or IsMostR(NO, �P	�ℎ)
(03) or IsOrdered(NO, �P	�ℎ) then NO ← �P	�ℎ;
(04) EndMaintainAH

Algorithm 1: �e �FT algorithms.

Lemma 5. If FastTrack locates a write-write race or a write-
read race during the execution of a program, �FT can locate the
data race from the same 	xed execution.

Proof. Let %�
(�) (F�
(�)) be a write event recorded in2
 by
�FT (FastTrack). �en, Frace = %race holds, because %�
(�) =
F�
(�) in the execution order, and both analyses employ only
2
 ⪯ �� to analyze

ℎ���→.

Algorithm 1 presents the pseudocode for �FT, which
consists of three algorithms: ReadCheck(),WriteCheck(), and
MaintainNO(). ReadCheck() andWriteCheck() mainly focus
on �ltering events, reporting data races, and maintaining
an access history NO for a shared memory location �
whenever an event �� on thread segment � accesses �. To
report data races, we use the inversion of ⪯, denoted by K,
to catch instances where the current event is concurrent with
a prior event. In ReadCheck() and WriteCheck, 2
 K ��
denotes that neither 2
 ⪯ �� nor �� ⪯ 2
 is satis�ed.
IsOrdered() is used by MaintainNO() to check the happens-
before relation between the current event and prior events
in NO. MaintainNO() manages access histories for every �
and employs IsMostL() and IsMostR() to maintain only two
concurrent events in 0
 by applying the le�-of-relation.

Table 2 shows the changing state of an access history
for detecting the data races appearing in Figure 1 using the
�FT algorithm, where we assume that the breadth values are
allocated as � = 0, � = 1, and � = 2. In the �gure, the
epoch of read event 
1 on �2, 2@0, is recorded in 0
, as the
read event of � is performed exclusively. When the rightmost
read 
2 occurs on �1, � enters the Read Shared state. �e
epoch of 
2 (1@1) is recorded with the epoch of 
1, instead
of the full VC of FastTrack in Table 1, because �(
1) = 0
is less than �(
2) = 1, and therefore 
1 ⋞ 
2. Because 
3 is
the last read event on thread � when the event occurs, the
epoch of the prior le�most event 
1 is updated to the epoch
of 
3, 3@0. When �4 occurs on �3, the data race {
3-�4} is

Table 2: Access history states for detecting data races using the �FT
algorithm.

�� 0
 2
 Races


1 2@0 ⊥�

2 2@0 1@1 ⊥�

3 3@0 1@1 ⊥�
�4 ⊥� 3@1 
3 − �4


5 1@2 3@1 �4 − 
5
�6 ⊥� 6@0 �4 − �6, 
5 − �6

reported, as for the FastTrack algorithm.However, �FT only
compares two epochs in 0
 without any VC operations. �FT
also reports the data race {�4-
5} and two data races {�4-�6,

5-�6}, as does the FastTrack algorithm, when 
5 and �6

occur. Consequently, the results in Table 2 show that �FT
detects apparent data races as well as FastTrack, although
the new algorithmmaintains only two epochs for concurrent
read events in 0
.

	eorem 6. �FT e�ciently and soundly locates data races if it
maintains only two epochs in 0
.

Proof. �e �FT algorithm has �(1) time and space overheads
for detecting data races, because it removes the switching
between epochs and VCs for 0
 of the FastTrack algorithm
by maintaining only two concurrent epochs for the Read
Shared state of �. From Lemmas 3, 4, and 5, the algorithm
soundly locates data races because it reports a subset includ-
ing at least one of the data races located by the FastTrack
algorithm.

5. Evaluation

We empirically evaluated the e�ciency and precision of �FT
in comparison with other dynamic detection algorithms that



8 Scienti�c Programming

Multithread
programs

Pin-tool

JIT compiler

Instrumentor

Race Detector

�read
identi�cation

routines

Races
detection 
routines

Logs

Data 
races

�readMonitor

EventMonitor

Figure 3: Overall architecture of a data Race Detector.

use the happens-before analysis. �e experimental results
show that our technique not only soundly reports data races,
but also reduces the time and space overhead of data race
detection for programs with a large number of concurrent
threads.

5.1. Implementation and Experimentation. We implemented
the �FT algorithm and two other dynamic detection algo-
rithms on top of the Pin instrumentation framework [28],
which uses a JIT compiler to recompile target program bina-
ries for dynamic instrumentation. Building a lightweight tool
for monitoring memory access is easier with Pin than with
other dynamic binary instrumentation frameworks, such as
Valgrind [30]. �e two algorithms used for comparison are
Djit+ [3] (a high performance VC-based happens-before
analysis algorithm) and FastTrack [6] (a state-of-the-art
happens-before analysis algorithm).

Figure 3 depicts the architecture of the detectors. Each
detector consists of an Instrumentor and a Race Detector to
report data races during program execution.�e Instrumen-
tor consists of two modules: �readMonitor and EventMon-
itor. �ese, respectively, track thread operations and event
instances for every shared memory location considering
synchronization primitives. �e Race Detector performs the
thread identi�cation routines to generate andmanageVCs for
each active thread segment, as well as the detection routines
to report data races.

�e thread identi�cation routines employ the VC prim-
itives discussed in Section 2. �ese are commonly used to
analyze the happens-before relation in the detection routines
of all algorithms. A lock-free algorithm was used in the
detection routines to remove the centralized bottleneck of
access histories. Whenever the Instrumentor catches one of
the thread operations or events, it calls either the thread
identi�er routines or the detection routines to add instru-
mentation at each interesting point of the running target
binaries. Because the Instrumentor and Race Detector use
only the shadow binaries of the target programs, which are
generated by the JIT compiler of the Pin framework, no
source code annotation is required tomonitormemory access
events or synchronization primitives.

To supplement the correct identi�cation of concurrent
thread segments, we used a special structural table for
each thread. �e table consists of four important items of
information, the system thread id, Pthread id, Pin thread

id, and clock value. �e system thread id is the thread id
allocated by the operating system, and the Pthread id is
allocated by Pthread functions such as pthread create().
�e Pin thread id is the logical identi�er created in sequence
whenever the Pin framework catches a thread start operation.
�us, we employed the Pin thread id as the breadth value ��
of an epoch (��@��) in the �FT algorithm. �e clock value is
used to form a VC of a thread segment using synchronization
primitive operations.

Our experimentation focused on comparing the sound-
ness and the e�ciency of on-the-�y data race detection in
programswith a large number of concurrent threads. To eval-
uate the �FT algorithm, we compared the data races reported
by each detector and measured the execution time and the
memory consumed by the execution instances of a set of
C/C++ benchmarks using Pthread. For this purpose, we used
12 applications from the PARSEC 2.1 benchmark suite [31].
�ese target di�erent areas, includingHPC, with applications
such as data mining, �nancial analysis, and computer vision.
All applications were executed with the default simulation
inputs of the PARSEC benchmark suite to produce proper
runtime overheads and memory consumption.

Before conducting the experiments, we investigated the
benchmark applications in terms of the frequency of access
events and synchronization primitives. �e results of this
analysis with the FastTrack algorithm are given in Table 3.
We used sim-medium simulation inputs in the execution
of each application. In the table, “Same Epoch” means that
read/write events to a shared memory location � have been
�ltered out by FastTrack as they occurred a�er the �rst
read/write event on the same thread segment. “Exclusive”
indicates that only epochs were used to locate data races,
because read/write events exclusively accessed �. “Shared”
indicates the Read Shared state in which � has shared read
events being performed by concurrent thread segments. “VC
Scan” indicates that a current write event was compared with
0
 when � entered the Read Shared state. �us, two memory
operations, Shared and VC Scan, require VC operations that
require �(�) time and space overheads in FastTrack.

From this investigation, we can see that 78.3% of all
operations and events were read events and 21.6% were
write events. Other operations and events accounted for less
than 0.1% of the total. �ese results rea�rm that almost all
parts of data race detection involve tracing access events to
shared memory locations, because this accounts for more



Scienti�c Programming 9

Table 3: Analysis of PARSEC benchmarks using FastTrack.

Applications # of threads
Read (78.3%) Write (21.6%)

Same Epoch Exclusive Shared Same Epoch Exclusive VC Scan

blackscholes 9 99.8% 0.2% 0% 99.0% 1.0% 0%

bodytrack 10 94.5% 2.6% 2.9% 87.9% 10.8% 1.3%

canneal 9 87.7% 7.4% 4.9% 69.3% 23.7% 7.0%

dedup 25 90.8% 8.7% 0.5% 70.2% 29.3% 0.5%

facesim 8 89.8% 10.1% 0.1% 94.2% 5.7% 0.1%

ferret 35 94.9% 3.7% 1.4% 75.7% 19.8% 4.5%

�uidanimate 9 84.8% 10.8% 4.4% 90.0% 9.9% 0.1%

raytrace 9 97.2% 2.7% 0.1% 99.6% 0.4% 0%

streamcluster 17 76.1% 23.3% 0.6% 84.0% 15.3% 0.7%

swaptions 9 99.1% 0.5% 0.4% 95.9% 2.2% 1.9%

vips 4 75.8% 24.2% 0% 1.3% 98.7% 0%

x264 64 97.8% 1.8% 0.4% 95.2% 4.8% 0%

Average 90.7% 8.0% 1.3% 80.2% 18.5% 1.3%

than 99% of operations in the benchmarks. Fortunately, the
convergence ofmemory operations is again removed, as there
is a possibility that this will a�ect the tracing of events for
data race detection. For example, in the table, 90.7% of read
events and 80.2% of write events occurred in the same epoch.
VC operations are rarely needed, accounting for an average
of only 1.3% of all read/write events. �us, the switching
approach in FastTrack is quite e�ective in improving the
performance of happens-before analysis.

�e implementation and experimentation were carried
out on a system with two 2.4GHz Intel Xeon quad-core
processors and 32GB of memory under Linux Kernel 2.6.
We installed the most recent version of the Pin framework
(Version 2.12), and the applications were compiled with
gcc 4.4.4 for all detectors. We used a programmed logging
method to measure the execution time and memory con-
sumption of each application. �is method uses system �les
in the proc directory, which provides real-time information
on the system, including meminfo, iomem, and cpuinfo.
�e average runtime and memory overheads of all applica-
tions were measured for ten executions under each detector.
Figure 4 shows the resulting analyzed information, such as
thread creation, detected data races, execution time, and
memory consumption, during an execution of the x264
application using our implemented �FT detector.

5.2. Results and Analysis

5.2.1. Precision. We acquired the reported data race results to
evaluate the precision of iFT.�ree detectors were applied on
the same Pin framework for fair experimentation. All appli-
cations of PARSEC benchmark were run with sim-medium
simulation inputs, and two real applications were run with
both of server program and several client programs. �e two
real applications used for the experimentation are MySQL (an
open source DBMS) and Cherokee (an open source web
and server application). �ese applications were repeatedly
tested until each detector had �xed all warnings.�e number
of data races located by the three detectors is given in Table 4.

Figure 4: Execution result of the implemented �FT detector.

All of the detectors reported that there were no
data races in six of the applications in the PARSEC
benchmarks, blackscholes, dedup, facesim,
raytrace, swaptions, and vips. �is agrees with prior
research [32], which considered an implementation of
FastTrack on top of the DynamoRIO instrumentation
framework. Djit+ and FastTrack reported exactly the same
data races for all applications, as found in [6, 20], because
these two detectors are based on identical precision. Similarly,
iFT reported the same data races as FastTrack, with the
exception of the bodytrack and x264 applications.

All the detectors located a data race in canneal
and fluidanimate, which run into user-de�ned synchro-
nization functions, such as atomic() and barrier wait(). �ey
reported two data races in ferret; these were caused by
a shared counter variable and a shared Boolean �ag for
a queue in the application. �e three detectors reported



10 Scienti�c Programming

Table 4: Number of data races located on the PARSEC benchmark
and real applications.

Applications # of threads
Detected races

Djit+ FastTrack �FT
PARSEC

blackscholes 9 0 0 0

bodytrack 10 8 8 7

canneal 9 1 1 1

dedup 25 0 0 0

facesim 8 0 0 0

ferret 35 2 2 2

�uidanimate 9 1 1 1

raytrace 9 0 0 0

streamcluster 17 4 4 4

swaptions 9 0 0 0

vips 4 0 0 0

x264 64 3 3 2

Real

MySQL 78 8 8 8

Cherokee 126 7 7 7

four data races for streamcluster. �ese were caused by
using the same user-de�ned synchronization, barrier wait(),
and object pointers to a shared structure without explicit
synchronization. All of the detectors reported eight data
races in MySQL due to object pointers to a shared structure
without any proper synchronization and shared �ags for
thread termination. �e three detectors located seven data
races in Cherokee. A data race in Cherokee was the result
of log corruption similar to a well-known bug in Apache’s
logging code (Apache bug #25520).

For bodytrack, all detectors found six data races, which
were caused by the initialization of objects in shared struc-
tures without synchronization and the misuse of condition
variables. Djit+ and FastTrack also reported two data races
involving two kinds of unprotected counter variables for
a user-de�ned wait-notify operation, whereas iFT reported
only one of the data races. iFT located two data races
for x264, caused by two pointers in di�erent functions that
were referring to a shared structure and its members. �e
pointers allowed the shared memory locations to be con-
currently accessed by read/write events from each function
without any proper synchronization. �e other detectors
reported three data races, including two detected by iFT; the
other one was caused by the same bug via a pointer to the
same shared structure.

In bodytrack and x264, shared read events that are
not the le�most or rightmost events can be exempted from
relevant events of the data race detection process by our
iFT algorithm. Hence, iFT reported fewer data races for
these two applications, and the reported data races were a
subset of those given by FastTrack. For example, in the
result of x264, a prior read access of a shared structure in
a �le (frame.c) was removed from 0
 of an NO, since a
new read access of the same shared structure in another �le

(analyse.c) occurred on the le�most thread. iFT reported
only a data race between the le�most read access and a
later write access to the same shared structure in a �le
(encorder.c), whereas FastTrack reported two data races
between these read accesses and the later write. However, iFT
located the missed data race a�er we had �xed the previously
reported data race by using a local pointer variable.

From this experiment, we can conclude that iFT is sound,
because the precision of the iFT algorithm is �xed relevant to
the well-established precision of FastTrack.

5.2.2. E�ciency. Wemeasured the runtime andmemory con-
sumption of the benchmarks over three detectors to evaluate
the e�ciency of iFT. Figure 5 depicts the measured runtime
and memory overhead results for 11 applications of PARSEC
with sim-medium simulation inputs. �e graph shows the
average runtime andmemory overheads for each of the detec-
tors as a proportion of the original run. Because facesim is
a representative long-running application that uses a small
number of concurrent threads and naturally requires quite
high runtime andmemory overheads for on-the-�y data race
detection, the application was excluded from the e�ciency
test.

From Figure 5(a), almost all of the �FT results are lower
than those of the other detectors. �FT incurred an average
runtime overhead of 8.5x, whereas FastTrack and Djit+

required average runtime overheads of 9.2x and 11.2x, respec-
tively. In particular, iFT required explicitly lower runtime
overheads for two applications, dedup and ferret, which
use more than 20 active threads during program execution.
For instance, iFT incurred an average runtime overhead of
23.5x for dedup, whereas FastTrack and Djit+ incurred
average runtime overheads of 27.6x and 37.3x, respectively.
In the case of ferret, the incurred runtime overhead of
iFT was 7.5x, while FastTrack and Djit+ incurred average
runtime overheads of 10x and 16x, respectively. Several appli-
cations, such as blackscholes, canneal, and raytrace,
have lower overheads than the others because of their model
of parallelism (e.g., fork-join parallelism).

In Figure 5(b), we see that �FT incurred an average
memory overhead of 4.3x, whereas FastTrack incurred
an average memory overhead of 6.0x. �is means that �FT
reduced the average memory overhead to 58% of that of
Djit+ and 72% of that of FastTrack for 11 applications. If we
consider the three applications that use several ten dynamic
threads, �FT incurred an average memory overhead of 1.9x,
while FastTrack required an average memory overhead of
5.4x. �us, the proposed �FT reduced the average memory
overhead to 37% of that recorded by FastTrack.

We measured average memory consumption for two real
applications under our Pin framework. �e results of the
measurement appear in Figure 6. For the experiments,
MySQL used 78 multiple threads during 60 seconds for an
execution, and 126 threads were used for Cherokee. We
employed four monitoring steps, Native, Pin-only, Monitor-
ing, and Detecting, to show how many additional overheads
were incurred by instrumentation work under Pin frame-
work. Native means the original execution without our Pin



Scienti�c Programming 11

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l

d
ed

u
p

fe
tt

er

�
u

id
an

im
at

e

ra
yt

ra
ce

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

vi
p

s

x2
64

Benchmarks

Time overheads

0

5

10

15

20

25

30

35

40
2.

8

6.
5

37
.3

27
.6

23
.5

16
.3

15
.5 17

.0

17
.7

17
.2

18
.2

12
.6

12
.8

14
.0

13
.5

10
.0

10
.0

9.
8

8.
8

8.
3

7.
5

7.
4

7.
9

5.
9

5.
7

1.
8

1.
7

1.
6

1.
2

1.
2

1.
22.

7
2.

6

iFT

Djit+

FastTrack

(a) Average runtime overhead

Memory overheads

0

5

10

15

20

25

30

35

4.
0

1.
7

28
.9

23
.8

30
.8

1.
9

1.
73.

6
3.

0 3.
8

3.
4

3.
0

8.
6

1.
34.

2

7.
4

6.
4

5.
6

3.
4 5.

2

4.
8

3.
1

1.
4

15
.6

9.
0

2.
94.

4
2.

9 3.
6

3.
2

2.
73.
3

3.
3

b
la

ck
sc

h
o

le
s

b
o

d
yt

ra
ck

ca
n

n
ea

l

d
ed

u
p

fe
tt

er

�
u

id
an

im
at

e

ra
yt

ra
ce

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

vi
p

s

x2
64

Benchmarks

iFT

Djit+

FastTrack

(b) Average memory overhead

Figure 5: Measured runtime and memory overhead results for 11 benchmarks of PARSEC.

Applications

M
em

o
ry

 c
o

n
su

m
p

ti
o

n
s 

(M
B

)

2500
3000
3500
4000

2000
1500
1000

500
0

MySQL Cherokee

462
669 708

999 930
780

1355
1587

1786

4155

3282

2431

Native

Detecting-FastTrack

Detecting-iFT

Pin-only
Monitoring

Detecting-Djit+

Figure 6:Measuredmemory consumption for two real applications.

framework, and Pin-only indicates the measured results that
the applications were run on the Pin framework without
monitoring and instrumentation work. Monitoring means
that only the thread executions and memory accesses were
traced under the Pin framework. Detecting means that we
measured the memory consumption of the execution of the
applications under the three detectors that were implemented
on top of the Pin framework.

In Figure 6, we see that Pin-only incurred an average
memory consumption of 2.2x and Monitoring incurred an
average memory consumption of 2.6x. iFT incurred an
average memory consumption of 2.8x, whereas FastTrack
incurred an average memory consumption of 3.6x. �is
means that �FT reduced the average memory consumption
to 62% of that of Djit+ and 76% of that of FastTrack for
two applications. If we exclude Pin-only step that incurred
1,128MB in the average case, �FT incurred an averagememory
consumption of 1.7x, while FastTrack required an average
memory consumption of 2.3x. For the two real applications,

iFT reduced the average memory consumption to 49% of
FastTrack.

We chose the x264 application from the PARSEC bench-
mark for additional comparison, because it employs a dif-
ferent number of concurrent threads to process the virtual
pipelined stages for each input frame. In contrast, the other
applications use a �xed number of threads, although they
use di�erent inputs. �e comparison used all six simulation
inputs provided by the PARSEC suite, because these lead to
an increasing thread size in each input frame.

Figure 7 depicts the measured runtime and memory
overhead results for the x264 application. In the experiment,
�FT incurred an average runtime overhead of 6.6x, whereas
the other detectors averaged more than 8x slowdown. In
particular, in the executions with the sim-large input (256
threads), �FT reduces the runtime overhead to 74% of that
of the other detectors. �FT performs well in reducing the
memory overhead, averaging just 1.3x, whereas the memory
overhead of the other detectors increased by a factor of more
than 95% relative to that of �FT. Under �FT, the application
ran with native input using 1,024 concurrent threads, but
the other detectors ran out of memory with the native
input because of the 32GB limitation of our system. In this
case, �FT required a runtime overhead of 11.5x and a memory
overhead of 1.6x to locate two data races. It is noteworthy
that the distinguished performance of �FT is caused by the
elimination of the VC operations used in the FastTrack
algorithm.

�e results in Figure 7 show that �FT reduced thememory
overhead by 11.4x and gave a speedup of 1.3x compared to the
other dynamic detectors.�eoverheads of �FTwere similar to
those of the other algorithms for small-size inputs, as x264
uses fewer than 20 threads for these inputs. However, with
the larger inputs, �FT reduced the runtime and memory
overheads compared to the other detectors. For example, �FT
required just 82% of the runtime and 8% of the memory



12 Scienti�c Programming

6 16 64 256

�e number of threads

Time overheads-x264

17.2

15.7

12.1

2.5

4.6
4.7

8.3

7.9
7.4

iFT

Djit+

FastTrack

(a) Average runtime overheads

6 16 64 256

�e number of threads

Memory overheads-x264

iFT

1.0
2.0
1.5
1.1

1.3

4.2

8.6

1.3

27.8

54.6

Djit+

FastTrack

(b) Average memory overheads

Figure 7: Measured runtime and memory overhead results for x264 application.

overhead of FastTrack for these larger inputs. �e results
emphasize again that �FT is practically useful for detecting
data races on-the-�y in programs with a large number of
concurrent threads.

�e empirical results from Table 4 to Figure 7 show that
our iFT algorithm is a sound andpracticalmethod for on-the-
�y data race detection, because it reduces the average runtime
andmemory overhead to 84% and 37%, respectively, of those
recorded by FastTrack.

6. Related Work

Most prior dynamic techniques have focused on detecting
data races more precisely or e�ciently. Since FastTrack was
introduced, several detectors have been designed to combine
lockset analysis with happens-before analysis by leveraging
the lightweight nature of epochs.

AccuLock [20] was the �rst solution to use this
combined approach, achieving comparable performance to
FastTrack and limited false positives. �is detector applies
a new, e�cient lockset algorithm to FastTrack to enforce
a thread locking discipline. �is uses the notion of potential
data races, called 0-races, in which any two concurrent
read/write events access a shared memory location without a
common lock.�e detector considers the sensitivity to thread
interleaving using thread locking, as it excludes the subset of
happens-before relations found with lock acquirements and
releases from VCs. However, AccuLock still requires �(�)
operations tomaintain an access history and locate data races,
similar to FastTrack.

�readSanitizer [8] is another hybrid detector based
on the same combination approach. �is detector provides
improved precision in the detection of data races by adapting

the fastidious aspect of thread synchronizations and race
patterns appearing in C/C++ applications. However, unlike
AccuLock, it uses VCs to analyze the happens-before
relation and multiple locksets for concurrent writes. �us,
the detector o�ers the same time and memory overhead
as earlier hybrid detectors such as MultiRace [3]. Recently,
a new version of �readSanitizer was released (but not
reported o�cially). �is included the FastTrack algorithm
and epochs instead of the VCs of the old version.

In our prior work [33], we presented an on-the-�y
Race Detector for OpenMP programs. �is detector uses a
thread identifying technique to analyze the happens-before
relation and a data race detection protocol that utilizes the
lockset analysis. A signi�cant improvement in e�ciency was
obtained because the le�-of-relation was also applied to
the protocol, and it is able to precisely report data races
for OpenMP programs with a large number of concurrent
threads. However, our prior detector may lose its soundness
or e�ciency when handling general threading models, like
Pthread, because it only considers the structured fork-join
parallel program model, such as OpenMP.

7. Conclusion

�ere is a trade-o� between e�ciency and precision in the
detection of data races using the happens-before or lockset
analysis. FastTrack is the fastest happens-before analysis
algorithm to provide comparable performance to the lockset
analysis. However, there is still room for improvement, as the
algorithm requires someVCoperations. In this paper, we pre-
sented an improved FastTrack algorithm, called �FT, that
uses only the epochs in each access history by applying the
le�-of-relation. �is algorithm is practically sound, needing



Scienti�c Programming 13

only an �(1) runtime and memory overhead to maintain an
access history and providing similar performance to the well-
established FastTrack algorithm.

We implemented our algorithm as a Pin-tool on top of
the Pin instrumentation framework and compared it empiri-
cally with other detection algorithms, including FastTrack.
Empirical results from a set of C/C++ benchmarks showed
that our �FT algorithm is a practical and sound method for
on-the-�y data race detection, reducing the average runtime
and memory overhead to 84% and 37%, respectively, of
those required by FastTrack. �is low overhead of the �FT
algorithm is signi�cant, because it can be used for on-the-�y
detection based on both happens-before analysis and a hybrid
technique, as presented here for an empirical comparison
of e�ciency. �us, we believe that the light weight of �FT
algorithm can apply to production algorithms which include
fault tolerance techniques and testing tools for developing
dependable so�ware as well as safety critical so�ware such
as avionics and nuclear power systems. Future work will
focus on improving the �FT algorithm via a hybrid detection
technique, similar to that of AccuLock but without the
false positive problem, and the enhancement of precision
to handle more variant synchronization primitives, as in
�readSanitizer.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgment

�is research was supported by the Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2014R1A1A2060082).

References

[1] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “A theory of data
race detection,” in Proceedings of the Workshop on Parallel and
Distributed Systems: Testing and Debugging (PADTAD ’06), pp.
69–78, ACM, New York, NY, USA, 2006.

[2] R. H. B. Netzer and B. P. Miller, “What are race conditions?:
some issues and formalizations,” ACM Letters on Programming
Languages and Systems, vol. 1, no. 1, pp. 74–88, 1992.

[3] E. Pozniansky and A. Schuster, “E�cient on-the-�y data race
detection in multithreaded c++ programs,” in Proceedings of
the 9th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’03), pp. 179–190, ACM, June
2003.

[4] X. Zhou, K. Lu, X. Wang, and X. Li, “Exploiting parallelism
in deterministic shared memory multiprocessing,” Journal of
Parallel and Distributed Computing, vol. 72, no. 5, pp. 716–727,
2012.

[5] M. Ronsse and K. De Bosschere, “RecPlay: a fully integrated
practical record/replay system,”ACMTransactions onComputer
Systems, vol. 17, no. 2, pp. 133–152, 1999.

[6] C. Flanagan and S. N. Freund, “FastTrack: e�cient and precise
dynamic race detection,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (PLDI ’09), pp. 121–133, ACM, June 2009.

[7] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas, “Sigrace: signa-
turebased data race detection,” SIGARCH’s Computer Architec-
ture News, vol. 37, no. 3, pp. 337–348, 2009.

[8] K. Serebryany and T. Iskhodzhanov, “�readsanitizer—data
race detection in practice,” in Proceedings of the Workshop on
Binary Instrumentation and Applications (WBIA ’09), pp. 62–71,
ACM, New York, NY, USA, December 2009.

[9] M. Christiaens, M. Ronsse, and K. De Bosschere, “Bounding
the number of segment histories during data race detection,”
Parallel Computing, vol. 28, no. 9, pp. 1221–1238, 2002.

[10] A. Dinning and E. Schonberg, “Detecting access anomalies
in programs with critical sections,” in Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging
(PADD ’91), pp. 85–96, ACM, New York, NY, USA, May 1991.

[11] J. Mellor-Crummey, “On-the-�y detection of data races for
programs with nested fork-join parallelism,” in Proceedings of
the ACM/IEEE conference on Supercomputing (Supercomputing
’91), pp. 24–33, ACM, New York, NY, USA, November 1991.

[12] D. Perkovic and P. J. Keleher, “A protocol-centric approach to
on-the-�y race detection,” IEEE Transactions on Parallel and
Distributed Systems, vol. 11, no. 10, pp. 1058–1072, 2000.

[13] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “E�cient
data race detection for async-�nish parallelism,” Formal Meth-
ods in System Design, vol. 41, no. 3, pp. 321–347, 2012.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son, “Eraser: a dynamic data race detector for multithreaded
programs,” ACM Transactions on Computer Systems, vol. 15, no.
4, pp. 391–411, 1997.

[15] J. J. Harrow, “Runtime checking of multithreaded applications
with visual threads,” in SPIN Model Checking and So�ware
Veri	cation: 7th International SPIN Workshop, Stanford, CA,
USA, August 30 - September 1, 2000. Proceedings, vol. 1885 of
Lecture Notes in Computer Science, pp. 331–342, Springer, Berlin,
Germany, 2000.

[16] A. Jannesari, B. Kaibin, V. Pankratius, and W. F. Tichy, “Hel-
grind+: an e�cient dynamic race detector,” in Proceedings of
the IEEE International Symposium on Parallel & Distributed
Processing (IPDPS ’09), pp. 1–13, IEEE Computer Society, Rome,
Italy, May 2009.

[17] A. Jannesari and W. F. Tichy, “On-the-�y race detection in
multi-threaded programs,” in Proceedings of the 6th Workshop
on Parallel and Distributed Systems: Testing, Analysis, and
Debugging (PADTAD ’08), ACM,NewYork,NY,USA, July 2007.

[18] A. Jannesari and W. F. Tichy, “Identifying ad-hoc synchro-
nization for enhanced race detection,” in Proceedings of the
24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’10), pp. 1–10, April 2010.

[19] E. Pozniansky and A. Schuster, “MultiRace: e�cient on-the-�y
data race detection in multithreaded C++ programs: research
articles,” Concurrency and Computation: Practice & Experience,
vol. 19, no. 3, pp. 327–340, 2007.

[20] X. Xie and J. Xue, “Acculock: accurate and e�cient detection
of data races,” in Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization
(CGO ’11), pp. 201–212, IEEE Computer Society, Chamonix,
France, April 2011.

[21] Y. Yu, T. Rodehe�er, and W. Chen, “RaceTrack: e�cient
detection of data race conditions via adaptive tracking,” in



14 Scienti�c Programming

Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), pp. 221–234, ACM, October 2005.

[22] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race
detection,” in Proceedings of the 9th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’03),
pp. 167–178, ACM, New York, NY, USA, June 2003.

[23] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: propor-
tional detection of data races,” ACM SIGPLAN Notices, vol. 45,
no. 6, pp. 255–268, 2010.

[24] D. Marino, M. Musuvathi, and S. Narayanasamy, “Literace:
e�ective sampling for lightweight data-race detection,” ACM
SIGPLAN Notices, vol. 44, no. 6, pp. 134–143, 2009.

[25] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse, “CARISMA: a
context-sensitive approach to race-condition sample-instance
selection for multithreaded applications,” in Proceedings of the
21st International Symposium on So�ware Testing and Analysis
(ISSTA ’12), pp. 221–231, ACM, New York, NY, USA, July 2012.

[26] R. Baldoni and M. Raynal, “Fundamentals of distributed
computing: a practical tour of vector clock systems,” IEEE
Distributed Systems Online, vol. 3, no. 2, 2002.

[27] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no.
7, pp. 558–565, 1978.

[28] M. Bach, M. Charney, R. Cohn et al., “Analyzing parallel
programswith pin,”Computer, vol. 43, no. 3, Article ID 5427374,
pp. 34–41, 2010.

[29] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiser-
son, “On-the-�y maintenance of series-parallel relationships
in Fork-Join multithreaded programs,” in Proceedings of the
16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’04), pp. 133–144, ACM, New York, NY,
USA, June 2004.

[30] N. Nethercote and J. Seward, “How to shadow every byte
of memory used by a program,” in Proceedings of the 3rd
International Conference on Virtual Execution Environments
(VEE ’07), pp. 65–74, ACM, June 2007.

[31] C. Bienia and K. Li, “Parsec 2.0: a new benchmark suite
for chipmultiprocessors,” in Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[32] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. Amarasinghe,
“Aikido: accelerating shared data dynamic analyses,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 173–
184, 2012.

[33] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun, “On-the-
�y detection of data races in openmp programs,” in Proceedings
of the Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging (PADTAD ’12), pp. 1–10, ACM, New
York, NY, USA, 2012.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


