
Abstract

Finding frequent patterns from databases has been the
most time consuming process in data mining tasks, like
association rule mining. Frequent pattern mining in
real-time is of increasing thrust in many business
applications such as e-commerce, recommender
systems, and supply-chain management and group
decision support systems, to name a few. A plethora of
efficient algorithms have been proposed till date,
among which, vertical mining algorithms have been
found to be very effective, usually outperforming the
horizontal ones. However, with dense datasets, the
performances of these algorithms significantly
degrade. Moreover, these algorithms are not suited to
respond to the real-time need. In this paper, we
describe BDFS(b)-diff-sets, an algorithm to perform
real-time frequent pattern mining using diff-sets and
limited computing resources. Empirical evaluations
show that our algorithm can make a fair estimation of
the probable frequent patterns and reaches some of the
longest frequent patterns much faster than the existing
algorithms.

1. Introduction

In recent years, business intelligence systems are
playing pivotal roles in fine-tuning business goals such
as improving customer retention, market penetration,
profitability and efficiency. In most cases, these
insights are driven by analyses of historic data. Now
the issue is, if the historic data can help us make better
decisions, how real-time data can improve the decision
making process [1].

Frequent pattern mining for large databases of
business data, such as transaction records, is of great
interest in data mining and knowledge discovery [2],
since its inception in 1993, by Agrawal et al. In this
paper, we assume that the reader knows the basic
assumptions and terminologies of mining all frequent
patterns.

Researchers have generally focused on the
frequent pattern mining, as it is complex and the search
space needed for finding all frequent itemsets is huge
[2]. A number of efficient algorithms have been
proposed in the last few years to make this search fast
and accurate[3]. Among these, a number of effective
vertical mining algorithms have been recently
proposed, that usually outperforms horizontal
approaches [4]. Despite many advantages of the

vertical format, the methods tend to suffer, when the
tid-list cardinality gets very large as in the case of
dense datasets [4]. Again, these algorithms have
limited themselves to either breadth first or depth first
search techniques. Hence, most of the algorithms stop
only after finding the exhaustive (optimal) set of
frequent itemsets and do not promise to run under user
defined real-time constraints and produce some
satisficing (interesting sub-optimal) solutions due to
their limiting characteristics[5, 6].
In this paper, we describe BDFS(b)-diff-sets (adopted
from[5, 6]), a real-time frequent pattern mining
algorithm which runs under limited execution time and
has the capability of running under limited memory as
well in cases of dense datasets. BDFS(b)-diff-sets does
not limit itself to either of breadth-first or a depth-first
search, but uses a search technique, which is a good
mix of the staged search and depth-first search
(discussed later in section 4.1), adopted from [7]. We
have adopted the diff-sets concept as introduced by [4]
as it has been found to be very effective in cases of
dense datasets.

In this paper, we also show the edge of BDFS(b)-
diff-sets over existing efficient association mining
algorithms such as Apriori [8], FP-Growth [9], Eclat
[10] and dEclat [4], when it runs to completion and
outputs exhaustive set of frequent patterns.

The rest of the paper is organized as follows. In
the next section we present business issues of real-time
frequent pattern mining in brief. In Section 3, we
discuss a review of the previous work in association
rule mining. In Section 4, we introduce algorithm
BDFS(b)-diff-sets implemented using diff-sets[4].
Section 5 contains the empirical evaluation of our
algorithm. Finally, we conclude the paper in Section 6.

2. Business Intelligence Issues of Real-

Time Frequent Pattern Mining

An offline analytic approach to data mining reflects
sound practice because the data have to be cleaned,
checked for accuracy, etc. However, in a scenario of
cutthroat competition, the organizations cannot afford
to show the attitude of not keeping abreast with the
latest changing demands and trends of their customers
and get satisfied with periodical data. They have to act
on the latest data that is available to them to react not
only to the fierce global competition, but also market
products keeping in mind of the latest customer wishes.
In such a scenario, the concept of a real-time enterprise

An Efficient Algorithm for Real-Time Frequent Pattern Mining for Real-Time
Business Intelligence Analytics

Rajanish Dass
Indian Institute of Management Ahmedabad

email: rajanish@iimahd.ernet.in

Ambuj Mahanti
Indian Institute of Management Calcutta

email: am@iimcal.ac.in

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

Business Event

Action
Taken

data latency

Data Stored in Database or Data
warehouse

Information Delivered

action time or action distance

analysis latency

decision latency

Value

Time

has creped into the corporate boardrooms of a number
of organizations. Using up-to-date information, getting
rid of delays, and using speed for competitive
advantage is what the real-time enterprise is about [11].
Moreover, in cases where there is a ubiquitous flow of
data from various sources, like that of RFID sensor
networks, it becomes impossible for the human analyst
to sift through huge volumes of data for decision
making in real-time.

Frequent pattern mining has been extensively used
for market basket analysis of data, to find out the
hidden patterns that lie in the transactional database. To
promote a particular product, if a retailer decides to go
for dynamic pricing or for dynamic discount, she must
do it before the customer actually moves out of the
store. Hence, the retailer cannot afford to make run on
the huge dataset again and again to depict the correct
association rule for a particular customer before she
moves out of the store. Again, the strategy of making
the association mining an offline task and refer to the
patterns for a particular time period may also prove to
be ineffective because the customer preference may
considerably change over time. Hence, dynamic
pricing or offering dynamic discounts will not be able
to fetch the necessary returns from the customer(s), if
the whole exercise is based on patterns that were
obtained previously. With competition growing at a
break-neck speed, organizations have started
appreciating the real-time analysis and real-time
decision making for the particular concerned customer
[12]. The importances for real-time solutions have been
felt more lately due to the introduction and
development of online businesses (although for offline

Exhibit 1. Framework for real-time business intelligence.
Organizations must manage three distinct processes that
create latency in an analytic environment to support real-time
decision making. Source [13]

businesses as well, the thrust remains the same).
Researchers [14] believe that real-time personalization
technology will proactively offer a particular customer
products and services that will fit into their need
exactly. A real-time analytical engine will work in real-

time, analyzing web clicks or sales rep interactions and
matching them with the past purchasing history to
make the offerings.

In cases of event based information management
systems, as the example in the previous paragraph,
current approaches of business intelligence systems
using various data mining techniques make
organizations face some serious latency problems,
which they must overcome. These are: data latency,
analysis latency and decision latency [13]. The
following exhibit will make the point clearer.

Once a business event happens, users face data
latency, meaning the time taken for various pre-
processing steps for storing this data into the
corresponding database or data warehouse. On this
data, various analytic processes have to run for
discovering the relevant information and delivering it
to the right user for the purpose of decision making.
This phase, referred to as analytic latency in Exhibit 1,
refers to the time taken by various algorithms to run on
the corresponding database or data warehouse. Once
the information is delivered, the user may take some
time before she can take any action on this delivered
information. This is referred to as decision latency, in
Exhibit 1. As pertinent from the above figure, the
majority of the action time is caused due to the analytic
latency only. Hence the major challenge to bye-pass
these latencies and delivering right information to the
right user within right time is the analytic latency. This
means that the existing technologies hinder in
responding to the real-time need of the business user
due to their in-built limitations as they do not have the
capability to respond to the real-time need. This real-
time time bound, as described by various authors as
right time, will vary from user-to-user and from
industry to industry. In an research carried by TDWI
(The Data Warehousing Institute) [15], based on the
responses of 383 respondents world wide, who have
deployed various data mining related systems in
organizations, it has been found that the major factors
that create the bottle-neck of reducing the analytic
latency and real-time business intelligence are lack of
tools for doing real-time processing, immature
technology and performance issues in Exhibit 2.

Lack of tools for doing real-time processing 35%

Immature technology 28%

Performance and scalability 24%

Exhibit 2. Obstacles to real-time business intelligence
Source[16]

There are numerous areas where real-time decision
making plays a crucial role. These include areas like
real-time customer relationship management [17-19],
real-time supply chain management systems [20] real-
time enterprise risk and vulnerability management [21],
real-time stock management and vendor inventory [22],

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

real-time recommender systems[23], real-time
operational management with special applications in
mission critical real-time information as is used in the
airlines industry, real-time intrusion and real-time fraud
detection [24], real-time negotiations and other areas
like real-time dynamic pricing and discount offering to
customers in real-time. More than that, real-time data
mining will have tremendous importance in areas
where a real-time decision can make the difference
between life and death – mining patterns in medical
systems.

3. Previous Work Done
A detailed discussion about the various algorithms of
frequent pattern mining and their performance can be
found in the literature surveys of frequent pattern
mining [3, 25, 26]. Majority of the algorithms in this
area have been classified according to their strategy to
traverse the search space and by their strategy to
determine the support values of the itemsets [25].
However, Su & Lin [27] have concluded that the most
salient features of these algorithms are their counting
strategy, search direction and search strategy (Table
1). Recently, a number of vertical mining algorithms
have been proposed[4, 10, 28]. In a vertical database,
each item is associated with its corresponding set of
transactions where the particular item appears [4],
called tid-list. However, in dense datasets, the method
suffers since the intersection time becomes very high.
Furthermore, the scalability of these algorithms gets
affected, when the vertical tid-lists become too large
for memory. Zaki [4] has introduced the concept of
diff-sets, that only keeps track of the differences in the
tids of a candidate pattern from its generating frequent
patterns. This diff-set implementation drastically cut
down the size of the memory and tid-list intersections
are done significantly faster (as diff-sets are a small
fraction of the size of tid-lists).

Search Direction
Bottom-up Top-Down
Search Strategy Search Strategy

Counting
Strategy

Depth-
first

Breadth-
first

Depth-
first

Breadth-
first

Counting FP-
Growth Apriori Top-

Down
Intersection
of tid-lists Eclat Partition

Intersection
of Diff-Sets dEclat

Table 1. Classification of prevaililng algorithms

4. BDFS(b)-diff-sets: An Efficient

Technique of Frequent Pattern Mining
In Real-Time Using Diff-Sets

4.1 Algorithm Basics

In this study, we propose a brute force algorithm
BDFS(b)-diff-sets, which is a variant of the Block
Depth First Search [7] and inducted into the domain of
frequent pattern mining [5, 6]. Block Depth First
Search is a search algorithm, based on a novel
combination of the staged search and the depth first
search [29]. As a result, it has the merits of both best-
first search and the depth-first-branch-and-bound
(DFBB) search [30], ,and at the same time, avoids bad
features of both. BDFS(b)-diff-sets explores the given
search space in stages. The search is conducted in a
depth first manner, which ensures that patterns of
greater length will be preferred over those of
comparatively shorter lengths. We assume that a lower
triangular frequency matrix M for a given database is
created in a support-independent pre-processing step
and kept in the hard-disk, which stores the support
independent frequencies of all 1-length and 2-length
patterns. Once the user specifies a desired support
value, all frequent patterns of length 1 and 2 (meaning
F(1) and F(2), where F(n) means frequent pattern of
length-n) are obtained from M. Then BDFS(b)-diff-sets
starts its search for frequent patterns of higher lengths
from this point forward by intersecting the diff-set tid-
lists of corresponding items. The most salient features
of BDFS(b)-diff-sets are:(a) It conducts search in
stages and uses back-tracking strategy to run to
completion and ensure optimal solution. (b) It takes a
block of candidate patterns b from a global pool,
conducts the search by checking the frequency of these
patterns in the database. It generates the possible
candidate patterns (explained later with an example) of
the next higher length from the currently known
frequent patterns. These candidate patterns are
continued to be explored in a systematic manner until
all frequent patterns are generated. In this paper, we
keep the block b variable and the value to be defined
by the user using her knowledge and experience
depending on the available computer memory. A
possible state space diagram of BDFS(b)-diff-sets is
shown in. Fig. 1

Fig. 1. State space representation of BDFS(b)-diff-sets

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

The initial state (or the root node) in the state-space is
denoted by S0, which contains the complete set of 2-
length frequent patterns F(2). In S0,, the set of all
candidate patterns of length 3 or more are set to φ. In
general, by the expansion of a node (which is a block
of candidate patterns in this case) we mean:
i. Counting the support frequency of all candidate

patterns in the state from the database by
intersecting the diff-sets of the corresponding
items.

ii. Generating the candidate patterns or patterns of
border set of next higher level (explained later in
the algorithm and its working through example).

iii. Arranging the candidate patterns according to their
merits (explained later) and group them into
blocks containing b-patterns each. If the block has
empty space, it gets candidate patterns from the
previous level. This can be handled using a global
pool of candidate patterns that has been sorted in
descending order of length. We resolve ties
arbitrarily.

We have implemented this algorithm with diff-sets as
proposed by [4] and have used the prefix based tree,
called trie, data structure for implementing BDFS(b)-
diff-sets.

4.2 Algorithm Details

Algorithm BDFS(b)-diff-sets:

 Initialize the allowable execution time τ.
Let the initial search frontier contain all 3-length
candidate patterns. Let this search frontier be stored as
a global pool of candidate patterns. Initialize a set
called Border Set to null.
Order the candidate patterns of the global pool
according to their decreasing length (resolve ties
arbitrarily). Take a group of most promising candidate
patterns and put them in a block b of predefined size.
 Expand (b)

Expand (b: block of candidate patterns)
If not last_level
 then
begin
 Expand1(b)
 end.
Expand1(b):
1. Count support for each candidate pattern in the

block b by intersecting the diff-set list of the items
in the database.

2. When a pattern becomes frequent, remove it from
the block b and put it in the list of frequent
patterns along with its support value. If the pattern
is present in the Border Set increase its subitemset
counter. If the subitemset counter of the pattern in
Border Set is equal to its length move it to the
global pool of candidate patterns.

3. Prune all patterns whose support values < given
minimum support. Remove all supersets of these
patterns from Border Set.

4. Generate all patterns of next higher length from
the newly obtained frequent patterns at step 3. If

all immediate subsets of the newly generated
pattern are frequent then put the pattern in the
global pool of candidate patterns else put it in the
Border Set if the pattern length is > 3.

5. Take a block of most promising b candidate
patterns from the global pool.

6. If block b is empty and no more candidate patterns
left, output frequent patterns and exit.

7. Call Expand (b) if enough time is left in τ to
expand a new block of patterns, else output
frequent patterns and exit.

Fig. 2. Algorithm BDFS(b)-diff-sets

Let us consider the following example to show how
BDFS(b)-diff-sets work.

Let the following table (fig. 3) represent a set of 12
transactions, where the items are represented by a, b, c
…

1. a b c d e 2. a c d e 3. a d e 4. b c d e
5. b d e 6. a b d 7. a b d 8. a b c d
9. d e 10. a c d e 11. a b c d e 12. ace

Fig. 3 Given transaction dataset

I. Create a lower triangular adjacency matrix, M, for n-
items (Total storage required: n*(n+1)/2). M stores the
frequencies of 1-at-a-time and 2-at-a-time combinations of
all items.
II. In M, M(i,j) represents the number of occurrences of the
item-pair i and j, ∀ i = 1,2…n and ∀ j = 1,2,3…i and
M(i,I) represents the total number of occurrences of item i.

Fig. 4. Procedure Create_Matrix

Fig. 5 Matrix M

Now we proceed as follows:

Step I. Given this set of transactions D, create a two-
dimensional lower triangular matrix M using procedure
Create_Matrix (fig. 4) and the diff-set transaction id
lists. This diff-set tid-list (fig. 5) contains the
transaction numbers corresponding to which the
particular item does not occur. The created matrix M is
depicted in fig. (5). This creating of the matrix M and
the diff-set tid-list and storing in the hard-drive is a
support independent step and we will refer this step
through out this paper as a support-independent pre-
processing step.

Step II. Let the absolute support (abs) be 3. Cells
of Matrix M are visited to find F(1) and F(2) [where
F(n) is frequent pattern of length n]. With the
frequency being in parentheses, we have:

F(1) = { a(9), b(7), c(7), d(11), e(9)} .. … (1)

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7),
be(4), cd(6), ce(6), de(8)}…..…... (2)

Fig. 6 The diff-set list of the items (a snap-shot till first

block of patterns)

Step III. Two 2-length patterns are merged if their first
elements match. Thus

Newly merged patterns = {abc, abd, abe, acd,
ace, ade, bcd, bce, bde, cde }..…….. (3)
Step IV. Find if all the subsets of new merged patterns
are frequent. If all its 2-length subsets are not present,
then the pattern is pruned (using the support
monotonicity property[8]), else the pattern becomes a
candidate-pattern and it is moved to the global-pool of
candidate patterns C(). The global-pool of candidate
patterns is sorted on length and any tie between two
same length patterns is resolved arbitrarily.

C () = {abc, abd, abe, acd, ace, ade, bcd, bce,
bde, cde}…... (4)
Step V. Let the block size b is 4. This means as the 3-
length candidate patterns are pushed into the global
pool, 4 of these patterns namely, abc, abd, abe and acd,
will be put in the next block b.
Step VI. From the diff-sets of the two-length patterns
we calculate the diff-sets of the three length patterns as
shown in the figure(4d) as follows: If d(ab) and d(ac)
represents the diff-set of ab and ac respectively, then
we can get d(abc) = d(ac) – d(ab) [as suggested by Zaki
[4]] and the frequency of the pattern abc can be found
from freq(abc) = freq(ab) - |d(abc)|. We now check the
frequency of these patterns by intersecting the diff-set
tid-lists of the items.
b = {abc (3), abd (5), abe (2), acd(5)}…………(5)
As frequency of abe is less than the support threshold,
it gets pruned.

F (3) = {abc (3), abd (5), acd (5)…… (6)

Step VII. We now merge the newly found frequent
patterns in F(3) and test these newly merged patterns
generated for the presence of their immediate subsets.

Newly merged patterns = { abcd } …. (7)

All immediate subsets of the pattern abcd are not
present in F(3). Hence we move the pattern abcd to
border set of length 4, BS (4), with a sub-itemset
counter of 3.

BS (4) = { abcd (sub-itemset = 3) } …(8)
Patterns ace, ade, bcd, bce are taken in the next block b
from the global-pool of candidate patterns.

b={ace(5),ade(5),bcd(4),bce(3)}........ (9)
All these items have frequency greater than (abs) = 3
and are hence frequent. Thus from the new block

F(3)={ ace(5) ,ade(5), bcd(4), bce(3)}…(10)
For each pattern in the current F(3), search BS (4) to
see if any of the immediate supersets are waiting in the
border set. Pattern abcd is in BS (4) with sub-itemset
counter = 3. Hence increase the sub-itemset counter of
abcd and make it 4. The pattern abcd is of the highest
length among the candidate patterns in the global-pool
and is put in the next block b. Merge newly found k-
length frequent patterns with previously found k-length
frequent patterns to make patterns of higher length.

Newly merged patterns (4) = {acde ,bcde }
……(11)
The number of frequent immediate subsets of acde and
bcde are 3 and 2 respectively. Hence they are moved to
BS (4).

BS (4) = {acde (sub-itemset = 3), bcde (sub-
itemset = 2)}……………………...…. (12)
The patterns abcd, bde and cde go to the current block
b. After intersecting the diff tid-list of these patterns,

F (4) = {abcd (3)}…………….…… (13)
F (3) = {bde (3),cde (5)} ………….. (14)

Similarly search the BS (4) with newly found F(3)
patterns and merge the patterns in the newly found
F(3)’s with themselves and also with previous F(3)’s to
generate higher length patterns. acde and bcde move
from BS (4) to global pool of patterns and moves into
the block b. By intersecting the diff tid-lists of the
items,

F(4)={acde (4), bcde (3)} ..………. (15)
As no higher length patterns can be generated and the
number of patterns in block b becomes zero and also
the number of candidate patterns in the global pool of
candidate patterns becomes zero, the algorithm stops
executing here. Thus, the set of all frequent patterns
are:

F(1) = { a(9), b(7), c(7), d(11), e(9)}
F(2) = { ab(5), ac(6), ad(8), ae(6), bc(4), bd(7), be(4),
cd(6), ce(6), de(8)}
F(3) = { abc (3), abd (5), acd (5), ace(5) ,ade(5),
bcd(4), bce(3), bde (3),cde (5)}
F(4) = { abcd (3), acde (4), bcde (3)}

The block size b can now be varied to show how it
affects the execution time of the algorithm. In the next
section, we show and discuss this effect. BDFS(b)-diff-
sets has the capability to run in real-time. Whenever it
is stopped before its natural completion, it outputs
frequent patterns of various lengths it had obtained up
to that point of execution time.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

5 Empirical Evaluation

Legend: T= Average size of transaction; I= Average
size of the maximal potentially large itemset; D= No.
of transactions in the database; N= Number of items.
To evaluate the performance of BDFS(b)-diffsets with
on dense datasets, we have tested it on various dense
datasets. This includes real-life dense datasets like
CHESS, Connect-4, PUMSB and PUMSB*1and
synthetic datasets like: T10I8D100K, T10I8D10K,
T10I8D1K (N=1K). These datasets were generated
using the IBM synthetic data generator2 [2]. The
experiments were performed on a Red-Hat Linux
machine with 1GB RAM and 20 GB HD with Pentium
IV 2.24Ghz processor.

5.1 Comparison of BDFS(b)-diff-sets with

existing algorithms

In order to show how BDFS(b)-diff-sets performs on
dense datasets, when it is run to generate all frequent
patterns, we have chosen to compare it with dEclat3,
Eclat4, FP-growth5 and Apriori6. Since FP-growth is
known to be an order faster and scales better than
Apriori[9], we have compared Apriori and BDFS(b)-
diff-sets but for their number of patterns checked. In
figures 7, 8, 9 and 10, we have compared the run-time
of FP-Growth, dEclat and Eclat with BDFS(b)-diff-sets
for dense datasets Pumsb, T10I8D100K and Pumsb*
respectively and found that BDFS(b)-diff-sets
significantly out-performs all the three algorithms in
these cases. In figure 11, we have tested the scalability
of Eclat and dEclat and BDFS(b)-diff-sets. We have
observed that all the algorithms are scalable with time
and number of transactions in the database, but
BDFS(b)-diff-sets takes strikingly much less time than
dEclat, and Eclat over the same databases. Comparing
the number of patterns being checked by Apriori and
BDFS(b)-diff-sets, as shown in figure 12, it is found
that BDFS(b)-diff-sets checks much lesser number of
patterns than Apriori. The performance imperatives
come from the efficient search strategy of the block
depth first search that BDFS(b)-diff-sets utilizes and
combines the power of the diff-sets approach. It is
worth mentioning at this point that the codes we have
obtained from the public domains are highly optimized
in respect to implementation.

1 These datasets are publicly available at
http://fimi.cs.helsinki.fi/data/
2 The data generator is available from
http://www.almaden.ibm.com/cs/quest//syndata.html#assocSynData
3 The dEclat code used for comparison is publicly available at
http://www.cs.helsinki.fi/u/goethals/software/index.html
4 The Eclat code used for comparison is publicly available at
 http://fuzzy.cs.uni-magdeburg.de/~borgelt/eclat.html
5 The FP-growth code used for comparison is publicly available at
www.cse.cuhk.edu.hk/~kdd/program.html
6 The Apriori code used for comparison is publicly available at
http://www.cs.helsinki.fi/u/goethals/software/index.html

5.2 Real-Time Performance of BDFS(b)-diff-
sets

Figures 13, 14, 15 and 16 summarize the real-time
behavior of BDFS(b)-diff-sets by depicting the
percentage of frequent patterns generated with
percentage execution time having F(1) & F(2) included
and excluded in two respective curves. This we have
done to show how the real-time performance is
affected by the two-dimensional matrix M. It may be
noted that the over all percentage of output is almost
always ahead of percentage execution time. In figure
13, we find out that we have approximately 95% of the
frequent patterns in 25% of completion time. We have
also observed that our proposed algorithm perform
quite well on real-life dense dataset connect-4 and
highest length patterns can be obtained in lesser than
50% of total execution time.

Although it can be argued that all the existing
frequent pattern mining algorithms will give some
output if the execution is stopped at a user-defined
time, but we have found that their performance in the
real-time output is not promising as they use either a
breadth-first or a depth-first search only and do not try
to promise real-time performance. In figures 17, 18
and 19, we do a comparison of the real-time output of
the existing algorithms. In all the cases, we find that
BDFS(b)-diff-sets outperforms al existing techniques
in providing real-time output. From figure 19, we find
that BDFS(b)-diff-sets can provide 70% of the frequent
patterns in just 40% of execution time. Whereas depth-
first search techniques like FP-Growth and dEclat
provides much lesser patterns corresponding to the
given time. Its worth mentioning at this point that
BDFS(b)-diff-sets takes much lesser time for complete
execution as shown before. In this case, the percentage
time taken for a particular algorithm is the slice of its
own total execution time. Had the comparison been
done in a scale of absolute time, the real-time
performance edge pf BDFS(b)-diff-sets would have
been much more prominent. This can be explained by
the fact that BDFS(b)-diff-sets is using an intelligent
and informed stages search strategy and is able to rank
the nodes and continue searching in an intelligent
manner, as compared to other methods that are using a
blind depth-first or breadth-first search technique. The
datasets on which the performance has been measured
happen to be dense datasets7

Figures 20-22 shows the performance of BDFS(b)-
diff-sets when the block size is varied. We find that for
smaller block size we get higher length patterns
quickly. This signifies that a better real-time output is
obtained with smaller block sizes. Fig 23 gives a
tabular representation of the actual output. From figure
23 we find that all F[15] patterns are found only in
34% of completion time.

7 Comparison on sparse datasets can be obtained in
[5,6]

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

6 Conclusion

 Traditionally, the frequent pattern mining has been
kept as an offline analytical task, where the frequent
patterns are found on the data captured for a specific
time period, few weeks, months or even years. But
with the changing scenario in the business environment
and with improvement in the communications
technology and the Internet, and with the more and
more business processes going online, advent of GRID
based computing scenarios and in cases where data is
being captured by AIT (like RFID) agent based sensor
networks, frequent pattern mining for real-time
decision making will become a thrust area of research.
Real-time frequent pattern mining will have great
impact on the way knowledge is gathered from patterns
from the databases. It has the capability to affect all
aspects of doing business in today’s world. It will
provide decision makers with more accuracy and
reduced time lag and help in real-time decision-
making, bye-passing the analytic latency as discussed
in [13].

In this paper, we have proposed an algorithm
BDFS(b)-diff-sets, a brute force version of the Block
Depth First Search(BDFS) [7] and implemented with
diff-sets [4]. First we have compared the performance
of BDFS(b)-diff-sets with dEclat, Eclat, FP-Growth
and Apriori and shown that it compares well with
others. Moreover, by adjusting its block size properly,
BDFS(b)-diff-sets has the extra ability to run with
limited available memory, which often becomes a point
of concern in other algorithms. We have then shown
that while running under real-time constraints it outputs
large chunks of frequent patterns with fractional
execution times. We have made detailed performance
evaluation based on empirical analysis using
commonly used synthetic and real-life dense datasets.
Thus, we have demonstrated that real-time frequent
pattern mining can be done successfully using
BDFS(b)-diff-sets. Further research in this direction
may include design of powerful heuristics to enhance
the efficiency of BDFS(b) under different scenarios.
We believe this study will encourage use of AI
heuristic search techniques in real-time frequent pattern
mining.

0

1

2

3

4

5

6

90 93 96 99

%Support

Ti
m

e(
s)

FP_Growth BDFS(b)-diffsets
dEclat Eclat

Fig. 7. Time (in seconds) comparison of FP-Growth, Eclat
and dEclat with BDFS(b)-diffsets (b= 20880) on PUMSB,
N=2113, T=74, D=49046

0
5

10
15
20
25
30
35
40
45

0.33% 1.00% 3% 5%

% Support

Ti
m

e(
s)

FP-Growth BDSF(b)-diffsets

Fig. 8. Time (in seconds) comparison of FP-Growth with
BDFS(b)-diffsets for T10I8D100K, b=100K. In most cases
BDFS(b)-diffsets took in milli seconds only.

0
1
2
3
4
5
6
7
8
9

0% 1% 2% 4% 5% 8%

%SupportTi
m

e(
s)

BDFS(b)-diffsets dEclat Eclat

Fig. 9. Time (in seconds) comparison of Eclat and dEclat
with BDFS(b)-diffsets for T10I8D100K, b=100K

0
0.5

1
1.5

2
2.5

3
3.5

4

50 55 60 65 70 75 80 85 90 95

%Support

Ti
m

e(
s)

dEclat Eclat

FP-Growth BDFS(b)-diffsets

Fig. 10. Time (in seconds) comparison of FP-Growth, Eclat
and dEclat with BDFS(b)-diffsets (b=2088K) for PUMSB*,
N=2088 T= 50.5, D = 49046

0

1

2

3

4

5

6

7

1000 10000 100000
No. of Transactions

Ti
m

e(
s)

dEclat BDFS(b)-diffsets Eclat

Fig. 11. Scalability evaluation of BDFS(b)-diffsets with
Eclat and dEclat supp=0.5%, b = 100K for T10I8D1K,10K
and 100K (Time in seconds)

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

0

1000

2000

3000

4000

5000

6000

90 93 96 99

%Support

N
o.

 o
f p

at
te

rn
s

BDFS(b)-diffset Apriori

Fig. 12. Number of patterns checked by Apriori and
BDFS(b)-diffsets (b=208800) for Pumsb, N=2113,T=74,
D=49046, with varying support

Fig. 13 Time-Patterns % of BDFS(b) for b=75K and 65%
supp for Chess (N=75, T=37, D=3196)

0

20

40

60

80

100

2 19 36 54 72 100

%Time

%
Pa

tte
rn

s

Output Patterns including F(1) & F(2)
Output Patterns excluding F(1) & F(2)

Fig. 14 Time-Patterns % for b=75K and 65% supp for
T10I8D100K

0

20

40

60

80

100

10 20 30 40 71 74 84 93 96 100

%Time

%
Pa

tt
er

ns

%Patterns inclusing F(1) & F(2)

%Patterns excluding F(1) & F(2)

Fig. 15. Time-pattern% of BDFS(b), b=129, for 75% supp of
Connect-4

0

20
40

60
80

100

25 34 47 60 73 87 100 100

%Time

%
Pa

tt
er

ns

%Patterns including F(1) & F(2)

%Patterns excluding F(1) & F(2)

Fig. 16. Time-pattern% of BDFS(b), b=1K, for
T25I20D100K

15

35

55

75

95

50 60 70 80 90 100
%Tim e

%
Pa

tt
er

ns
BDFS(b)-diff-sets Apriori

dEclat FP-Grow th

Fig. 17. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=1K, for 0.15% supp of
T10I8D100K

0.00

20.00

40.00

60.00

80.00

100.00

0 20 40 60 80 100
%Time

%
Pa

tt
er

ns

BDFS(b)-dif f -sets Apriori dEclat FP-Growth

Fig. 18. Time-pattern% comparison of dEclat, Apriori, FP-
Growth with BDFS(b)-diff-sets, b=2113, for 75% supp of
PUMSB

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

%Time

%
Pa

tt
er

ns

BDFS(b)-diff-sets dEclat FP-Grow th

Fig. 19. Time-pattern% comparison of dEclat, FP-Growth
with BDFS(b)-diff-sets, b=380, for 75% supp of Connect-4

50
60

70
80

90

100

5 20 29 50 64 76 94

% Time

Output Patterns including F(1) & F(2)

Ouput Patterns excluding F(1) & F(2)

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

0

100000

200000

300000

No. of
Patterns

 F[3] F[8] F[13]

8.
11

50
.1

2 S
11

FRequent Pattern
Length

%Time

8.11 16.19 28.31 36.39 40.45 50.12

58.26 67.44 78.19 100.00 Series11

Fig. 20. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=76, for 50% support of CHESS

0

100000

200000

300000

No. of
Patterns

 F[3] F[8] F[13]

11
.2

7

77
.6

8

Frequent Pattern
Length

%Time

11.27 21.33 31.82 41.59 51.99 67.57 77.68 87.84 92.99

Fig. 21. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=760, for 50% support of CHESS

0

100000

200000

300000

No. of
Patterns

 F[3] F[8] F[13]

12
.4

1

85
.2

4

Frequent Pattern
Length

%Time

12.41 25.26 49.51 61.44 75.52 85.24 91.01 100.00

Fig. 22. Real-time output of frequent patterns by BDFS(b)-
diff-sets, b=7600, for 50% support of CHESS

7 References

[1] M. L. Gonzales, "Unearth BI in Real-time," vol. 2004:
Teradata, 2004.
[2] B. Goethals, "Memory Issues in Frequent Pattern
Mining," in Proceedings of SAC'04. Nicosia, Cyprus: ACM, 2004.
[3] B. Goethals, "Survey on Frequent Pattern Mining," vol.
2004. Helsinki, 2003, pp. 43.
[4] M. J. Zaki and K. Gouda, "Fast Vertical Mining Using
Diffsets," presented at 9th International Conference on Knowledge
Discovery and Data Mining, Washington, DC, 2003.
[5] R. Dass and A. Mahanti, "Frequent Pattern Mining in
Real-Time – First Results," presented at TDM2004/ACM SIGKDD
2004, Seattle, Washington USA, 2004.
[6] R. Dass and A. Mahanti, "An Efficient Technique for
Frequent Pattern Mininig in Real-Time Business Applications,"

presented at 38th IEEE Hawaii International Conference on System
Sciences (HICSS 38), Big Island, 2005.
[7] A. Mahanti, S. Ghosh, and A. K. Pal, "A High
Performance Limited-Memory Admissible and Real Time Search
Algorithm for Networks," University of Maryland at College Park,
MD 20742, Maryland, College Park, Computer Science Technical
Report Series CS-TR-2858 UMIACS-TR-92-34, March 1992 1992.
[8] R. Agarwal, T. Imielinski, and A. Swami, "Mining
Association Rules Between Sets of Items in Large Datasets," in
Proceedings of the ACM SIGMOD Conference on Management of
Data. Washington,D.C.: ACM, 1993, pp. 207-216.
[9] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns
Without Candidate Generation," in Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data.
Dallas,TX: ACM, 2000, pp. 1-12.
[10] M. J. Zaki, "Scalable Algorithms for Association
Mining," IEEE Transactions on Knowledge and Data Engineering,
vol. 12, pp. 372-390, 2000.
[11] Gartner, "The Real-Time Enterprise," vol. 2004, 2004.
[12] B. Riggs and P. McDougal, "Real-Time Analysis of
Buying Habits," in Information week, vol. October 18, 1999, pp. 117.
[13] R. Hackathorn, "Minimizing Action Distance," in The
Data Administration Newsletter, vol. 23, 2003.
[14] S. Langenfeld, "CRM and the Customer Driven Demand
Chain," vol. 2004, 2004.
[15] W. Eckerson, "The "Soft Side" of Real-Time BI," in DM
Review, vol. 14, 2004, pp. 30-32.
[16] TDWI, "The Real Time Enterprise Report," TDWI 2003.
[17] M. J. A. Berry and G. S. Linoff, Data Mining
Techniques:For Marketing, Sales, and Customer Support: John
Wiiley & Sons, 1997.
[18] C. Rygielski, J. C. Wang, and D. C. Yen, "Data Mining
Techniques for Customer Relationship Management," Technology
and Society, vol. 24, pp. 483-502, 2002.
[19] Y. D. Shen, Q. Yang, Z. Zhang, and H. Lu, "Mining the
Customer's Up-To-Moment Preferences for E-commerce
Recommendation," in Proceedings of the Advances in Knowledge
Discovery and Data Mining: 7th Pacific-Asia Conference, PAKDD
2003, Seoul, Korea, April 30 - May 2, vol. 2637 / 2003, Lecture
Notes in Computer Science, K.-Y. Whang, J. Jeon, K. Shim, and J.
Srivastava, Eds. Heidelberg: Springer-Verlag, 2003, pp. 166-177.
[20] R. Kalakota, J. Stallaert, and A. C. Whinston,
"Implementing Real time Supply Chain Optimization Systems,"
presented at Supply Chain Management, Hong Kong, 1995.
[21] OpenServiceInc., "Real-Time Enterprise Risk and
Vulnerability Management," vol. 2004: Open Service Incorporation,
2004.
[22] SeeBeyond, "Real-Time Stock Management and VMI,"
vol. 2004, 2004.
[23] J. Schafer, J. Konstan, and J. Riedl, "Recommender
Systems in e-Commerce," presented at Proceedings of the ACM E-
Commerce, 1999.
[24] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M.
Miller, S. Hershkop, and J. Zhang, "Real time data mining-based
intrusion detection," presented at DARPA Information Survivability
Conference & Exposition II, Anaheim, CA , USA, 2001.
[25] J. Hipp, U. Guntzer, and G. Nakhaeizadeh, "Algorithms
for Association Rule Mining -- A general Survey and Comparision,"
SIGKDD Explorations, vol. 2, pp. 58-64, 2000.
[26] R. L. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar,
and R. Namburu, Data Mining for Scientific and Engineering
Applications: Kluwer Academic Publishers, 2001.
[27] J.-H. Su and W. Y. Lin, "CBW: An Efficient Algorithm
for Frequent Itmeset Mining," in Proceedings of the 37th Hawaii
International Conference on System Sciences. Hawaii: IEEE, 2004.
[28] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, and
M. Bawa, "Turbo-charging Vertical Mining of Large Datasets,"
presented at ACM SIGMOD International Conference Management
of Data, 2000.
[29] N. J. Nilson, Artificial Intelligence: A New Synthesis. Los
Altos, CA: Morgan Kaufmann, 1998.
[30] V. N. Rao and V. Kumar, "Analysis of Heuristic Search
Algorithms," University of Minnessota, Technical Report Csci TR
90-40, 1990.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

%
Ti

m
e

10
0

91

85

74

62

51

45

34

28

22

16

10

4

F[

1]

27

27

27

27

27

27

27

27

27

27

27

27

27

F[
2]

31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
31

2
F[

3]

21
92

21

92

21
92

20

68

20
03

20

03

20
03

20

03

20
03

20

03

20
03

20

03

20
03

F[

4]

10
21

0
10

21
0

10
21

0
89

92

88
75

86

29

86
29

73

20

72
24

68

47

58
75

50

98

29
99

F[

5]

32
97

7
32

37
0

30
44

4
28

26
2

27
70

1
26

00
9

25
51

4
21

22
4

20
40

2
18

71
7

15
62

1
12

23
8

55
65

F[

6]

76
34

5
72

99
6

67
86

6
63

90
3

61
00

3
55

90
6

52
54

2
44

03
7

40
96

3
35

87
0

28
83

5
20

55
4

79
06

F[

7]

12
82

08

12
07

47

11
14

97

10
60

74

95
85

6
86

42
1

79
89

4
65

11
0

58
17

9
47

54
8

37
44

0
25

08
5

76
12

F[

8]

15
54

45

14
47

15

13
56

17

12
77

61

11
06

73

95
11

1
85

71
1

67
86

8
57

77
7

45
04

9
32

52
0

18
88

1
56

69

F[
9]

13

51
48

12

58
64

12

14
36

10

78
90

89

61
6

73
01

8
63

70
3

48
17

8
37

15
9

28
13

9
19

43
4

97
16

29

75

F[
10

]
83

29
1

78
10

2
77

39
6

61
66

1
49

36
9

36
76

6
32

53
8

22
19

3
15

19
2

11
55

9
70

72

32
20

10

79

F[
11

]
35

69
9

34
21

9
34

17
8

22
67

8
17

77
5

12
34

4
11

12
4

62
97

38

82

30
18

15

97

68
5

19
8

F[
12

]
10

34
7

10
14

1
10

14
1

52
40

38

38

26
92

24

95

12
37

59

6
49

3
23

4
96

29

F[

13
]

19
51

19

41

19
41

71

8
51

1
36

7
34

8
17

9
55

48

24

7

2
F[

14
]

22
5

22
5

22
5

52

40

29

28

19

2
2

1
0

0
F[

15
]

13

13

13

1
1

1
1

1
0

0
0

0
0

C
[3

]
0

0
0

14
7

22
6

22
6

22
6

22
6

22
6

22
6

22
6

22
6

22
6

C
[4

]
0

0
0

28
5

11
8

36
6

36
6

17
03

18

00

21
86

32

02

40
18

62

33

C
[5

]
0

62
2

26
64

35

8

30
3

81
2

10
0

44
0

28
0

25
4

50
9

10
50

C

[6
]

0
0

59
9

66
1

92
9

99

19
95

86

58

30

8
50

0
60

4
19

4
C

[7
]

0
0

62
6

21
5

0
33

3
10

4
72

7
42

8
0

0
87

0

C
[8

]
0

0
71

7
94

0

37
0

0
70

5
0

0
0

22
75

0

C
[9

]
0

0
16

0

0
75

0

32
2

0
0

0
15

3
0

C
[1

0]

0
0

0
0

0
11

03

0
28

5
0

0
0

8
0

C
[1

1]

0
0

0
0

0
65

0

28
2

0
0

0
0

0
C

[1
2]

0

0
0

0
0

0
0

0
0

0
0

0
0

C
[1

3]

0
0

0
0

0
0

0
0

0
0

0
0

0
C

[1
4]

0

0
0

0
0

0
0

0
0

0
0

0
0

C
[1

5]

0
0

0
0

0
0

0
0

0
0

0
0

0
Fi

g.
 2

3.
 F

re
qu

en
t o

ut
pu

t a
lo

ng
 w

ith
 c

an
di

da
te

 s
et

s o
f B

D
FS

(b
)-

di
ff

-s
et

s
fo

r P
U

M
SB

 d
at

a
fo

r 7
5%

 s
up

po
rt

an
d

b=
21

13

P
ro

ce
ed

in
g
s

o
f

th
e

3
9
th

 H
aw

ai
i

In
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 S

y
st

em
 S

ci
en

ce
s

-
2
0
0
6

1
0

