
Abstract 
 
Finding frequent patterns from databases has been the 
most time consuming process in data mining tasks, like 
association rule mining. Frequent pattern mining in 
real-time is of increasing thrust in many business 
applications such as e-commerce, recommender 
systems, and supply-chain management and group 
decision support systems, to name a few. A plethora of 
efficient algorithms have been proposed till date, 
among which, vertical mining algorithms have been 
found to be very effective, usually outperforming the 
horizontal ones. However, with dense datasets, the 
performances of these algorithms significantly 
degrade. Moreover, these algorithms are not suited to 
respond to the real-time need. In this paper, we 
describe BDFS(b)-diff-sets, an algorithm to perform 
real-time frequent pattern mining using diff-sets and 
limited computing resources. Empirical evaluations 
show that our algorithm can make a fair estimation of 
the probable frequent patterns and reaches some of the 
longest frequent patterns much faster than the existing 
algorithms. 
 
1.   Introduction 
 
In recent years, business intelligence systems are 
playing pivotal roles in fine-tuning business goals such 
as improving customer retention, market penetration, 
profitability and efficiency. In most cases, these 
insights are driven by analyses of historic data. Now 
the issue is, if the historic data can help us make better 
decisions, how real-time data can improve the decision 
making process [1].  

Frequent pattern mining for large databases of 
business data, such as transaction records, is of great 
interest in data mining and knowledge discovery [2], 
since its inception in 1993, by Agrawal et al. In this 
paper, we assume that the reader knows the basic 
assumptions and terminologies of mining all frequent 
patterns. 

Researchers have generally focused on the 
frequent pattern mining, as it is complex and the search 
space needed for finding all frequent itemsets is huge 
[2]. A number of efficient algorithms have been 
proposed in the last few years to make this search fast 
and accurate[3]. Among these, a number of effective 
vertical mining algorithms have been recently 
proposed, that usually outperforms horizontal 
approaches [4]. Despite many advantages of the 

vertical format, the methods tend to suffer, when the 
tid-list cardinality gets very large as in the case of 
dense datasets [4]. Again, these algorithms have 
limited themselves to either breadth first or depth first 
search techniques. Hence, most of the algorithms stop 
only after finding the exhaustive (optimal) set of 
frequent itemsets and do not promise to run under user 
defined real-time constraints and produce some 
satisficing (interesting sub-optimal) solutions due to 
their limiting characteristics[5, 6].  
In this paper, we describe BDFS(b)-diff-sets (adopted 
from[5, 6]), a real-time frequent pattern mining 
algorithm which runs under  limited execution time and 
has the capability of running under limited memory as 
well in cases of dense datasets. BDFS(b)-diff-sets does 
not limit itself to either of breadth-first or a depth-first 
search, but uses a search technique, which is a good 
mix of the staged search and depth-first search 
(discussed later in section 4.1), adopted from [7]. We 
have adopted the diff-sets concept as introduced by [4] 
as it has been found to be very effective in cases of 
dense datasets. 

In this paper,  we also show the edge of BDFS(b)-
diff-sets over existing efficient association mining 
algorithms such as Apriori [8], FP-Growth [9], Eclat 
[10] and dEclat [4], when it runs to completion and 
outputs exhaustive set of frequent patterns.  

The rest of the paper is organized as follows. In 
the next section we present business issues of real-time 
frequent pattern mining in brief. In Section 3, we 
discuss a review of the previous work in association 
rule mining.  In Section 4, we introduce algorithm 
BDFS(b)-diff-sets implemented using diff-sets[4]. 
Section 5 contains the empirical evaluation of our 
algorithm. Finally, we conclude the paper in Section 6. 
 
2. Business Intelligence Issues of Real-

Time Frequent Pattern Mining 
 
An offline analytic approach to data mining reflects 
sound practice because the data have to be cleaned, 
checked for accuracy, etc. However, in a scenario of 
cutthroat competition, the organizations cannot afford 
to show the attitude of not keeping abreast with the 
latest changing demands and trends of their customers 
and get satisfied with periodical data. They have to act 
on the latest data that is available to them to react not 
only to the fierce global competition, but also market 
products keeping in mind of the latest customer wishes. 
In such a scenario, the concept of a real-time enterprise 
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Business Event 

Action 
Taken 

data latency 

Data Stored in Database or Data 
warehouse 

Information Delivered 

action time or action distance

analysis latency 

decision latency 

Value 

Time

has creped into the corporate boardrooms of a number 
of organizations. Using up-to-date information, getting 
rid of delays, and using speed for competitive 
advantage is what the real-time enterprise is about [11]. 
Moreover, in cases where there is a ubiquitous flow of 
data from various sources, like that of RFID sensor 
networks, it becomes impossible for the human analyst 
to sift through huge volumes of data for decision 
making in real-time. 

Frequent pattern mining has been extensively used 
for market basket analysis of data, to find out the 
hidden patterns that lie in the transactional database. To 
promote a particular product, if a retailer decides to go 
for dynamic pricing or for dynamic discount, she must 
do it before the customer actually moves out of the 
store. Hence, the retailer cannot afford to make run on 
the huge dataset again and again to depict the correct 
association rule for a particular customer before she 
moves out of the store. Again, the strategy of making 
the association mining an offline task and refer to the 
patterns for a particular time period may also prove to 
be ineffective because the customer preference may 
considerably change over time. Hence, dynamic 
pricing or offering dynamic discounts will not be able 
to fetch the necessary returns from the customer(s), if 
the whole exercise is based on patterns that were 
obtained previously. With competition growing at a 
break-neck speed, organizations have started 
appreciating the real-time analysis and real-time 
decision making for the particular concerned customer 
[12]. The importances for real-time solutions have been 
felt more lately due to the introduction and 
development of online businesses (although for offline  

Exhibit 1. Framework for real-time business intelligence. 
Organizations must manage three distinct processes that 
create latency in an analytic environment to support real-time 
decision making. Source [13] 
 
businesses as well, the thrust remains the same). 
Researchers [14] believe that real-time personalization 
technology will proactively offer a particular customer 
products and services that will fit into their need 
exactly. A real-time analytical engine will work in real-

time, analyzing web clicks or sales rep interactions and 
matching them with the past purchasing history to 
make the offerings.   

In cases of event based information management 
systems, as the example in the previous paragraph, 
current approaches of business intelligence systems 
using various data mining techniques make 
organizations face some serious latency problems, 
which they must overcome. These are: data latency, 
analysis latency and decision latency [13]. The 
following exhibit will make the point clearer.  

Once a business event happens, users face data 
latency, meaning the time taken for various pre-
processing steps for storing this data into the 
corresponding database or data warehouse. On this 
data, various analytic processes have to run for 
discovering the relevant information and delivering it 
to the right user for the purpose of decision making. 
This phase, referred to as analytic latency in Exhibit 1, 
refers to the time taken by various algorithms to run on 
the corresponding database or data warehouse. Once 
the information is delivered, the user may take some 
time before she can take any action on this delivered 
information. This is referred to as decision latency, in 
Exhibit 1. As pertinent from the above figure, the 
majority of the action time is caused due to the analytic 
latency only. Hence the major challenge to bye-pass 
these latencies and delivering right information to the 
right user within right time is the analytic latency. This 
means that the existing technologies hinder in 
responding to the real-time need of the business user 
due to their in-built limitations as they do not have the 
capability to respond to the real-time need. This real-
time time bound, as described by various authors as 
right time, will vary from user-to-user and from 
industry to industry. In an research carried by TDWI 
(The Data Warehousing Institute) [15], based on the 
responses of 383 respondents world wide, who have 
deployed various data mining related systems in 
organizations, it has been found that the major factors 
that create the bottle-neck of reducing the analytic 
latency and real-time business intelligence are lack of 
tools for doing real-time processing, immature 
technology and performance issues in Exhibit 2. 
 

Lack of tools for doing real-time processing 35% 

Immature technology 28% 

Performance and scalability 24% 

Exhibit 2. Obstacles to real-time business intelligence  
Source[16] 

There are numerous areas where real-time decision 
making plays a crucial role. These include areas like 
real-time customer relationship management [17-19], 
real-time supply chain management systems [20] real-
time enterprise risk and vulnerability management [21], 
real-time stock management and vendor inventory [22], 
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real-time recommender systems[23], real-time 
operational management with special applications in 
mission critical real-time information as is used in the 
airlines industry, real-time intrusion and real-time fraud 
detection [24], real-time negotiations and other areas 
like real-time dynamic pricing and discount offering to 
customers in real-time. More than that, real-time data 
mining will have tremendous importance in areas 
where a real-time decision can make the difference 
between life and death – mining patterns in medical 
systems. 
 
3. Previous Work Done 
A detailed discussion about the various algorithms of 
frequent pattern mining and their performance can be 
found in the literature surveys of frequent pattern 
mining [3, 25, 26]. Majority of the algorithms in this 
area have been classified according to their strategy to 
traverse the search space and by their strategy to 
determine the support values of the itemsets [25]. 
However, Su & Lin [27] have concluded that the most 
salient features of these algorithms are their counting 
strategy, search direction and search strategy (Table 
1). Recently, a number of vertical mining algorithms 
have been proposed[4, 10, 28]. In a vertical database, 
each item is associated with its corresponding set of 
transactions where the particular item appears [4], 
called tid-list. However, in dense datasets, the method 
suffers since the intersection time becomes very high. 
Furthermore, the scalability of these algorithms gets 
affected, when the vertical tid-lists become too large 
for memory. Zaki [4] has introduced the concept of 
diff-sets, that only keeps track of the  differences in the 
tids of a candidate pattern from its generating frequent 
patterns. This diff-set implementation drastically cut 
down the size of the memory and tid-list intersections 
are done significantly faster (as diff-sets are a small 
fraction of the size of tid-lists). 
 

Search Direction 
Bottom-up Top-Down 
Search Strategy Search Strategy 

Counting 
Strategy 

Depth-
first 

Breadth-
first 

Depth-
first 

Breadth-
first 

Counting FP-
Growth Apriori  Top-

Down 
Intersection 
of tid-lists Eclat Partition   

Intersection 
of Diff-Sets dEclat    

 
Table 1. Classification of prevaililng algorithms 
 
 
4. BDFS(b)-diff-sets: An Efficient 

Technique of Frequent Pattern Mining 
In Real-Time Using Diff-Sets 

 
4.1 Algorithm Basics 

In this study, we propose a brute force algorithm 
BDFS(b)-diff-sets, which is a variant of the Block 
Depth First Search [7] and inducted into the domain of 
frequent pattern mining [5, 6]. Block Depth First 
Search is a search algorithm, based on a novel 
combination of the staged search and the depth first 
search [29]. As a result, it has the merits of both best-
first search and the depth-first-branch-and-bound 
(DFBB) search [30], ,and at the same time, avoids bad 
features of both. BDFS(b)-diff-sets explores the given 
search space in stages. The search is conducted in a 
depth first manner, which ensures that patterns of 
greater length will be preferred over those of 
comparatively shorter lengths. We assume that a lower 
triangular frequency matrix M for a given database is 
created in a support-independent pre-processing step 
and kept in the hard-disk, which stores the support 
independent frequencies of all 1-length and 2-length 
patterns. Once the user specifies a desired support 
value, all frequent patterns of length 1 and 2 (meaning 
F(1) and F(2), where F(n) means frequent pattern of 
length-n) are obtained from M. Then BDFS(b)-diff-sets 
starts its search for frequent patterns of higher lengths 
from this point forward by intersecting the diff-set tid-
lists of corresponding items.  The most salient features 
of BDFS(b)-diff-sets are:(a) It conducts search in 
stages and uses back-tracking strategy to run to 
completion and ensure optimal solution. (b) It takes a 
block of candidate patterns b from a global pool, 
conducts the search by checking the frequency of these 
patterns in the database. It generates the possible 
candidate patterns (explained later with an example) of 
the next higher length from the currently known 
frequent patterns. These candidate patterns are 
continued to be explored in a systematic manner until 
all frequent patterns are generated. In this paper, we 
keep the block b variable and the value to be defined 
by the user using her knowledge and experience 
depending on the available computer memory. A 
possible state space diagram of BDFS(b)-diff-sets is 
shown in. Fig. 1 
 

 
 
Fig. 1.  State space representation of BDFS(b)-diff-sets  
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The initial state (or the root node) in the state-space is 
denoted by S0, which contains the complete set of 2-
length frequent patterns F(2). In S0,, the set of all 
candidate patterns of length 3 or more are set to φ. In 
general, by the expansion of a node (which is a block 
of candidate patterns in this case) we mean: 
i. Counting the support frequency of all candidate 

patterns in the state from the database by 
intersecting the diff-sets of the corresponding 
items.  

ii. Generating the candidate patterns or patterns of 
border set of next higher level (explained later in 
the algorithm and its working through example). 

iii. Arranging the candidate patterns according to their 
merits (explained later) and group them into 
blocks containing b-patterns each. If the block has 
empty space, it gets candidate patterns from the 
previous level. This can be handled using a global 
pool of candidate patterns that has been sorted in 
descending order of length. We resolve ties 
arbitrarily. 

 
We have implemented this algorithm with diff-sets as 
proposed by [4] and have used the prefix based tree, 
called trie, data structure for implementing BDFS(b)-
diff-sets. 
 
4.2 Algorithm Details 
 

Algorithm BDFS(b)-diff-sets: 
 
 Initialize the allowable execution time τ. 
Let the initial search frontier contain all 3-length 
candidate patterns. Let this search frontier be stored as 
a global pool of candidate patterns. Initialize a set 
called Border Set to null. 
Order the candidate patterns of the global pool 
according to their decreasing length (resolve ties 
arbitrarily). Take a group of most promising candidate 
patterns and put them in a block b of predefined size. 
 Expand (b) 

Expand (b: block of candidate patterns) 
If not last_level 
            then 
begin 
                     Expand1(b) 
                  end. 
Expand1(b): 
1. Count support for each candidate pattern in the 

block b by intersecting the diff-set list of the items 
in the database. 

2. When a pattern becomes frequent, remove it from 
the block b and put it in the list of frequent 
patterns along with its support value. If the pattern 
is present in the Border Set increase its subitemset 
counter. If the subitemset counter of the pattern in 
Border Set is equal to its length move it to the 
global pool of candidate patterns.    

3. Prune all patterns whose support values < given 
minimum support. Remove all supersets of these 
patterns from Border Set.  

4. Generate all patterns of next higher length from 
the newly obtained frequent patterns at step 3. If 

all immediate subsets of the newly generated 
pattern are frequent then put the pattern in the 
global pool of candidate patterns else put it in the 
Border Set if the pattern length is > 3.  

5. Take a block of most promising b candidate 
patterns from the global pool. 

6. If block b is empty and no more candidate patterns 
left, output frequent patterns and exit. 

7. Call Expand (b) if enough time is left in τ to 
expand a new block of patterns, else output 
frequent patterns and exit. 

Fig. 2. Algorithm BDFS(b)-diff-sets 
 

Let us consider the following example to show how 
BDFS(b)-diff-sets work.  

Let the following table (fig. 3) represent a set of 12 
transactions, where the items are represented by a, b, c 
… 

 
1. a b c d e 2. a c d e 3. a d e 4. b c d e 
5. b d e 6. a b d 7. a b d 8. a b c d 
9. d e 10. a c d e 11. a b c d e 12. ace 

Fig. 3 Given transaction dataset 
 
I. Create a lower triangular adjacency matrix, M, for n-
items (Total storage required: n*(n+1)/2). M stores the 
frequencies of 1-at-a-time and 2-at-a-time combinations of 
all items. 
II. In M, M(i,j) represents the number of occurrences of the 
item-pair i and j, ∀ i = 1,2…n and ∀  j = 1,2,3…i and 
M(i,I) represents the total number of occurrences of item i. 

Fig. 4. Procedure Create_Matrix 
 

 
Fig. 5 Matrix M 

 
Now we proceed as follows: 

Step I. Given this set of transactions D, create a two-
dimensional lower triangular matrix M using procedure 
Create_Matrix (fig. 4) and the diff-set transaction id 
lists. This diff-set tid-list (fig. 5) contains the 
transaction numbers corresponding to which the 
particular item does not occur. The created matrix M is 
depicted in fig. (5). This creating of the matrix M and 
the diff-set tid-list and storing in the hard-drive is a 
support independent step and we will refer this step 
through out this paper as a support-independent pre-
processing step. 

Step II.  Let the absolute support  (abs) be 3. Cells 
of Matrix M are visited to find F(1) and F(2) [where 
F(n) is frequent pattern of length n]. With the 
frequency being in parentheses, we have: 

F(1) = { a(9), b(7), c(7), d(11), e(9)} .. … (1)    
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F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), 
be(4),  cd(6), ce(6),  de(8)}…..…... (2) 

 

 
Fig. 6 The diff-set list of the items (a snap-shot till first 

block of patterns) 
 

Step III. Two 2-length patterns are merged if their first 
elements match.  Thus  

Newly merged patterns = {abc, abd, abe, acd, 
ace, ade, bcd, bce, bde, cde }..…….. (3) 
Step IV. Find if all the subsets of new merged patterns 
are frequent. If all its 2-length subsets are not present, 
then the pattern is pruned (using the support 
monotonicity property[8]), else the pattern becomes a 
candidate-pattern and it is moved to the global-pool of 
candidate patterns C( ). The global-pool of candidate 
patterns is sorted on length and any tie between two 
same length patterns is resolved arbitrarily.  

C ( ) = {abc, abd, abe, acd, ace, ade, bcd, bce, 
bde, cde}…... (4) 
Step V.  Let the block size b is 4. This means as the 3-
length candidate patterns are pushed into the global 
pool, 4 of these patterns namely, abc, abd, abe and acd, 
will be put in the next block b.  
Step VI. From the diff-sets of the two-length patterns 
we calculate the diff-sets of the three length patterns as 
shown in the figure(4d) as follows: If d(ab) and d(ac) 
represents the diff-set of ab and ac respectively, then 
we can get d(abc) = d(ac) – d(ab) [as suggested by Zaki 
[4]] and the frequency of the pattern abc can be found 
from freq(abc) = freq(ab) - |d(abc)|. We now check the 
frequency of these patterns by intersecting the diff-set 
tid-lists of the items. 
b = {abc (3), abd (5), abe (2), acd(5)}…………(5) 
As frequency of abe is less than the support threshold, 
it gets pruned.   

F (3) = {abc (3), abd (5), acd (5)…… (6) 
 
Step VII. We now merge the newly found frequent 
patterns in F(3) and test these newly merged patterns  
generated for the presence of their immediate subsets.  

Newly merged patterns = { abcd } …. (7) 

All immediate subsets of the pattern abcd are not 
present in F(3). Hence we move the pattern abcd to 
border set of length 4, BS (4), with a sub-itemset 
counter of 3.   

BS (4) = { abcd (sub-itemset = 3) } …(8)  
Patterns ace, ade, bcd, bce are taken in the next block b 
from the global-pool of candidate patterns.        

b={ace(5),ade(5),bcd(4),bce(3)}........ (9) 
All these items have frequency greater than (abs) = 3 
and are hence frequent.  Thus from the new block  

F(3)={ ace(5) ,ade(5), bcd(4), bce(3)}…(10) 
For each pattern in the current F(3), search BS (4) to 
see if any of the immediate supersets are waiting in the 
border set. Pattern abcd is in BS (4) with sub-itemset 
counter = 3. Hence increase the sub-itemset counter of 
abcd and make it 4. The pattern abcd is of the highest 
length among the candidate patterns in the global-pool 
and is put in the next block b. Merge newly found k-
length frequent patterns with previously found k-length 
frequent patterns to make patterns of higher length. 

Newly merged patterns (4) = {acde ,bcde } 
……(11) 
The number of frequent immediate subsets of acde and 
bcde are 3 and 2 respectively. Hence they are moved to 
BS (4).   

BS (4) = {acde (sub-itemset = 3), bcde (sub-
itemset =       2)}……………………...…. (12) 
The patterns abcd, bde and cde go to the current block 
b. After intersecting the diff tid-list of these patterns,  

F (4) = {abcd (3)}…………….…… (13) 
F (3) = {bde (3),cde (5)} ………….. (14) 

Similarly search the BS (4) with newly found F(3) 
patterns and merge the patterns in the newly found 
F(3)’s with themselves and also with previous F(3)’s to 
generate higher length patterns. acde and bcde move 
from BS (4) to global pool of patterns and moves into 
the block b. By intersecting the diff tid-lists of the 
items,  

F(4)={acde (4), bcde (3)} ..………. (15) 
As no higher length patterns can be generated and the 
number of patterns in block b becomes zero and also 
the number of candidate patterns in the global pool of 
candidate patterns becomes zero, the algorithm stops 
executing here. Thus, the set of all frequent patterns 
are:  
 
F(1) = { a(9), b(7), c(7), d(11), e(9)} 
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4), 
cd(6), ce(6),  de(8)} 
F(3) = { abc (3), abd (5), acd (5), ace(5) ,ade(5), 
bcd(4), bce(3), bde (3),cde (5)} 
F(4) = { abcd (3), acde (4), bcde (3)} 
 

The block size b can now be varied to show how it 
affects the execution time of the algorithm. In the next 
section, we show and discuss this effect. BDFS(b)-diff-
sets has the capability to run in real-time. Whenever it 
is stopped before its natural completion, it outputs 
frequent patterns of various lengths it had obtained up 
to that point of execution time. 
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5 Empirical Evaluation 
 
Legend: T= Average size of transaction; I= Average 
size of the maximal potentially large itemset; D= No. 
of transactions in the database; N= Number of items.  
To evaluate the performance of BDFS(b)-diffsets with 
on dense datasets, we have tested it on various dense 
datasets. This includes real-life dense datasets like 
CHESS, Connect-4, PUMSB and PUMSB*1and 
synthetic datasets like: T10I8D100K, T10I8D10K, 
T10I8D1K (N=1K). These datasets were generated 
using the IBM synthetic data generator2 [2]. The 
experiments were performed on a Red-Hat Linux 
machine with 1GB RAM and 20 GB HD with Pentium 
IV 2.24Ghz processor. 
 
5.1 Comparison of BDFS(b)-diff-sets with 

existing algorithms 
 
In order to show how BDFS(b)-diff-sets performs on 
dense datasets, when it is run to generate all frequent 
patterns, we have chosen to compare it with dEclat3, 
Eclat4, FP-growth5 and Apriori6. Since FP-growth is 
known to be an order faster and scales better than 
Apriori[9], we have compared Apriori and BDFS(b)-
diff-sets but for their number of patterns checked. In 
figures 7, 8, 9 and 10, we have compared the run-time 
of FP-Growth, dEclat and Eclat with BDFS(b)-diff-sets 
for dense datasets Pumsb, T10I8D100K and Pumsb* 
respectively and found that BDFS(b)-diff-sets 
significantly out-performs all the three algorithms in 
these cases. In figure 11, we have tested the scalability 
of Eclat and dEclat and BDFS(b)-diff-sets. We have 
observed that all the algorithms are scalable with time 
and number of transactions in the database, but 
BDFS(b)-diff-sets takes strikingly much less time than 
dEclat, and Eclat over the same databases. Comparing 
the number of patterns being checked by Apriori and 
BDFS(b)-diff-sets, as shown in figure 12, it is found 
that BDFS(b)-diff-sets checks much lesser number of 
patterns than Apriori. The performance imperatives 
come from the efficient search strategy of the block 
depth first search that BDFS(b)-diff-sets utilizes and 
combines the power of the diff-sets approach. It is 
worth mentioning at this point that the codes we have 
obtained from the public domains are highly optimized 
in respect to implementation. 
 

                                                
1 These datasets are publicly available at 
http://fimi.cs.helsinki.fi/data/ 
2 The data generator is available from 
http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData 
3 The dEclat code used for comparison is publicly available at  
http://www.cs.helsinki.fi/u/goethals/software/index.html 
4 The Eclat code used for comparison is publicly available at 
 http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html 
5 The FP-growth code used for comparison is publicly available at  
www.cse.cuhk.edu.hk/~kdd/program.html 
6 The Apriori code used for comparison is publicly available at  
http://www.cs.helsinki.fi/u/goethals/software/index.html 

5.2 Real-Time Performance of BDFS(b)-diff-
sets 

 
Figures 13, 14, 15 and 16 summarize the real-time 
behavior of BDFS(b)-diff-sets by depicting the 
percentage of frequent patterns generated with 
percentage execution time having F(1) & F(2) included 
and excluded in two respective curves. This we have 
done to show how the real-time performance is 
affected by the two-dimensional matrix M. It may be 
noted that the over all percentage of output is almost 
always ahead of percentage execution time. In figure 
13, we find out that we have approximately 95% of the 
frequent patterns in 25% of completion time. We have 
also observed that our proposed algorithm perform 
quite well on real-life dense dataset connect-4 and 
highest length patterns can be obtained in lesser than 
50% of total execution time.  

Although it can be argued that all the existing 
frequent pattern mining algorithms will give some 
output if the execution is stopped at a user-defined 
time, but we have found that their performance in the 
real-time output is not promising as they use either a 
breadth-first or a depth-first search only and do not try 
to promise real-time performance.  In figures 17, 18 
and 19, we do a comparison of the real-time output of 
the existing algorithms. In all the cases, we find that 
BDFS(b)-diff-sets outperforms al existing techniques 
in providing real-time output. From figure 19, we find 
that BDFS(b)-diff-sets can provide 70% of the frequent 
patterns in just 40% of execution time. Whereas depth-
first search techniques like FP-Growth and dEclat 
provides much lesser patterns corresponding to the 
given time. Its worth mentioning at this point that 
BDFS(b)-diff-sets takes much lesser time for complete 
execution as shown before. In this case, the percentage 
time taken for a particular algorithm is the slice of its 
own total execution time. Had the comparison been 
done in a scale of absolute time, the real-time 
performance edge pf BDFS(b)-diff-sets would have 
been much more prominent. This can be explained by 
the fact that BDFS(b)-diff-sets is using an intelligent 
and informed stages search strategy and is able to rank 
the nodes and continue searching in an intelligent 
manner, as compared to other methods that are using a 
blind depth-first or breadth-first search technique. The 
datasets on which the performance has been measured 
happen to be dense datasets7 

Figures 20-22 shows the performance of BDFS(b)-
diff-sets when the block size is varied. We find that for 
smaller block size we get higher length patterns 
quickly. This signifies that a better real-time output is 
obtained with smaller block sizes. Fig 23 gives a 
tabular representation of the actual output. From figure 
23 we find that all F[15] patterns are found only in 
34% of completion time. 
 

                                                
7 Comparison on sparse datasets can be obtained in 
[5,6] 
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6 Conclusion 
 
 Traditionally, the frequent pattern mining has been 
kept as an offline analytical task, where the frequent 
patterns are found on the data captured for a specific 
time period, few weeks, months or even years. But 
with the changing scenario in the business environment 
and with improvement in the communications 
technology and the Internet, and with the more and 
more business processes going online, advent of GRID 
based computing scenarios and in cases where data is 
being captured by AIT (like RFID) agent based sensor 
networks, frequent pattern mining for real-time 
decision making will become a thrust area of research. 
Real-time frequent pattern mining will have great 
impact on the way knowledge is gathered from patterns 
from the databases. It has the capability to affect all 
aspects of doing business in today’s world. It will 
provide decision makers with more accuracy and 
reduced time lag and help in real-time decision-
making, bye-passing the analytic latency as discussed 
in [13]. 

In this paper, we have proposed an algorithm 
BDFS(b)-diff-sets, a brute force version of the Block 
Depth First Search(BDFS) [7] and implemented with 
diff-sets [4]. First we have compared the performance 
of BDFS(b)-diff-sets with dEclat, Eclat, FP-Growth 
and Apriori and shown that it compares well with 
others. Moreover, by adjusting its block size properly, 
BDFS(b)-diff-sets has the extra ability to run with 
limited available memory, which often becomes a point 
of concern in other algorithms. We have then shown 
that while running under real-time constraints it outputs 
large chunks of frequent patterns with fractional 
execution times.  We have made detailed performance 
evaluation based on empirical analysis using 
commonly used synthetic and real-life dense datasets. 
Thus, we have demonstrated that real-time frequent 
pattern mining can be done successfully using 
BDFS(b)-diff-sets. Further research in this direction 
may include design of powerful heuristics to enhance 
the efficiency of BDFS(b) under different scenarios. 
We believe this study will encourage use of AI 
heuristic search techniques in real-time frequent pattern 
mining. 
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Fig. 7.  Time (in seconds) comparison of FP-Growth, Eclat 
and dEclat with BDFS(b)-diffsets (b= 20880) on PUMSB, 
N=2113, T=74, D=49046 
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Fig. 8.  Time (in seconds) comparison of FP-Growth with 
BDFS(b)-diffsets for T10I8D100K, b=100K. In most cases 
BDFS(b)-diffsets took in milli seconds only. 
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Fig. 9.  Time (in seconds) comparison of Eclat and dEclat 
with BDFS(b)-diffsets for T10I8D100K, b=100K 
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Fig. 10.  Time (in seconds) comparison of FP-Growth, Eclat 
and dEclat  with BDFS(b)-diffsets (b=2088K) for PUMSB*, 
N=2088 T= 50.5, D = 49046 
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Fig. 11.  Scalability evaluation of BDFS(b)-diffsets with 
Eclat and dEclat supp=0.5%, b = 100K for  T10I8D1K,10K 
and 100K (Time in seconds) 
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Fig. 12.  Number of patterns checked by Apriori and 
BDFS(b)-diffsets (b=208800) for Pumsb,  N=2113,T=74, 
D=49046, with varying support 
 

 
Fig. 13 Time-Patterns % of BDFS(b) for b=75K and 65% 
supp for Chess (N=75, T=37, D=3196) 
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Fig. 14  Time-Patterns % for b=75K and 65% supp for 
T10I8D100K 
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Fig. 15. Time-pattern% of BDFS(b), b=129, for 75% supp of 
Connect-4 
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Fig. 16. Time-pattern% of BDFS(b), b=1K, for 
T25I20D100K 
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Fig. 17. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=1K, for 0.15% supp of 
T10I8D100K 
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Fig. 18. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=2113, for 75% supp of 
PUMSB 
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Fig. 19. Time-pattern% comparison of dEclat, FP-Growth 
with BDFS(b)-diff-sets, b=380, for 75% supp of Connect-4 
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Fig. 21. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=760, for 50% support of CHESS 
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