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Abstract. The problem of finding dense structures in a given graph
is quite basic in informatics including data mining and data engineer-
ing. Clique is a popular model to represent dense structures, and widely
used because of its simplicity and ease in handling. Pseudo cliques are
natural extension of cliques which are subgraphs obtained by removing
small number of edges from cliques. We here define a pseudo clique by
a subgraph such that the ratio of the number of its edges compared
to that of the clique with the same number of vertices is no less than
a given threshold value. In this paper, we address the problem of enu-
merating all pseudo cliques for a given graph and a threshold value.
We first show that it seems to be difficult to obtain polynomial time
algorithms using straightforward divide and conquer approaches. Then,
we propose a polynomial time, polynomial delay in precise, algorithm
based on reverse search. The time complexity for each pseudo clique
is O(∆ log |V | + min{∆2, |V | + |E|}). Computational experiments show
the efficiency of our algorithm for both randomly generated graphs and
practical graphs1.

1 Introduction

Let us consider the problem of finding dense structures from a given graph, i.e.,
finding vertex induced subgraphs including many edges. In graphs representing
similarity or relation, dense structures can be considered to represent groups
of similar objects or deeply related objects. Thus, the problem is important in
many scientific areas, such as bio-informatics[13], and Web science[11]. This is
especially true in data engineering and data mining, where it is one of basic
problems, and has many applications such as clustering, community discovering,
machine learning, Web search, etc. [2, 8, 11–14, 18, 26].

A clique is a subgraph that is a complete graph. It is a fundamental structure
for representing dense structures. It has several good mathematical properties,
and can be easily handled. As a result, clique detection has been used in many
researches[15, 1]. In particular, frequent pattern mining, which is a fundamental
problem in data mining, is equivalent to the bipartite clique enumeration in the
graph representing inclusion relation between transactions and items. Cliques are
1 An extend abstract version is in [23]



considered as dense structures, and also considered as a part of dense structures,
or seeds of dense structures. The clique enumeration can be efficiently carried
out thanks to the increase of computation power, and new algorithms[16, 20].
Currently, the bottle neck of the computation in the practice is usually the
output process or the post processing using the output, thus the algorithm can
be said to be almost optimal.

As a next step, people wanted to use a richer model than cliques. In very
sparse graphs, a subgraph containing only small cliques can be considered as a
dense structure if it has many edges when compared to the others. If the data
is incorrect so that some edges are missing, then a vertex set which we consider
it should be a clique will not be a clique. For robust computation, “pseudo
cliques” should be used. For example, such pseudo cliques are used for web page
clustering[12].

We can consider several models to represent pseudo cliques. A possible model
is a subgraph that is obtained from a clique by removing at most θ edges, where
θ is a given threshold constant number. An advantage of this model is that in this
definition any subset of a pseudo clique is also a pseudo clique in the sense of the
vertex subset, thus the family of pseudo cliques satisfies the monotone property.
This is a useful property, and we can use many techniques in the literatures to
develop an efficient algorithm. However, a disadvantage of the model is that for
graphs of any size the threshold is the same, thus larger subgraphs can lose only
a small portion of its edges. This is contrary to the intuitions. Moreover, so many
small vertex sets will become pseudo cliques.

Another model of a pseudo clique is a subgraph that has at least a constant
ratio of edges compared to a clique of the same size. Precisely, we define the
density of a subgraph by the number of edges over the number of all its vertex
pairs. A subgraph is a pseudo clique if its density is no less than the given
threshold value. In this definition, the family of pseudo cliques no longer satisfies
the monotone property. It is a disadvantage of this definition. On the other hand,
small subgraphs are pseudo cliques only if they are cliques, since the limitation
of the number of edge removals changes as the size of subgraphs. This is an
advantage of this definition.

In the literatures, a subgraph having many edges compared to the number
of its vertices is often called dense subgraph, heavy graph, or maximum edge
subgraph. However, all these terms are used to represent the subgraph having
the highest density, thus it is mainly used in optimization. On the other hand,
in many areas in informatics, a subgraph having many edges thereby similar to
a clique is often called a “pseudo clique” or “quasi clique”. In this paper, we use
the term pseudo clique.

The problem of maximizing the density among subgraphs of a given size
k is NP-complete since it includes the maximum clique problem as its special
case[6]. However, if k = Θ(|V |) holds, there is a PTAS algorithm[3]. For the edge
weighted version, an O(|V |1/3−ε) approximation algorithm is known[6]. However,
finding an induced subgraph maximizing the average degree in it can be solved
in polynomial time[9].



In this paper, we address the enumeration problem of all pseudo cliques
in a given graph. We choose the latter definition for pseudo cliques. We first
show that the existence of polynomial delay algorithm is non-trivial, by proving
that straightforward back-tracking (branch-and-bound) approaches involve an
NP-complete problem in each iteration. Note that it does not assure the non-
existence of output polynomial time algorithm even when P 6= NP .

In contrast, a reverse search works well for this problem. We will show
that for any pseudo clique, one of its vertex satisfies that its removal is also
a pseudo clique. From this, we can obtain an adjacency relation on pseudo
cliques spanning all the pseudo cliques. Then we define a tree-shaped traver-
sal route on all pseudo cliques by this adjacency. Our algorithm traverses the
route in a depth-first manner with taking polynomial time on each pseudo clique,
thus it is polynomial delay algorithm. We then introduce a method to decrease
the time complexity and practical computation time. The algorithm runs in
O(∆ log |V |+min{∆2, |V |+ |E|}) time for each pseudo clique with O(|V |+ |E|)
memory. It also works for the edge-weighted version of the problem, in the same
time complexity and space complexity. By computational experiments we show
the efficiency of our algorithm in practice. An extended abstract version of this
paper is published in [23]. Actually, one claim of the paper has an error, so the
time complexity of the algorithm in the paper is slightly different. We give a
correct statement and proof in this paper.

The organization of this paper is as follows. Section 2 is for preliminaries.
In Section 3, we present the hardness result for straightforward approaches.
Section 4 describes the adjacency relation of pseudo cliques and the enumeration
algorithm. In Section 5, we present the results of our computational experiments,
and conclude the paper in Section 6.

2 Preliminary

Let G = (V, E) be a graph with a vertex set V and an edge set E ⊆ V × V .
In this paper we consider graphs with no multiple edge. We say a vertex v is
adjacent to a vertex u if there is an edge e = {u, v} in E. We denote the degree
of v by deg(v), and the maximum degree by ∆.

For a vertex set U ⊆ V , E[U ] denotes the set of edges both whose endpoints
are in U , and the vertex induced subgraph by U , denoted by G[U ] = (U,E[U ]),
is a graph composed of edges of G whose endpoints are both in U . G[U ] is
also called an induced subgraph. In Fig. 1, the subgraph induced by vertex set
{3, 5, 6, 9, 11} is the graph inside the gray circle without edges one of its endpoint
outside the circle. If U = ∅, we define G[U ] by the empty graph (∅, ∅). If any
two vertices in U are connected by an edge, U and G[U ] are called a clique. In
Fig 1, vertices {5, 7, 9, 11} form a clique. For a vertex v and a vertex set U , we
denote the number of edges connecting v and a vertex in U by degU (v).

Let clq(n) = n(n−1)
2 , where clq(n) is the number of edges in the clique of

n vertices. For a vertex subset U ⊆ V at a size of at least 2, the density of
G[U ] is defined by |E[U ]|/clq(|U |). The density is the ratio of the edges in G[U ]
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Fig. 1. An example of pseudo clique and other vertices

compared to the complete graph of |U | vertices. In Fig 1, the density of the
subgraph induced by K = {3, 5, 6, 9, 11} is 7/10. We define the density of G[∅]
and graphs with one vertex by 1. Suppose that θ, 0 ≤ θ ≤ 1 be a constant number
called threshold. Then, an induced subgraph G[U ] is called a pseudo clique if its
density is no less than θ. We note that G[∅] and G[{v}] for any vertex v are
pseudo cliques for any threshold.

Let w be an edge weight function w : E → <. For an edge subset F ⊆ E,
we define the weight of F by the sum of weights of edges in F , and denote it by
w(F ). We also define the weight of G[U ] by w(E[U ]). For a given edge weight
function w : E → <, we define the weighted density of an induced subgraph
G[U ] by w(E[U ])/clq(|U |). We define the weighted density of the graphs with at
most one vertex by +∞. For a threshold θ ∈ <, an induced subgraph G[U ] is a
weighted pseudo clique if its weighted density is no less than θ.

We define the (weighted) density of a vertex set by that of the subgraph
induced by the vertex set. We often say that U is a (weighted) pseudo clique if
G[U ] is a (weighted) pseudo clique. We here address the following enumeration
problem.

(Weighted) Pseudo Clique Enumeration Problem:
For given a graph G = (V, E) and a density threshold θ, (and edge weight func-
tion w), output all vertex sets whose induced subgraphs are (weighted) pseudo
cliques of G, i.e., all vertex sets whose (weighted) densities are no less than θ

If an enumeration algorithm which outputs a set of solutions terminates in
time polynomial of the sum of the input and output sizes, the algorithm is said
to be output polynomial time. The longest computation time between the output
of any two consecutive solutions is called the delay. An algorithm is polynomial
delay if the delay is polynomial in the input size. The computation time of a
polynomial delay algorithm is linear in the output size, thus it is optimal for
the output size and considered to be practically efficient. Our goal in this paper
is to develop a polynomial delay algorithm for the (weighted) pseudo clique
enumeration problem.
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3 Hardness Result for Straightforward Approaches

A popular approach for solving enumeration problems is so called binary par-
tition, which is a variant of branch and bound method. For the problem of
enumerating all the elements of an implicitly given subset family F ⊆ 2E , bi-
nary partition algorithm works in the following way. If |F| is less than a certain
constant number, it enumerates elements in F directly. Otherwise, it chooses
an element e ∈ E and divide F into two sets F+ and F− so that F+ consists
of all the elements of F including e, and F− consists of those not including e.
Then, we check whether each of F+ and F− is the emptyset or not, and if it
is not empty, we enumerate the elements recursively, by dividing F+ or F− by
choosing another element e′.

The algorithms so called “depth first search” or “back tracking” are also con-
sidered to be a variant of binary partition algorithms. Binary partition works for
many problems, such as spanning trees, paths, and cycles[19], cliques and inde-
pendent sets[16], perfect matchings in bipartite graphs[7], frequent itemsets[24],
frequent trees[4], etc.

The number of iterations of a binary partition algorithm is linear in |F|,
which is the size of output, thanks to the check whether either F+ or F− is the
emptyset. Thus, if the check can be done in polynomial time of the input size,
the binary partition algorithm is polynomial delay. When we want to enumerate
the pseudo cliques by binary partition, the check problem is defined as follows.

Problem: Pseudo Clique Existence
Given a graph G, a vertex subset U , and a threshold θ, check whether a pseudo
clique K including U exists.

However, as we prove below, this problem is NP-complete. Thus, a straight-
forward binary partition algorithm will possibly take exponential time in an
iteration. Note that this result does not assure that binary partition algorithms
will never be output polynomial time unless P = NP . For example, a good
ordering of vertices in V can exist so that the existence of pseudo cliques in
any iteration can be checked in polynomial time. Moreover, even if one itera-
tion takes exponential time in the input size, the total computation time can be
polynomial in the output size since the output size can be also exponential in



the input size. In general, it is not easy to prove such statements, but also not
impossible.

Theorem 1. The problem pseudo clique existence is NP-complete.

Proof. The problem obviously belongs to NP, thus we prove NP-hardness by
reducing the k clique problem which is to answer whether a given graph G′ =
(V ′, E′) includes a clique of a given size k. This problem is NP-complete[10].

We will construct a graph G = (V, E) from G′ as follows. Fig. 2 shows an
example. Without loss of generality, we assume that G′ has at least a certain
number of vertices, say 10 vertices. Let V = V ′ ∪ U where U is a vertex set of
size 2|V ′|2. We choose two arbitrary vertices z1 and z2 from U . The edge set E
is defined by

E = E′ ∪ {(u, v) | v ∈ V ′, u ∈ U, u 6= z1, z2} ∪ EU

where EU is an arbitrary edge subset EU ⊆ U × U such that |EU | = (2|V ′|2 −
1)× (|V ′|2 − 1). Then, the density of G[U ] is equal to (|V ′|2 − 1)/|V ′|2.

Let K be a subset of V ′. If and only if G[K] is a clique, the density of
G[K ∪ U ] is greater than (|V ′|2 − 1)/|V ′|2, since the density of G[{v} ∪ U ] is
equal to (|V ′|2 − 1)/|V ′|2 for any v ∈ V ′. For any K ⊂ V such that G[K] is a
clique, the density of G[K ∪ U ] is determined by the size of K. When K is the
empty set or composed of one vertex, its density is (|V ′|2−1)/|V ′|2, and strictly
increases as the increase of the size of K. If the size of K is k, the density is

clq(k) + (2|V ′|2 − 1)× (|V ′|2 − 1) + k(2|V ′|2 − 2)
clq(k + |V ′|2) .

Thus, by setting θ to this value, the density of G[U ∪K],K ⊆ V ′ is no less
than θ if and only if K is a clique of at least size k in G′. Thus, the problem
pseudo clique existence is NP-complete. ut

4 Polynomial Delay Enumeration of Pseudo Cliques

In the previous section we showed that a straightforward approach to the pseudo
clique enumeration may fail in the sense of the polynomiality. However, the
problem can actually be solved in polynomial delay. In this section we describe
a polynomial delay algorithm for the non-weighted version of our problem. A
slight modifications adopt the weighted version of the problem. The key to an
efficient enumeration is that we construct a tree-shaped traversal route on the set
of pseudo cliques, and perform a depth first search on the tree, without having
the traversal route explicitly on the memory. Such a transversal route can be
obtained by looking at an adjacency relation on pseudo cliques spanning on all
the pseudo cliques. This technique is called reverse search, which is originally
developed by Avis and Fukuda[5].

The idea of reverse search is as follows. We first define a parent for each
element to be enumerated, except for a specified element called the root. The



definition of the parent has to be acyclic, that is, each element is not a proper
ancestor of itself. Then, the parent-child relation induces a spanning tree rooted
at the root on the set of elements to be enumerated. We call the tree the enu-
meration tree. The algorithm traverses the tree in a depth first manner. Reverse
search does not need to memorize the previously visit elements in memory space
to avoid duplications. It uses an algorithm for listing the children of an element.
By finding a child of an element, we can go deeper on the enumeration tree by
a recursive call. After we come back from the recursive call, we find the next
child and make a recursive call for it. In this way, we can perform the depth first
search with memory space linear in the height of the enumeration tree2.

First we observe the following property to obtain an adjacency relation on
pseudo cliques.

Lemma 1. Let v be a vertex in G[K] with the degree no greater than the average
of the degrees of vertices in G[K]. The density of K \ {v} is no less than the
density of K.

Proof. If |K| = 1, then K \{v} = ∅, thus the statement holds. Hence, we assume
that |K| ≥ 2. Let F1 and F2 form a partition of the set of pairs of vertices in K
such that F1 is the set of pairs of v and another vertex, and F2 is the set of the
remaining pairs. Let E1 = E[K] ∩ F1, and E2 = E[K] ∩ F2. The density of K
multiplied by |K| − 1 is equal to the average degree of vertices in K, and thus
it is no less than |E1|/|F1|. Therefore, we can observe that the density of K is
between |E1|/|F1| and |E2|/|F2|. Since E[K \ {v}] = E[K] ∩ F2, the density of
K \ {v} is no less than the density of K. It concludes the proof. ut

From the lemma, we can see that for any pseudo clique K, K \ {v} is also
a pseudo clique for any vertex v whose degree is no greater than the average.
This introduces an adjacency relation on pseudo cliques. Since any K has such a
vertex v, we can remove the vertices of K iteratively until K will be the emptyset,
passing through only pseudo cliques. Thus, the adjacency spans all the pseudo
cliques. The graph induced by the adjacency is not a tree, thus we introduce
parent-child relation to obtain a tree-shaped traverse route.

For a vertex set K 6= ∅, we define v∗(K) by the minimum degree vertex
in G[K]. If there are more than one minimum degree vertices, we choose the
minimum index one. We define the parent Prt(K) of K 6= ∅ by K \ {v∗(K)}.
From Lemma 1, Prt(K) is a pseudo clique if K is a pseudo clique. Since any
K has a unique parent, the graph induced by the parent-child relation forms
a tree. Let us see an example. In Fig 1, the degrees of vertices in G[K] are
degK(3) = degK(6) = 2, degK(5) = degK(9) = 3, degK(11) = 4, thus v∗(K) is
vertex 3. The parent of K = {3, 5, 6, 9, 11} is {5, 6, 9, 11}. Note that the definition
of the parent does not depend on the threshold value, thus the parent is identical
for any threshold value.

2 The space complexity of the original reverse search does not depend on the height
of the enumeration tree.



Now the remaining task is how to find the children of a pseudo clique. For
this task, we first observe the following property, immediately obtained from the
definition of the parent.

Property 1. For a pseudo clique K ⊆ V , K ′ is a child of K if and only if K ′\K =
{v∗(K ′)}.

From the property, we can see that K has at most |V | − |K| children, each
of which is obtained by adding a vertex v not in K to K. Thus, we can list
the children of K by computing the density of K ∪ {v} and v∗(K ∪ {v}) for
each vertex v 6∈ K. This results a polynomial delay enumeration algorithm. We
describe the algorithm as follows, which enumerates all pseudo cliques by calling
with G and K = ∅.

Algorithm EnumPseudoClique (G = (V, E), K)
1: output K
2: for each v 6∈ K do
3: if K ∪ {v} is a pseudo clique then
4: if v = v∗(K ∪ {v}) then EnumPseudoClique (G = (V, E), K ∪ {v})

In a straightforward implementation, an iteration of the algorithm takes
O(|V |2) time, thus pseudo cliques can be enumerated O(|V |2) time for each.
The computation time can be reduced by a sophisticated process.

We characterize vertices generating children in terms of degK . Let θ(K) =
θclq(|K|+1)−|E[K]|. The density of K∪{v} is (|E[K]|+degK(v))/clq(|K|+1),
thus the following lemma holds.

Lemma 2. Let K ⊆ V be a pseudo clique and v be a vertex not in K. K ∪ {v}
is a pseudo clique if and only if degK(v) ≥ θ(K)

θ(K) is the threshold value for degK(v) such that K ∪{v} is a pseudo clique,
thus efficient search of vertices v satisfying degK(v) ≥ θ(K) is a key to efficient
enumeration.

To check whether v∗(K ∪ {v}) = v or not, we introduce a total order ≺U for
any vertex subset U 6= ∅, defined by

u ≺U v ⇔ degU (u) < degU (v) or (degU (u) = degU (v) and u ≤ v),

here u ≤ v means that the index of u is less than that of v. Then, v∗(K) is
the vertex of K satisfying v∗(K) ≺K u for any other vertex u ∈ K. Then, we
have the following lemma.

Lemma 3. For any pseudo clique K and a vertex v not in K, K∪{v} is a child
of K if and only if
(1) K ∪ {v} is a pseudo clique,
(2) the tuple (degK(v∗(K)), v∗(K)) is lexicographically larger than the tuple
(degK(v)− 1, v), and
(3) v is adjacent to any vertex u ∈ K,u ≺K v.



Proof. We first observe that for any vertex u, degK∪{v}(u) = degK(u) + 1 if v
is adjacent to u, and degK∪{v}(u) = degK(u), otherwise. Then, the only if part
of the statement is obvious; if (2) is violated, then v∗(K) ≺K∪{v} v. Hence we
prove the if part. It is sufficient to prove that conditions (2) and (3) lead that
v∗(K ∪ {v}) is v. v∗(K ∪ {v}) is v when any vertex u ∈ K satisfies v ≺K∪{v} u.

Suppose that conditions (2) and (3) hold for v. Then, from condition (3),
any vertex u ∈ K satisfying u ≺K v is adjacent to v. Thus, the vertex u
satisfies degK∪{v}(u) = degK(u) + 1. Together with condition (2), the tuple
(degK∪{v}(u), u) is lexicographically larger than (degK∪{v}(v), v) = (degK(v), v).
Thus, the statement holds. ut

We show an example in Fig. 1. K ∪{v} is a child of K if v is either 1, 2 or 4.
Vertex 7 does not satisfy (3), and vertex 10 does not satisfy (2).

If a vertex v satisfies that K ∪ {v} is a pseudo clique and v ≺K v∗(K), then
K ∪ {v} is always a child of K. To find such vertices efficiently, we maintain a
binary tree which stores all vertices on its leaves in the order of ≺K . We start
at the leaf corresponding to v∗(K), and trace the leaves in the decreasing order
of ≺K , until we meet a vertex v satisfying degK(v) < θ(K). In this way, we can
find all vertices preceding to v∗(K) and satisfying degK(v) ≥ θ(K), in O(log |V |)
time for each.

When we add/delete a vertex v to/from K and obtain a new vertex set K ′, we
update the binary tree with keeping the order on leaves. By the addition/deletion
of v, (degK(u), u) and (degK′(u), u) differ only for the vertices adjacent to v.
Thus, the update can be done in O(∆ log |V |) time. In summary, these operations
take O(∆ log |V |) time for each iteration, or equivalent to, for each child.

The remaining task is to find vertices v such that K ∪ {v} is a child and
v ≺K v∗(K) does not hold. For each vertex v 6∈ K, we define l(v, K) by the first
vertex in K which is not adjacent to v, in the order of ≺K . In the case that
v is adjacent to all vertices, l(v, K) is not defined. In Fig. 1, l(2,K) = 9 and
l(7,K) = 3.

Lemma 4. Let v 6∈ K be a vertex satisfying that v∗(K) ≺K v and K ∪ {v} is a
pseudo clique. Then, K∪{v} is a child of K if and only if v ≺K l(v, K), and the
tuple (degK(v∗(K)), v∗(K)) is lexicographically larger than the tuple (degK(v)−
1, v). Here we suppose that when l(v,K) is not defined, v ≺K l(v, K) always
holds. In particular, v is adjacent to v∗(K).

Proof. The condition v ≺K l(v, K) is equivalent to condition (3) of Lemma 3,
thus the lemma holds. ut

Among the vertices satisfying the conditions of Lemma 4, the vertices v
satisfying l(v, K) = v∗(K) can be found by the above operation, since v ≺K

v∗(K). Thus, we are going to find all vertices l(v, K) 6= v∗(K), among them.
These vertices are adjacent to v∗, thus we have to check at most ∆ vertices. For
any vertex v, l(v, K) is always in the first ∆+1 vertices of K, in the order of ≺K .
We keep the list of the vertices of K sorted in the order of ≺K and update it at
each change of K, then we can compute l(v,K) in O(∆) time. Thus, the time to
compute l(v,K) for all vertices adjacent to v∗(K) is bounded by O(∆2). Since



in the computation an edge is accessed at most once, thus this time can also be
bounded by O(|V |+ |E|). The update of the sorted list needs O(∆ log |V |) time
for an addition/deletion of a vertex of K, thus it is not the bottleneck part of the
time complexity. Thus, we can see that the time complexity of the algorithm is
O(∆ log |V |+min{∆2, |V |+|E|}) for each pseudo clique. Although the algorithm
needs O(|V | log |V | + |E|) time for preprocessing, it is always smaller than the
main computation time since the number of pseudo cliques is always larger than
the number of vertices and edges.

The weighted version of the problem can be solved in the same way. For each
vertex v and vertex set K, we define wK(v) by the sum of the weight of edges
connecting v and vertices in K. Using this, we define v∗(K) by the vertex in
K which minimizes wK . Ties are broken by choosing the minimum index one.
The parent is defined in the same way, and we can construct an enumeration
algorithm in the same framework. Thus we obtain the following theorem.

Theorem 2. For a given graph G, (edge weight function w) and density thresh-
old value θ, all (weighted) pseudo cliques can be enumerated in O(∆ log |V | +
min{∆2, |V |+ |E|}) time for each with O(|V |+ |E|) memory. In particular, the
delay is O(∆ log |V |+ min{∆2, |V |+ |E|}).

We note that the delay can be bounded by the computation time for one
iteration by using so called “odd-even output method”, described in [17, 22].
We modify the algorithm so that in each iteration, the algorithm outputs the
solution before generating recursive calls if the depth of the recursion is odd,
and after the recursive calls otherwise. By this, during the execution, any three
consecutive iterations output at least one solution, thus the delay is reduced to
be equal to the computation time for one iteration.

Considering the practice, the estimation of the computation time is too large,
since we are usually given a possibly large but sparse graphs thereby the pseudo
cliques are small in comparison to the graph sizes. Otherwise the number of
pseudo cliques explodes so that we can not handle the output. Thus, there will
be few candidates for children, and few vertices adjacent to v∗(K). Thus the
complexity we state here is possibly far from the practical computation time.

5 Computational Experiments

We here present the results of computational experiments to show the practical
efficiency of our algorithm. We implemented the non-weighted version of our
algorithm. The implementation is coded by C, compiled by gcc, and executed in
a notebook PC with a Pentium M 1.1GHz processor with 256MB memory with
cygwin which is an emulator of Linux environments on Windows. The imple-
mentation is a simpler version of our algorithm, which maintains only degK(v)
for each vertex v, and the sets of vertices having the same value of degK(v),
thus the worst computation time for an iteration is O(|E| + |V |). The reason
that we did not use the technique described in the previous section is that in
practice we expected that only few vertices satisfy degK(v) = degK(v∗(K)) on



average, and pseudo clique is not large on average. This was actually observed
in the computational experiments.

We examined several types of graphs as inputs of the implementation, ran-
domly generated graphs and graph taken from real world data. We had three
groups of random graphs which are generated in the following three different
ways. The first group consists of ordinary random graphs. For each pair of ver-
tices, we connected them by an edge with the same probability 0.1. The second
group is of so called locally dense graphs. Consider a necklace sequence obtained
by connecting the head and the tail of the vertex sequence (1, 2, . . . , |V |). For
each vertex v, we connected it to each of its neighboring vertices with probability
1/2. Here a neighbor of v is a vertex u with |u− v| ≤ r, or |u− v| ≥ |V | − r, for
given r. In the experiments we set r = 20.

The third was randomly generated scale free graphs. In a scale free graph,
the probability that the degree of a vertex is λ is 1/λΓ . Such a distribution is
called zip distribution, and such data is said to satisfy power law. The graphs
appearing in real world problems are often scale free graphs. Our scale free
graphs are generated by starting from a clique of k vertices and adding vertices
one-by-one to it, and then connect it to k vertices. The vertices to be connected
are chosen randomly such that a vertex is chosen with a probability proportional
to its degree. A graph generated in this way is known to be scale free. The graph
tends to have few locally dense structures which we can see many in real world
data, thus the average size of cliques in this graph is often small.

We run the implementations for these graphs with the thresholds θ = 0.8
and θ = 0.9. Since we could not find any implementation for the pseudo clique
enumeration problem, we compare the performance to that of an ordinary back-
tracking clique enumeration algorithm, which recursively adds vertices larger
than any vertex in the current clique. We maintain |degK(v)| to find the vertices
which can be added to the current clique, since K ∪ {v} is a clique if and only
if |degK(v)| = |K| holds. Since the clique enumeration is a special case of our
problem, the performance of the clique enumeration algorithm can be considered
as a kind of upper bound of the performance of the pseudo clique enumeration
algorithm.

The results of the experiments are shown in Figure 3 and 4. The left side
of Fig. 3 shows the results for ordinary random graphs, and the right side of
Fig. 3 is for locally dense random graphs. The left side of Fig. 4 is for scale free
graphs. The horizontal axis is the number of vertices in the input graphs, and the
vertical axis is for the computation time, computation time for 1 million (pseudo)
cliques, and the number of output (pseudo) cliques. All these are shown in log
scales. The lines almost horizontal in the figures display the computation time
per one million pseudo cliques. The computation time for each pseudo clique
does not change with the change in the threshold value θ, and does not differ
very much from that of the clique enumeration. This means that the performance
of the pseudo clique enumeration is close to optimal, thus in the practice a high
performance is expected.
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Fig. 3. Results for random graphs (left) and locally dense random graphs (right)
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The computation time is increasing with the increase of the graph sizes in
the scale free graphs and slightly increasing in random graphs. This is possibly
because of the increase in the average degree, and the decrease in the ratio
of children in the candidates of children. When we set threshold value θ to
a small value, the number of vertices v satisfying degK(v∗(K)) ≤ degK(v) ≤
degK(v∗(K))+1 increases. Since scale free graphs have a kind of locality, few of
them will be the children of K, on average.

For all the results, the diagonal lines represent the numbers of pseudo cliques
and cliques. For the random graphs, the ratio of these three values increases with
the increase in graph size. This could be because of the increase in the average
degree. It is interesting to note that the ratio does not change much in locally
dense random graphs, and is reduced for the scale graphs.

The right side of Fig. 4 is the result for the graph taken from the real world
data. The graph is a co-author graph[25] such that each vertex is a researcher
and two researchers are connected if they have a joint paper. The number of
vertices is about 30,000 and the number of edges is about 125,000. It is known
that the graph is a scale free graph. For this graph we observe the results by
changing the threshold θ. The leftmost point indicates the computation time of
the clique enumeration, thus it is faster than the others, but not different much



from that of the pseudo clique enumeration. The computation time per each
pseudo clique does not seem to depend on the threshold value.

6 Conclusion

In this paper we addressed the problem of finding dense structures from a graph.
The density is given by the ratio of the existing edges compared to a complete
graph, and we define a pseudo clique as a dense structure by a subgraph with
density no less than the given threshold value. In this term we define our problem
of enumerating all pseudo cliques of given a graph and a threshold.

We first showed that it is not easy to get polynomial time algorithm by
straightforward approaches since in this way we have to solve an NP-complete
problem in each iteration. On the other hand, we showed that any pseudo clique
has a proper subset being a pseudo clique with one fewer vertices. This induces
a relation spanning all pseudo cliques. Using the relation we developed a reverse
search algorithm whose delay is O(∆ log |V | + min{∆2, |V | + |E|}), thus com-
putation time for each pseudo clique is O(∆ log |V |+ min{∆2, |V |+ |E|}). This
also works for the weighted version.

Recently, it has become popular to use dense structures to represent related
objects. One of the problems on practice is that the number of output solutions
is often larger than that of the cliques. The ”maximal” pseudo clique enumera-
tion may help, but it is not straightforward to introduce maximality because the
family of pseudo cliques does not satisfy the monotone property. Detailed char-
acterizations of the dense structures which would allow us to develop efficient
algorithms are important for applications, and an interesting open problem.
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