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Abstract

The problem of estimating and predicting Origin-Destination (OD) ta-

bles is known to be important and difficult. In the specific context of

Intelligent Transportation Systems (ITS), the dynamic nature of the prob-

lem and the real-time requirements make it even more intricate.

We consider here a least-square modeling approach for solving the OD

estimation and prediction problem, which seems to offer convenient and

flexible algorithms. The dynamic nature of the problem is represented by

an auto-regressive process, capturing the serial correlations of the state

variables. Our formulation is inspired from Cascetta, Inaudi and Marquis

(1993) and Ashok and Ben-Akiva (1993). We compare the Kalman filter

algorithm to LSQR, an iterative algorithm proposed by Paige and Saun-

ders (1982) for the solution of large-scale least-squares problems. LSQR

explicitly exploits matrix sparsity, allowing to consider larger problems,

likely to occur in real applications.

We show that the LSQR algorithm significantly decreases the computa-

tion effort needed by the Kalman filter approach for large-scale problems.

We also provide a theoretical number of flops for both algorithms, in order

to predict which algorithm will perform better on a specific instance of the

problem.
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1 Introduction

The development of Intelligent Transportation Systems (ITS) has considerably

changed the field of transportation modeling during the past ten years. Indeed,

the potential of these systems requires from transportation modelers the ability

to explicitly capture the interaction between travelers and ITS, between demand

and supply.

With regard to the demand aspects, the estimation and prediction of OD ta-

bles has become an important element of Dynamic Traffic Management Systems

(DTMS) (Ashok and Ben-Akiva, 1993, Bierlaire, Mishalani and Ben-Akiva, 2000,

Ben-Akiva, Bierlaire, Koutsopoulos and Mishalani, forthcoming). The main dif-

ficulty of the problem is due to the following characteristics:

1. The dynamic nature of the process must be captured in the modeling frame-

work.

2. Only indirect measurements of OD flows can be obtained through link flows.

Therefore, the estimation problem is intrinsically under-determined for non

trivial problems, as there are usually more unknowns than the number of

observations.

3. Due to real-time requirements of DTMS, current and future OD flows must

be available at any point in time, based on the most up-to-date data. Then,

as time proceeds and more data becomes available, the solution must be

updated to reflect the evolution of the network conditions.

Several approaches have been proposed in the literature to model the dy-

namic nature of demand. van der Zijpp (1996) proposes an approach based on

time-space trajectories, Chang and Wu (1994) use a random walk model, Oku-

tani (1987) describes the dynamic through an auto-regressive formulation cap-

turing serial formulation across OD flows of subsequent time intervals. Ashok
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and Ben-Akiva (1993) propose an auto-regressive process as well, but based on

the deviations between actual and historical OD flows.

Overcoming the under-determination of the estimation problem has been also

captured in various ways. For static OD estimation, concepts like gravity (Casey,

1955), entropy (Wilson, 1970, Willumsen, 1981) and information theory (Van

Zuylen and Willumsen, 1980) have been proposed. However, the use of an a priori

OD table, derived from surveys or from previous studies is the most common way

to overcome the under-determination. For dynamic OD estimation, the a priori

table may be obtained from historical database, from a one-step prediction of a

table estimated for the previous time-interval, or even using probe vehicles data

(see Ashok, 1996 for more details).

The Kalman filter algorithm (Kalman, 1960) has been widely proposed to

accommodate the real-time requirements (Okutani and Stephanades, 1984, Ashok

and Ben-Akiva, 1993, Ashok and Ben-Akiva, 2000, Chang and Wu, 1994, van der

Zijpp and Hammerslag, 1994). This algorithm solves a least-square problem in

an incremental fashion, allowing to update the solution when additional data is

available.

In this paper, we derive a least-square model, combining the formulation pro-

posed by Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). The state

variables are the deviations between historical and actual OD flows. The main

motivation is to indirectly take into account all experiences gained over many

prior estimation, and accumulated in the historical data. Moreover it also gives

statistical stability as the deviations can be more realistically assumed to be

normally distributed with zero mean. The Kalman filter algorithm has been im-

plemented in the DynaMIT system (Antoniou, Ben-Akiva, Bierlaire and Misha-

lani, 1997, Ben-Akiva, Bierlaire, Koutsopoulos and Mishalani, forthcoming, Ben-

Akiva, Bierlaire, Burton, Koutsopoulos and Mishalani, forthcoming). The main

drawback of the Kalman filter algorithm appears to be its inability to handle

large-scale problems. Indeed, even if efficient implementations are used (Chui
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and Chen, 1991), the analytical computation of the normal equations and the

variance propagation require intensive linear algebra computation. Moreover,

the sparsity of the least-square problem is not exploited by the algorithm, and

a lot of fill-in is taking place. Another limitation of the Kalman filter is its con-

stant numerical complexity. When traffic conditions are normal, or when the

time intervals are short, the auto-regressive process can provide a pretty accu-

rate estimate of the OD table. The Kalman filter algorithm always consumes

the same amount of computational resources, irrespectively of the quality of the

a priori matrix.

It is important to make the distinction between the model formulation and

the solution algorithm. Usually, the model formulation is motivated by the use

of the Kalman filter algorithm (e.g. Ashok, 1996), and the name Kalman filter

refers to both the model and the algorithm. We consider Kalman filtering as

an incremental algorithm to solve a least-square problem in a real-time context

(Bertsekas, 1995). The use of a least-square approach to solve the dynamic OD

estimation problem has been originally proposed by Cascetta et al. (1993). In

this paper, we build on their modeling framework by (i) exploiting Ashok and

Ben-Akiva, 1993 proposal of using deviations as state variables, and an auto-

regressive model combined with historical data to obtain an a priori OD table,

and (ii) providing an efficient algorithm to solve the problem in real-time.

We propose to use the LSQR algorithm (Paige and Saunders, 1982), analyt-

ically equivalent to a conjugate gradient method, requiring only matrix-vector

products and, therefore, explicitly accounting for the problem’s sparsity. In or-

der to avoid to compute the variance propagation, which produces a great deal of

fill-in in the matrices, all OD tables, for all time intervals within the considered

horizon, must be included in the state vector. The associated model therefore

grows with time, and may become intractable. This is not acceptable for sys-

tems supposed to run continuously in time, i.e.with a virtually infinite horizon.

Therefore, we include only a limited number of past time intervals in the estima-
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tion process. We assume that the estimators and associated variance-covariance

matrices for previous time intervals are given. This assumption is reasonable

for all practical purposes, as the impact of new data on old OD tables becomes

insignificant with time.

In theory, LSQR converges in n iterations, where n is the number of variables

to estimate. In the case where the actual deviations are sufficiently well predicted

by the auto-regressive process, the iterative nature of LSQR makes it converge in

a few iterations, significantly decreasing the computational burden. The Kalman

filter algorithm, based on a direct method, has a constant computational cost

and, therefore, does not exploit such advantage.

2 Least-square formulation of the model

The model presented here is directly derived from Ashok and Ben-Akiva (1993).

We consider an analysis period divided into equal intervals h = 1, . . . , N . The

network is modeled by a directed graph (N ,L), where N is the set of nodes and

L is the set of links. Origin-Destination (OD) pairs form a subset of N × N of

cardinality nOD. We denote by xh ∈ R
nOD the actual OD table capturing all trips

departing during time interval h, and by xH
h the associated historical OD table.

The vector of deviations is denoted by ∂xh = xh − xH
h . We assume that n� links

from L are equipped with sensors able to count the number of vehicles during a

given time interval. We note y�h the number of vehicles crossing sensor 	 during

time interval h, and yh ∈ R
n� the vector gathering all such counts. The model is

composed of the transition equations, capturing the dynamic of the system, and

the measurement equation, mapping the state variables onto the data.

The transition equations are based on an auto-regressive process on the OD

flows deviations, which provides a preliminary estimate of the OD flow. They are
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given by:

∂xh =

h−1∑
p=h−q′

f p
h∂xp + wh, (1)

where f p
h , a nOD × nOD matrix, represents the contribution of ∂xp to ∂xh, q

′ is

the number of former time intervals influencing ∂xh and wh is a vector of random

variables capturing the error. Note that f p
h are usually sparse in most practical

applications. Namely, f p
h is often computed from linear regression models for

each OD pair. In that case, f p
h matrices are diagonal. We make the following

assumptions on wh:

• E[wh]= 0,

• E[whw
′
t]= Qhδht, where Qh is a (nOD × nOD) variance-covariance matrix,

and δht is the Kronecker symbol.

The measurement equations capture the relationship between the state vari-

ables (OD deviations), and the measurements (sensor data):

yh =

h∑
p=h−p′

ap
hxp + vh, (2)

where yh ∈ R
n� contains the sensor data for time interval h, ap

h is a n� ×nOD ma-

trix, called the assignment matrix, mapping OD flows departing during interval

p to link flows observed during interval h. It captures network topology, route

choice assumptions and travel time. These matrices are usually sparse, as it is

not common that all OD flows use all sensors on the network, at every departure

time interval. Finally, p′ is the maximum number of time intervals needed to

travel between any OD pair and vh is a vector of random variables capturing the

error measurement on sensor data during time interval h. We make the following

assumptions on vh:

• E[vh]= 0
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• E[vhv
′
t]= Rhδht, where Rh is an n� × n� variance-covariance matrix.

Equation (2) is not based on deviations. Therefore, we prefer the following

equivalent formulation:

∂yh =
h∑

p=h−p′
ap

h∂xp + vh, (3)

where ∂yh = yh −
∑h

p=h−p′ a
p
hx

H
p .

We present now the least-square formulation of the real-time dynamic OD

estimation and prediction problem. The size of the problem depends on data

availability. We assume that sensor data is available for time intervals 1 to k.

The least-square formulation is given by

min
X

k∑
h=1

‖Ω−1
h CN

h X − Ω−1
h zh‖2

2 +

N∑
h=k+1

‖Ω−1
h CN

h X‖2
2, (4)

where

X =




∂x1

...

∂xN−1

∂xN



, (5)

and

zh =


 0nOD×1

∂yh


 , (6)

Θh = ΩhΩ
T
h =


 Qh 0

0 Rh


 =


 PhP

T
h 0

0 ShS
T
h


 , (7)

and

CN
h =


 0 · · · 0 −fh−q′

h · · · · · · · · · −fh−1
h I 0 · · · 0

0 · · · · · · · · · 0 ah−p′
h · · · ah−1

h ah
h 0 · · · 0




=


 C1

h

C2
h




(8)
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if q′ > p′, and

CN
h =


 0 · · · · · · · · · 0 −fh−q′

h · · · −fh−1
h I 0 · · · 0

0 · · · 0 ah−p′
h · · · · · · · · · ah−1

h ah
h 0 · · · 0




=


 C1

h

C2
h




(9)

if q′ ≤ p′. Note that negative values of h − p′ and h − q′ are meaningless, and

associated matrices are just ignored in the formulation. In general, we will denote

by Cm
h , k ≤ m ≤ N , the nOD +n�×mnOD matrix obtained from CN

h by dropping

the appropriate number of zeros on the right.

This (huge) least-square problem has NnOD unknowns and NnOD +kn� equa-

tions. It captures both estimation and prediction of the OD tables. Indeed, for

any time interval h within the horizon, the solution of (4) provides an estimation

of the OD tables up to interval k, and a prediction of OD tables for intervals

k + 1 to N .

It is important to note here that matrices f p
h in (1) and ap

h in (3) are very

sparse for most realistic problems. The solution algorithms must exploit this

sparsity in order to be able to handle large-scale problems.

From a practical viewpoint, problem (4) may be intractable when the number

of state variables nODN is large. However, the estimation and prediction prob-

lems can be treated separately. For the OD estimation problem, the structure of

matrices CN
h defined by (8) and (9) is such that only nODs

′ state variables are ac-

tually updated for the OD estimation at each time interval, where s′ = max(p′, q′).

This must obviously be exploited in the implementation of any algorithm. Once

the estimated OD tables are available, the predicted OD tables are obtained by

a direct application of the auto-regressive process.

If nODs
′ is still too large for a specific algorithm, the problem size must be

reduced even more. This is achieved by keeping the state variables ∂xk−s′ , . . . ,
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∂xk−τ−1 constant, and updating only ∂xk−τ , . . . , ∂xk, for a given τ such that

0 ≤ τ ≤ s′. This procedure has been adopted for the OD estimation and predic-

tion model implemented in DynaMIT (Antoniou et al., 1997, Ben-Akiva, Bier-

laire, Koutsopoulos and Mishalani, forthcoming, Ben-Akiva, Bierlaire, Burton,

Koutsopoulos and Mishalani, forthcoming), with τ = 0. Note that the procedure

does not bias the results if all vehicles are observed during one of the time inter-

vals k, k − 1, . . . k − τ . It means that the sensors must be sufficiently close to

each origin in the network, so that each vehicle can be observed during the first

T time intervals of its trip.

3 Solution algorithms

We present here two solution algorithms. The Kalman filter algorithm (Kalman,

1960) is designed to update the solution of a least-square problem in a real-time

context, as more data is made available. We show that applying the Kalman filter

algorithm to our least-square formulation leads to the exact same algorithm as

Ashok and Ben-Akiva (1993). Then, we consider the LSQR algorithm, proposed

by Paige and Saunders (1982), in order to exploit (i) the sparsity of the problem

and (ii) the a priori solution as provided by the auto-regressive process.

3.1 Kalman Filter

The Kalman filter algorithm solves (4) in an iterative way. The algorithm for a

general incremental least-square problem is described by Bertsekas (1995). We

assume that the problem has been solved up to time interval k− 1, with solution

Xk−1 and variance-covariance matrix Hk−1. The update of these quantities is

made through a two stage process. The first stage incorporates the transition

equation to obtain X̂k and Ĥk, while the second incorporates the measurement

equation to obtain Xk and Hk. However, in order to obtain an efficient formula-
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tion, the special structure of the problem must be exploited, as described below.

Incorporating the transition equation is equivalent to solve the following problem:

min
X

∥∥∥∥∥∥

 P−1

k 0

0 (Ωtot
k−1)

−1




 −Fk−1 I

Ctot
k−1 0


X −


 0

(Ωtot
k−1)

−1ztot
k−1



∥∥∥∥∥∥

2

(10)

where

Fk−1 =
(
0 · · · 0 fk−q′

k · · · fk−1
k

)
∈ R

nOD×(k−1)nOD , (11)

and

Ctot
k−1 =




Ck−1
1

...

Ck−1
k−2

Ck−1
k−1



, ztot

k−1 =




z1
...

zk−2

zk−1



,Ωtot

k−1 =




Ω1 0
. . .

0 Ωk−1


 . (12)

The dimensions of these matrices are reported in Table 4 in the appendix. Note

that the lower part of (10) gathers the k − 1 first terms of (4), and that the

terms corresponding to the prediction problem have been dropped. The solution

of (10), obtained from the normal equations (see Section 6 for details), is

X̂k =


 I

Fk−1


Xk−1 (13)

with variance-covariance matrix

Ĥk =


 Hk−1 Hk−1F

T
k−1

Fk−1Hk−1 Fk−1Hk−1F
T
k−1 +Qk


 . (14)

The measurement equation is incorporated now as follows, again based on

Bertsekas (1995).

Hk = Ĥk + (C2
k)

TR−1
k C2

k , (15)

Xk = X̂k +H−1
k (C2

k)
T (R−1

k ∂yk −R−1
k C2

kX̂k) (16)
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From the Sherman-Morrison-Woodbury formula (Golub and Van Loan, 1996), we

have that

H−1
k =

(
I −KkC

2
k

)
Ĥ−1

k , (17)

where

Kk = Ĥ−1
k (C2

k)
T
(
Rk + C2

kĤ
−1
k (C2

k)
T
)−1

. (18)

Using the development derived in Section 6, we obtain

Xk = X̂k +Kk(∂yk − C2
kX̂k). (19)

Note that equations (13), (14), (17), (18) and (19) are equivalent to the algo-

rithm proposed by Ashok and Ben-Akiva (1993). This result is important, as it

proves that our approach of the problem is actually equivalent to theirs.

3.2 LSQR

LSQR is an iterative method for solving the least-square problem

min
x∈Rn

‖Ax− b‖2
2 (20)

when A is large and sparse. Proposed by Paige and Saunders (1982), it is analyt-

ically equivalent to the conjugate gradient method, which is iterative by nature.

Its convergence is theoretically achieved within at most n iterations. LSQR,

based on two bi-diagonalization procedures, generates a sequence of xk such that

the associated sequence of residual’s norms monotonically decreases. It exhibits

better numerical properties than the conjugate gradient method, especially when

A is ill-conditioned. A key property of this algorithm is that the matrix A is

used only to compute products of the form Ax or ATy, where x and y are vectors

of appropriate dimensions, which is particularly attractive for large sparse prob-

lems. Indeed, A does not need to be explicitly constructed and stored, which is

a particularly appealing feature for solving (4), given its specific structure.
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LSQR is detailed by Paige and Saunders (1982). It is not designed for real-

time applications, and is designed to start from 0. However, it can be adapted

to solve real-time problems. First, its iterative nature allows for an easy update

of a previous estimate x̄. Defining y = x− x̄, (20) can be written as

min
y∈Rn

‖Ay − (b− Ax̄)‖2
2. (21)

We denote by

x∗ = LSQR(A, b, x̄) = x̄+ argminy∈Rn ‖Ay − (b−Ax̄)‖2
2. (22)

Second, it can be applied in a real time context as follows.

Initialize When no sensor data is available, historical OD tables are the best

estimates. Therefore, we set X0 = 0, that is ∂x0
h = 0, h = 1, . . . , N and

k = 0.

For k = 1, . . . , N At each interval k, we incorporate more sensor data, and up-

date the estimated and predicted OD tables accordingly as follows

Xk = LSQR

(
k∑

h=1

Ω−1
h Ch,

k∑
h=1

Ω−1
h zh, Xk−1

)
. (23)

Contrarily to LSQR, the Kalman filter algorithm is incremental by nature.

At each time interval k, it involves only the matrices Ck and Ωk, and the vector

zk, while LSQR involves matrices from all previous time intervals as well (see

(23)). Consequently, the size of the problem grows with time, and LSQR does

not look like an appealing candidate for real-time applications at first glance.

This is probably one of the reasons why the Kalman filter algorithm has been

widely proposed for real-time applications in the literature. On the other hand,

the Kalman filter ignores and destroys the sparsity of the matrices (see (13), (14),

(17), (18) and (19)). In order for LSQR to be applied in a real-time context, the

number of terms in (23) must be kept constant. Therefore, we propose to replace
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(23) by

Xk = LSQR

(
k∑

h=k−r′
Ω−1

h Ch,
k∑

h=k−r′
Ω−1

h zh, Xk−1

)
, (24)

where r′ must be greater or equal to s′. The choice of r′ is a trade-off between

accuracy of the solution, and computation burden. Indeed, ignoring the terms

corresponding to time intervals 1 to k−r′−1 slightly biases the solution. Actually,

it is equivalent to ignore the estimation error of those time intervals, by not

propagating the variance-covariance matrix.

Note that the bias can be reduced, while keeping the problem’s sparsity, by

propagating only the variance of the estimators. This would keep the variance-

covariance matrix diagonal. However, we do not investigate this possibility. In-

deed, it appears from the experiments we have conducted (see Section 4) that the

bias associated with (24) is not significant. Finally, the OD prediction problem is

not directly solved by LSQR, as it simply amounts to applying the auto-regressive

process to the estimated deviations.

3.3 Theoretical comparison

We compare here the numerical complexity of both algorithms. Following Golub

and Van Loan (1996), we count the number of floating point operations (flops)

associated with each algorithm. Note that if A is a m × n matrix, and B is a

n × p matrix, the product AB takes 2mnp flops. If C is an invertible matrix of

dimension n, computing its inverse takes 2n3 flops.

An upper bound on the total number of flops to perform p iterations of the

LSQR algorithm is

2Cu+ 6m+ 4n + p(2Cu+ 6m+ 10n+ 25), (25)

where Cu is the number of flops required to compute the matrix-vector products

Ω−1
k CkX and (Ω−1

k Ck)
TX, m = (r′ + 1)(nOD + n�) and n = (s′ + 1 + r′)nOD.
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We denote by dA the density of a sparse matrix A, that is the number of

nonzero entries divided by the total number of entries. We have that

dCk
=

(r′ + 1)nOD + q′(r′ + 1)n2
ODdf + (p′ + 1)(r′ + 1)n�nODda

(s′ + 1 + r′)nOD(r′ + 1)(nOD + n�)
, (26)

and

dΩ−1
k

=
(r′ + 1)(n2

ODdQ−1 + n2
�dR−1)

(r′ + 1)2(nOD + n�)2
, (27)

where df is an upper bound on the density of matrices f p
h defined in (1), and da

is an upper bound on the density of assignment matrices ap
h defined in (2). dQ−1

and dR−1 are similarly defined. Consequently,

Cu = 2(s′ + 1 + r′)(r′ + 1)(n� + nOD)nODdCk

+2(r′ + 1)2(nOD + n�)
2dΩ−1

k
.

(28)

For the Kalman filter algorithm, we assume that the result of the product of

two sparse matrices is dense to obtain the number of flops for each equation.

Eq. (13) nOD + q′dfn
2
OD,

Eq. (14) 2(q′)3n3
ODdf + n2

ODdQ,

Eq. (17) (s′ + 1)nOD(2n�da + 2(s′ + 1)2n2
OD + 1),

Eq. (18) 4n�(s
′ + 1)2n2

ODda + n2
�dR + 2n3

� ‘ + 2(s′ + 1)nODn
2
� ,

Eq. (19) 2(s′ + 1)nOD(1 + (s′ + 1)nODda).

We illustrate these formulas in Figure 1, where the (logarithm of the) number

of flops for each algorithm is plotted as a function of the number of ODs. We

assume that n� = nOD/10, the variance-covariance matrices and the transition

matrix are diagonal, and that p′ = r′ = 10 and q′ = 9. The density of the

assignment matrix is da = 5%.

In Figure 2, we analyze scenarios where the relative performance of both

algorithms is given. In Figure 2(a), we assume that n� = nOD/10, the variance-

covariance matrices and the transition matrix are diagonal, and that p′ = r′ = 10
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Figure 1: Kalman-LSQR flops comparison

and q′ = 9. The plotted curves represent combinations of values for nOD and

da such that the LSQR algorithm is 5, 10, 20 and 30 times (resp.) faster than

the Kalman filter algorithm. In Figure 2(b), we have nOD = 1000, n� = 100 and

da = 2%. The plotted curves represent combinations of values for r′ and df such

that the LSQR algorithm performs as well, twice faster (2×) and twice slower

(0.5×) (resp.) than the Kalman filter algorithm.

It clearly appears from these plots that LSQR is much more efficient than

Kalman filter when sparse matrices are involved, which often occurs in practice.

Interestingly, when the matrix sparsity is important (low values of df is Fig-

ure 2(b)), the r′ parameter introduced to simplify the model in (24) can be set

to a high value, while keeping the performance gain significant.

We complete the theoretical analysis by a simplification of the flops counting

formulas, in order to obtain a level of magnitude. For this purpose, we assume

that nOD = n2 and n� = δn, where n is the number of nodes in the network, and
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Figure 2: Kalman-LSQR flops equivalence

δ is the average degree of the nodes. It is pessimistic, as all nodes are supposed

to be both origins and destinations, and all links are assumed to be equipped

with sensors.

If n is large, the dominant term is

4(p+ 1)(r′ + 1)n4(q′df + dQ−1). (29)

The sparsity of the auto-regressive process is therefore critical for the performance

of the LSQR algorithm. A similar analysis for the Kalman filter algorithm leads

to the following dominant term:

2(s′ + 1)3n6(2df + 1). (30)

We deduce from (29) and (30) that if the number of LSQR iterations p is such

that

p ≤ (s′ + 1)3(2df + 1)

2(r′ + 1)(q′df + dQ−1)
n2, (31)

than LSQR is more efficient than Kalman filter. In a real-time context, the

number of LSQR iterations are usually low as the starting point is close to the
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solution when traffic conditions are more or less stable. In the worst case, LSQR

theoretically performs (r′ + 1)n2 iterations. In order for LSQR to be better, the

density of the transition matrices has to be such that

df ≤ (s′ + 1)3 − (r′ + 1)2dQ−1

(r′ + 1)2q′ − 2(s′ + 1)3
. (32)

Again, we observe that high values of r′ are acceptable if the density of the

transition matrices is low.

When both the transition matrices f p
h and associated variance-covariance ma-

trices are diagonal, the density of the assignment matrix becomes the domi-

nant parameter in the flops computation. Indeed, assuming that df = 1/n2 and

dQ−1 = 1/n2, the dominant term for Cu in the number of flops (25) is

4(p+ 1)(r′ + 1)p′δn3da. (33)

In that case, the complexity of LSQR depends on the density of the assignment

matrix, and not any more on the density of the transition equations.

Considering again the worst case where LSQR performs (r′ + 1)n2 iterations,

the following condition must be verified in order for LSQR to be more efficient

that the Kalman filter algorithm.

da ≤ (s′ + 1)3

2(r′ + 1)2p′δ
n. (34)

Note that for large values of n and reasonable values of r′, the density of the

assignment matrix is irrelevant, and LSQR is systematically better than Kalman

filter. This is illustrated in Figure 2(a).

4 Numerical Comparisons

We provide now an empirical comparison of the Kalman filter and LSQR algo-

rithms to solve (4). Both algorithms have been implemented in Matlab (The

Mathworks Inc., 1994), using the sparse matrices structure. The implementa-

tion of the Kalman filter algorithm that we use for these numerical comparisons
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actually uses less number of flops than the theoretical number estimated in Sec-

tion 3.3. First, we use synthetic data in order to illustrate the accuracy of both

approaches, when the “true” OD tables are known by the analyst. The objec-

tive is to illustrate the impact on the limitation of the number of terms in (24).

Then, we present two case studies to compare the computational performance

of the algorithms: a medium-scale model for the Central Artery/Third Harbor

Tunnel (CA/T) network in Boston (Ma), and a large-scale model in Irvine (Ca).

4.1 Synthetic Data

We consider the network depicted in Figure 3, with three OD pairs {(1,5), (1,6),

(2,6)}, and a time horizon of N = 15 time intervals of T minutes each. For

the sake of simplicity, we assume for each link a travel time of T minutes and

an infinite capacity. Consequently, p′ = 3. We also assume that q′ = 2 and,

therefore s′ = 3.

1

2

3 4

5

6

Figure 3: Simple Network

The “true” OD flows for pairs (1, 5) and (1, 6) are given in Table 1, where the

unit is a number of cars per time interval (T minutes). The flows for OD pair

(2, 6) are twice these values. Note that time intervals -4 to 0 are used to warm

up the simulation and to avoid starting with an empty network.
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Time int. OD Time int. OD Time int. OD Time int. OD

-4 36 1 30 6 12 11 42

-3 12 2 48 7 12 12 24

-2 30 3 12 8 60 13 42

-1 12 4 18 9 42 14 12

0 36 5 36 10 66 15 18

Table 1: “True” demand for the simple network

The “true” assignment matrices are defined by

ah
h =




1/3 1/3 0

0 0 1/3

0 0 0

0 0 0

0 0 0




ah−1
h =




1/3 1/3 0

0 0 1/3

1/3 1/3 1/3

0 0 0

0 0 0




ah−2
h =




0 0 0

0 0 0

1/3 1/3 1/3

1/3 0 0

0 1/3 1/3




ah−3
h =




0 0 0

0 0 0

0 0 0

1/3 0 0

0 1/3 1/3




The historical OD tables have been obtained by a random perturbation of

the true OD. The link flows resulting from the assignment of the true OD tables

have also been perturbed to obtain the sensor data. The auto-regressive process

is such that f p
h = I, for p = h− 3, h− 2, h− 1. The variance-covariance matrices

Qk are diagonal, with the OD flows of the last time interval on the diagonal.

Variance-covariance matrices Rk are diagonal with variance arbitrarily set to 1.
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The relative error on estimated OD flows, that is

‖Xtrue −Xestimated‖
‖Xestimated‖ , (35)

obtained by each algorithm is illustrated on Figure 4. It appears, as expected,

that the Kalman filter algorithm is more accurate than the LSQR algorithm

from the 5th time interval on, as r′ +1 = 4. It is particularly noticeable that the

difference remains almost constant (as it depends mainly on r′) and is negligible.

0 5 10 15
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||x
tr

ue
−

x|
|\|

|x
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ue
||

LSQR  
Kalman

Figure 4: Error in the solution given by the algorithms

4.2 Case-studies

DynaMIT is a state-of-the-art, real-time computer system for traffic estimation,

prediction, and generation of traveler information and route guidance. It supports

the operation of Advanced Traveler Information Systems (ATIS) and Advanced

Traffic Management Systems (ATMS) at Traffic Management Centers. Dyna-

MIT is the result of about 10 years of intense research and development at the

Intelligent Transportation Systems Program of the Massachusetts Institute of
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Technology (for description and details, see Ben-Akiva, Bierlaire, Koutsopoulos

and Mishalani, forthcoming and Bottom, Ben-Akiva, Bierlaire, Chabini, Kout-

sopoulos and Yang, 1999). DynaMIT’s OD estimation and prediction algorithm

(Antoniou et al., 1997) is a Kalman filter algorithm directly derived from Ashok

and Ben-Akiva (1993). In this paper, we have used DynaMIT to obtain assign-

ment matrices for both case studies. We have also compared the results obtained

with DynaMIT with those obtained with Matlab, in order to verify the algorithms

implementation.

The first network is the Central Artery/Third Harbor Tunnel network, cur-

rently under construction (see Figure 5). It is a medium-scale network, with 211

links and 183 nodes. We consider a scenario with five origins and two destinations

for a total of 10 OD pairs, and 35 link counts. We simulate 60 minutes during

the morning from 7:00am to 8:00am. This simulation period is divided into 15

minutes time intervals. The results are described in Section 4.2.1.

The second network contains the major highways I-5, I-405 and CA-133

around Irvine, Ca. It contains also arterial roads in a triangular area defined

by I-5, I-405 and Jeffrey road (see Figure 6). It is a large-scale network, with 618

links, 296 nodes and 627 OD pairs. We simulate 60 minutes during the morning

from 7:15am to 8:15am. This simulation period is divided into 15 minutes time

intervals. The results are described in Section 4.3. Irvine Network data comes

from a traffic management center in Irvine, California.

4.2.1 Central Artery network

We solve the OD estimation problem for the CA/T network with p′ = 0 and

q′ = r′ = 1. In table 2, we report (i) the average number of flops per time interval

for the Kalman filter algorithm, as reported by Matlab, (ii) the same information
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Figure 5: Central Artery/Third Harbor Tunnel network
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Figure 6: Irvine network

for LSQR algorithm, (iii) the relative root mean squared error (RRMSE), that is√
n�

∑N
k=1

∑nOD

j=1

(
(∂xk)

Kalman
j − (∂xk)

LSQR
j

)2

∑N
k=1

∑nOD

j=1 |((∂xk)Kalman
j | (36)

and the relative mean error (RME), that is

∑N
k=1

∑nOD

j=1

∣∣∣(∂xk)
Kalman
j − (∂xk)

LSQR
j

∣∣∣∑N
k=1

∑nOD

j=1 |((∂xk)
Kalman
j | , (37)

for various values of the ATOL parameter, ATOL being the tolerance on the

normalized least-squares residual used as a stopping criterion for the LSQR al-

gorithm (see Paige and Saunders, 1982).

In appears clearly from Table 2 that the empirical results are consistent with

the theoretical analysis, and that LSQR significantly outperforms the Kalman

filter algorithm. This instance, where LSQR is 6 times better than Kalman in

the worst case (ATOL=10−5) is representative of other experiments on problems
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flops flops

ATOL Kalman LSQR RRMSE RME

10−2 38800 4100 0.979 0.766

10−3 38800 5753 0.076 0.054

10−4 38800 5949 0.044 0.037

10−5 38800 6471 0.044 0.034

Table 2: Comparison for the CA/T network

of similar characteristics. LSQR also allows a trade-off between the results accu-

racy and computational burden. This is often critical for real-time applications.

Setting the ATOL parameter to 10−2 produces an algorithm almost 10 times

faster than Kalman, with a reasonable reduction of accuracy.

As a final note, the theoretical number of flops for LSQR (see Section 3.3) is

about 10000, and for Kalman is about 160000. The discrepancy between theo-

retical and actual numbers of flops is due to the simplifying assumptions used in

Section 3.3.

4.3 Irvine Results

We solve the OD estimation problem for the Irvine network with p′ = 0 and

q′ = r′ = 1. In table 3, we report (i) the average number of flops per time

interval for the Kalman filter algorithm, as reported by Matlab, (ii) the same

information for LSQR algorithm, (iii) the RRMSE (36) and (iv) the MSE (37).

The LSQR algorithm solves the problem from 23 times (ATOL=10−5) to

136 times (ATOL=10−2) faster than Kalman. As predicted by the theoretical

analysis, the advantage of using LSQR becomes more significant when the size

of the problem increases.

Figure 7 shows for each time interval and for each algorithm, the number of

flops on the left and the value of the residual on the right, i.e.‖Ω−1
h ChXh−Ω−1

h zh‖.
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flops flops

ATOL Kalman LSQR RRMSE RME

10−2 7.38 107 5.42 105 0.4262 0.3020

10−3 7.38 107 1.30 106 0.3713 0.2380

10−4 7.38 107 2.34 106 0.1435 0.1149

10−5 7.38 107 3.23 106 0.1425 0.1146

Table 3: Comparison for the Irvine network

It clearly demonstrates the superiority of LSQR method in large scale case, with

a similar quality of the result.

Note that the theoretical number of flops for LSQR is about 9 106, and for

Kalman is 4 109. Again, the discrepancy between theoretical and actual number

of flops in Table 3 is due to the simplifying assumptions used in Section 3.3.

Finally, we have run the Irvine case study with p′ = r′ = 4 and q′ = 3. In

that case, we were not able to solve it with the Kalman filter algorithm, which

exhausted the available memory in Matlab. The LSQR algorithm has been able

to solve the problem in about 6.7 107 flops. Note that this is less than the number

of flops reported for the Kalman filter algorithm in Table 3.

5 Conclusion

In this paper, we have proposed a least-square formulation of the real-time dy-

namic OD estimation and prediction problem, based on a combination of the

approaches by Cascetta et al. (1993) and Ashok and Ben-Akiva (1993). In order

to emphasize the model’s validity, we have shown that applying the Kalman filter

algorithm as presented by Bertsekas (1995) leads to the exact same algorithm as

Ashok and Ben-Akiva (1993).

The proposed formulation enables to directly use algorithm LSQR to solve
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Figure 7: Results for the Irvine network

the problem. Proposed by Paige and Saunders (1982), LSQR is a numerically

robust conjugate gradient algorithm designed to solve large-scale sparse least-

square problems. Because it is not designed for real-time applications, we have

imposed a simplification to maintain the size of the problem constant over time.

This simplification amounts not to propagate the variance-covariance matrix of

old estimated matrices.

Both the theoretical estimation of the flops and empirical comparisons on real

data exhibit a significantly better performance for the LSQR algorithm, in the

presence of sparse matrices. We have also shown that the model simplification

has a limited impact on the quality of the solution.

The Kalman filter approach based on the normal equations cannot afford
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large-scale problems, as it involves the multiplication and inversion of very large

matrices. The computational complexity of the LSQR algorithm is based only

on its ability to multiply a large matrix by a vector. If the large matrix is very

sparse, as it is often the case in practice, such a procedure can be implemented

efficiently. Also, the iterative nature of LSQR allows, contrarily to Kalman, to

exploit previous estimates when the traffic conditions are stable, performing less

iterations to converge to the solution.

A direct extension of the algorithm presented in this paper is obtained when

the OD deviations are constrained by lower and upper bounds. One important

motivation is to avoid negative OD flows when the deviations are added to the

historical values. The bound-constrained LSQR algorithm proposed by Bierlaire,

Toint and Tuyttens (1991) can be considered in that case.

Finally, we emphasize that the least-square formulation adopted in this paper

is well adapted when additional data can be considered in order to improve the

quality of the estimated OD. For example, license plate data collected in parking

lot (Bierlaire and Toint, 1995) or probe vehicles data based on GPS, ETC or

cellular phone technologies (Smith, Pack, Lovell and Sermons, 2001). Contrarily

to the Kalman filter algorithm, which requires to re-derive the equations, the

LSQR algorithm can be used as is, with the extended formulation.
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6 Appendix

In this appendix, we provide some technical derivation for the Kalman filter

algorithm. First, we recall how (10) can be obtained from the normal equation.

The solution of a least square problem

min
x

‖Ax− b‖2 (38)

is obtained from the normal equation ATAx = AT b. The solution is

(ATA)−1AT b, (39)

with variance-covariance

(ATA)−1. (40)

The normal equation for (10) is
 −F T

k−1 (Ctot
k−1)

T

I 0




 Q−1

k 0

0 Θ−1
k−1




 −Fk−1 I

(Ctot
k−1) 0


X =


 −F T

k−1 (Ctot
k−1)

T

I 0




 Q−1

k 0

0 Θ−1
k−1




 0

ztot
k−1


 .

(41)

From (40), we have that

Ĥ−1
k =


 −F T

k−1 (Ctot
k−1)

T

I 0




 Q−1

k 0

0 Θ−1
k−1




 −Fk−1 I

(Ctot
k−1) 0


 . (42)

A direct multiplication of (14) and (42) shows that ĤkĤ
−1
k = I. The solution

(13) is obtained from (39) and (14). We have
 Hk−1 Hk−1F

T
k−1

Fk−1Hk−1 Fk−1Hk−1F
T
k−1 +Qk




 −F T

k−1 (Ctot
k−1)

T

I 0




 Q−1

k 0

0 Θ−1
k−1




 0

ztot
k−1



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=


 −Hk−1F

T
k−1 +Hk−1F

T
k−1 Hk−1(C

tot
k−1)

T

−Fk−1Hk−1F
T
k−1 + Fk−1Hk−1F

T
k−1 +Qk Fk−1Hk−1(C

tot
k−1)

T




 0

Θ−1
k−1z

tot
k−1




=


 0 Hk−1(C

tot
k−1)

T

Qk Fk−1Hk−1(C
tot
k−1)

T




 0

Θ−1
k−1z

tot
k−1




=


 Hk−1(C

tot
k−1)

TΘ−1
k−1z

tot
k−1

Fk−1Hk−1(C
tot
k−1)

TΘ−1
k−1z

tot
k−1


 =


 I

Fk−1


Hk−1(C

tot
k−1)

TΘ−1
k−1z

tot
k−1.

We finally obtain (13) by noting that

Xk−1 = Hk−1(C
tot
k−1)

TΘ−1
k−1z

tot
k−1.

To show (19), we use (17) in (16),

Xk = X̂k +
(
I −KkC

2
k

)
Ĥ−1

k (C2
k)

TR−1
k

(
∂yk − C2

kX̂k

)
. (43)

Denoting gk =
(
∂yk − C2

kX̂k

)
, we show that

(I −KkC
2
k) Ĥ

−1
k (C2

k)
TR−1

k gk = Ĥ−1
k (C2

k)
TR−1

k gk −KkC
2
kĤ

−1
k (C2

k)
TR−1

k gk

= Kkgk.

(44)

Indeed

KkC
2
kĤ

−1
k (C2

k)
TR−1

k gk

= Ĥ−1
k (C2

k)
T
(
Rk + C2

kĤ
−1
k (C2

k)
T
)−1

C2
kĤ

−1
k (C2

k)
TR−1

k gk

= Ĥ−1
k (C2

k)
T
(
Rk + C2

kĤ
−1
k (C2

k)
T
)−1 (

C2
kĤ

−1
k (C2

k)
T +Rk

)
R−1

k gk

−Ĥ−1
k (C2

k)
T
(
Rk + C2

kĤ
−1
k (C2

k)
T
)−1

RkR
−1
k gk

= Ĥ−1
k (C2

k)
TR−1

k gk − Ĥ−1
k (C2

k)
T
(
Rk + C2

kĤ
−1
k (C2

k)
T
)−1

gk

= Ĥ−1
k (C2

k)
TR−1

k gk −Kkgk, from (18).

We conclude the appendix by providing in Table 4 the dimensions of the

matrices appearing in Section 3.1.
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Eq. Matrix Rows Columns

(10) Pk nOD nOD

(10) Ωtot
k−1 nOD + n� nOD + n�

(10) Fk−1 nOD (k − 1)nOD

(10) Ctot
k−1 (k − 1)(nOD + n�) (k − 1)nOD

(10) Xk−1 (k − 1)nOD 1

(10) ztot
k−1 (k − 1)(nOD + n�) 1

(13) X̂k knOD 1

(14) Hk−1 (k − 1)nOD (k − 1)nOD

(14) Ĥk knOD knOD

(18) Kk knOD n�

(18) Rk n� n�

Table 4: Matrices dimensions
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