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ABSTRACT 
Power minimization under variability is formulated as a rigorous 
statistical robust optimization program with a guarantee of power 
and timing yields. Both power and timing metrics are treated 
probabilistically. Power reduction is performed by simultaneous 
sizing and dual threshold voltage assignment. An extremely fast 
run-time is achieved by casting the problem as a second-order 
conic problem and solving it using efficient interior-point 
optimization methods. When compared to the deterministic 
optimization, the new algorithm, on average, reduces static power 
by 31% and total power by 17% without the loss of parametric 
yield. The run time on a variety of public and industrial 
benchmarks is 30X faster than other known statistical power 
minimization algorithms. 
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1. INTRODUCTION 
The increase in variability of several key process parameters, such 
as transistor gate length and threshold voltage, significantly 
impacts the design and optimization of low-power circuits in the 
nanometer regime [1]. The growth of variability can be attributed 
to multiple factors, including the difficulty of manufacturing 
control, the emergence of new systematic variation-generating 
mechanisms, and most importantly, the increase in fundamental 
atomic-scale randomness, such as the variation in the number of 
dopants in the transistor channel [2].  
The growth of standby, or leakage, power as device geometries 
scale down has become an extremely urgent issue. It is projected 
that at the 65nm node, leakage power will account for 45% of 
total power of the circuit [3]. This trend can be attributed 
primarily to the exponential dependence of leakage current on 
threshold voltage of the device.  This exponential dependence also 
causes a large spread in leakage current in the presence of process 
variations. It has been demonstrated that a 1.3X variation in the 
effective channel length could potentially lead to 20X variation in 
leakage current [4].  
 
 

 

 

 

Low power designs are especially vulnerable as low Vth devices 
exhibit larger sensitivity to variation. On the other hand, high 
performance parts are vulnerable as they tend to have highest 
leakage power leading to large yield loss in the high performance 
bin [11]. 

Post-synthesis circuit optimization techniques, such as sizing and 
dual-Vth allocation, are effective in reducing leakage, and have 
been widely explored in a deterministic setting [5-7]. While 
relying on different implementation strategies, all of these 
techniques essentially trade the slack of non-critical paths for 
power reduction by either downsizing the transistors or gates or 
setting them to a higher Vth. In the past, case-files have been used 
with such optimization methods to guarantee that the circuit is 
optimized while guaranteeing a specific yield point. The rise of 
uncorrelated intra-chip variability [1] results in the breakdown of 
the case-file based approach to handling variability in 
optimization as it becomes impossible to come up with a case file 
that will guarantee a specific yield point. This requires the 
introduction of fully statistical optimization techniques that can 
handle the variance of objective and constraint functions explicitly 
during optimization. Given the exponential dependence of leakage 
power on the highly variable transistor channel length and 
threshold voltage, it can be expected that the introduction of 
rigorous statistical optimization will significantly reduce the 
leakage power consumption. 

While much work has been done recently to develop statistical 
timing analysis methods [8], very little work has been done to 
account for variability in circuit optimization [9-11]. In [11], an 
iterative TILOS-like approach of [5], selecting the transistor to 
modify one at a time, is extended to rely on statistical sensitivities. 
Because of a heuristic problem formulation, it is not apparent how 
to control the required yield levels by adjusting the margin of the 
sensitivity variables. The algorithm also has a high run-time. In 
[9], a heuristic way of preventing a build-up of path delays near 
the critical path is proposed, but is not based on rigorous statistical 
formulation. Several statistical sizing algorithms have also 
appeared but are concerned with timing rather than power-limited 
yield [12-14]. 
In this paper we describe a new rigorous statistical algorithm for 
total power minimization. To our knowledge, this is the first 
attempt to solve the statistical leakage minimization problem 
using a theoretically rigorous formulation. It is also amenable to a 
highly efficient computational implementation. A two phase 
approach based on optimal delay budgeting and slack utilization, 
akin to [7], is used. The delay budgeting phase is formulated as a 
robust version of the power-weighted linear program that assigns 
slacks based on power-delay sensitivities of gates. We explicitly 
incorporate the notion of variability in delay and power due to 
process variations into the optimization, by setting an uncertain 
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robust linear program. The variance of delay and power, assumed 
to be due to channel length and threshold voltage variation, is 
mapped to the variance of the sensitivity vector. The statistical 
(robust) linear program is cast into a second order conic program 
that can be solved efficiently. The slack assignment is inter-leaved 
with the configuration selection which optimally redistributes 
slack to the gates in the circuit to minimize total power savings. 
Across the public and industrial benchmarks, the leakage and total 
power, when compared to a deterministic solution under the same 
timing performance, are on average, 31% and 17% lower 
respectively. The robust LP is solved using efficient interior-point 
methods, which are far superior to general non-linear solvers. As a 
result, the algorithm has extremely good run-time, providing a 
30X speed-up compared to another known statistical leakage 
reduction algorithm [11].  
The rest of the paper is organized as follows. In section 2, we 
present the power and delay models and introduce the 
deterministic slack assignment problem. The statistical 
optimization flow is described in detail in section 3. Section 4 
presents the experimental results of running the algorithm on the 
benchmark circuits and section 5 presents the conclusion. 
 

2. POWER MINIMIZATION BY LINEAR 
PROGRAMMING 
The deterministic algorithm for power minimization is a two-
phase iterative relaxation scheme. The input to the first phase is a 
circuit sized for maximum slack using a transistor (gate) sizing 
algorithm, such as TILOS [15], with all the devices set to low Vth.. 
This circuit has the highest possible power consumption of any 
circuit realization. The available slack is then optimally 
distributed to the gates based on the power-delay sensitivities: that 
is, the slack is allocated in a way that maximizes the power 
reduction. The second phase consists of a local search among gate 
configurations in the library, such that slack assigned to gates in 
previous phase is utilized for power reduction.  
The idea of using power-delay sensitivity of a circuit as an 
optimization criterion is itself well known [16]. A linear measure 
of gate’s power-delay sensitivity is power reduction per unit of 
added delay:  
(1) /s P D= ∂ ∂  
The power reduction for an added delay ( )d i is then given by 
( ) ( )s i d i . For example, a node driving a node with large fan-out 

will have a higher sensitivity than a small fan-out node. Thus, a 
unit of added slack to a node with a higher sensitivity will lead to 
the greater power reduction. We rely on extending this concept to 
efficient optimization based on large-scale linear programming by 
converting a power minimization problem into a power-weighted 
slack redistribution. Let a gate configuration be any valid 
assignment of sizes and threshold voltages to transistors in a gate 
in the library. For any fixed load, a set of Pareto points in the 
power-delay space can be identified among all the possible 
configurations (Figure 1). A power optimal solution will contain 
only the Pareto-optimal gate configurations. The trade-offs 
between delay and both leakage and dynamic power can be 
captured in tables, parameterized by the capacitive load. For each 
of the Pareto-optimal gate configurations, the decrease in power 
consumption ( P∆ ) and the change in delay ( D∆ ) are 
calculated. For example, we may compute the sensitivity of 

changing the gate from all transistors having low Vth to the 
configuration where all transistors have high Vth. 
Using this framework, a linear program can be formulated to 
distribute slack to gates with the objective of maximizing total 
power reduction while satisfying the delay constraints on the 
circuit: 

(2) 
 

. . ,  for ( )
,   for ,

i i
0

i j i i

o i
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∑
 

Here ATi is the arrival time at node i, RAT is the required arrival 
time at the primary output, 0

id is the delay of the gate i in the 
circuit configuration obtained by sizing for maximum slack and 
di  is the additional slack assigned.   

The algorithm is constructed as an iterative-relaxation method. At 
its core is an interleaved sequence of (i) optimal slack-
redistribution using LP, and (ii) the local search over the gate 
configuration space to identify a configuration that will absorb the 
assigned slack. Selection of optimal configurations is done 
independently for each gate. It has been shown that when the 
configuration space is continuous, and delay is a monotonic and 
separable function, such a procedure is optimal for small 
increments of slack assignments dδ [17]. Also, the sensitivity 
vector is accurate within a narrow range of delay, requiring 
moving towards the solution under small slack increments. Even 
though the configuration space generated by Vth assignments is 
discrete, the ability to size transistors in a continuous manner 
permits treating as continuous. This ensures that a configuration 
exactly utilizing the slack allotted in the slack assignment phase 
can be found.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The pseudo-code for the deterministic power 
minimization algorithm based on linear programming. 

3. STATISTICAL DELAY AND POWER 
MODELS 
In this work we are concerned with handling two primary sources 
of variability: effective channel length (Leff) and gate-length 
independent variation of threshold voltage (Vth). From a physical 
point of view, this later source of variability will be primarily due 

Deterministic power minimization 
0: Size the circuit for maximum slack under all low Vth 
1: Compute sensitivities for each gate 
2: Solve linear program to optimally allocate slack 
3: Find gate configurations to minimize power for given slack
4: Check timing 
5: If circuit meets timing go to Step 1 

Figure 1: An example of a configuration space. 
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to random dopant fluctuation. These parameters have significant 
impact on timing (Leff) and leakage power (Vth). An additive 
statistical model that decomposes the variability, of both Leff and 
Vth, into the intra-chip and chip-to-chip variability components is 
used. For gate length, 

effL L L L= + ∆ + ∆0 inter intra  
Both Leff and Vth are assumed to be Gaussian random variables, 
which is in agreement with empirical data [1]. The relative 
magnitudes of the intra- and inter-chip components can be 
controlled by adjusting their variances ( 2 2 2σ σ σ= +L inter intra ) 

In keeping with the deterministic optimization algorithm, the 
statistical optimization will rely on the power-delay sensitivity 
vector. The impact of variability on delay and power is captured 
by statistically characterizing a standard cell library, in which two 
Vth levels and several discrete gate sizes are assumed to form the 
cell configuration space. The variance and covariance of the 
power-delay sensitivity coefficients are characterized statistically 
using Monte-Carlo simulation for all the cells in the library. The 
characterization provides the numerical values of the vector of 
mean sensitivities, s , and the covariance matrix Σ  of s. In order 
to formulate the statistical optimization problem rigorously, 
however, we need to establish some theoretical properties of the 
random sensitivity vector. We assume that a first-order Taylor 
expansion of the gate delay function is adequate: 

/ /( , ) ( ) ( )g g o tho g g th thd d L V d L L d V V≅ + ∂ ∂ ∆ + ∂ ∂ ∆  
Under this model, the delay is Gaussian. Dynamic power 
consumption is very weakly dependent on the variation of Vth and 
Leff, thus we ignore it. It was shown in [18], that an empirical 
leakage power model 1 2 thc L c V

leak oP c e− −=  with constants c0, c1 
and c2 can be used to accurately describe the variation in leakage 
power. Under this model, the leakage power, and hence, total 
power P is a log-normal random variable. The sensitivity 
coefficient can be written as / .s P d= ∂ ∂  Then, by chain rule s can 
be written as  

2

/ /

/

1 1( )
( ) ( )

thc L c V

g g th

s P d

c e
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= ∂ ∂
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It can be seen from the above equation that, because L and Vth are 
normal random variables, s follows a log-normal distribution.  
In the presence of non-zero inter-chip variability and spatial intra-
chip variability, the sensitivity coefficients are correlated. Because 
the optimization is easier to set up when the sensitivities are 
uncorrelated, Principal Component Analysis (PCA) is used to 
transform the original vector of sensitivities into one with a 
diagonal covariance matrix. This transformation handles both 
sources of cell correlation. Given the covariance matrix Σ  of the 
vector of sensitivities s, PCA obtains the vector of principal 
components 's . Then, the sensitivities are expressed in terms of 
their uncorrelated principal components [19]: 

's s As= +  
where, s  is the vector of mean sensitivities and the matrix A is 
the eigenvector matrix of Σ .  
 

4. STATISTICAL POWER 
OPTIMIZATION 
In this section, a rigorous statistical equivalent for the power 
minimization strategy is described. To handle variability of 
process parameters, the problem is reformulated as a robust linear 
program and solved using efficient interior-point convex methods. 
 
The essential contribution of this paper is the formulation of a 
rigorous statistical equivalent of the slack assignment using the 
notion of robust linear programming. Robust optimization is 
concerned with ensuring the feasibility and optimality of the 
solution under all permissible realizations of the coefficients of 
the objective and constraint functions [20]. A further contribution 
is an explicit incorporation of uncertainty in a formulation that is 
amenable to highly efficient computation.  
When formulating a statistical power minimization problem, we 
find that an equivalent formulation of (2), which places the power 
weighted slack vector into the constraint set, is more convenient. 
Suppose that Pmax is the initial maximum power, P̂  is the optimal 
power achieved by (2) at a specific RAT , and 1̂d  the vector of 
optimal allocated slacks. The following optimization problem (3) 
is equivalent to (2): 

(3) 

 
ˆ. .

,   for 
,  for ( )

i

i i

o
0

i j i i

min d

s t s d P P
AT RAT o PO
AT AT d d j FI i

≥ −
≤ ∀ ∈
≥ + + ∀ ∈

∑
∑ max  

That is, if 2̂d  denotes allocated slacks for (3), it can be shown 

that 1 2
ˆ ˆ=d d , and 1 2

ˆ ˆ( )= ( )P d P d  is a minimum power solution at 
the specified RAT . The reason is that (3) forces the LP to place a 
premium on the total slack and assign more slack to gates with 
higher sensitivity in order to meet the power constraint. 
The statistical equivalent of (3) is now formulated by 
probabilistically treating the uncertainty of the sensitivity vector 
and of timing constraints: 

(4) 
( ). . }

( )   for 
,  for ( )

i

i i const

o
0

i j i i

min d
s t P s d P P
P AT RAT o PO
AT AT d d j FI i

η
ζ

≥ − ≥
≤ ≥ ∀ ∈

≥ + + ∀ ∈

∑
∑ max  

Here, the deterministic constraints have been transformed into the 
probabilistic constraints. These probabilistic constraints set 
respectively the power-limited parametric yield, η , and the 
timing-limited parametric yield, ζ . Based on the formulation of 
the model of uncertainty, they capture the uncertainty due to 
process parameters via the uncertainty of power and delay 
metrics. We now transform both probabilistic inequalities such 
that they can be efficiently handled by the available optimization 
methods. The challenge is to handle these inequalities 
analytically, in closed form.  
We first consider timing constraints. The probabilistic timing 
constraints in (4) are now transformed such that the resulting 
expression still guarantees achieving the specified parametric 
yield level. Because of typically positive correlation between 
paths delays  

( | ) ( )i j iP D t D t P D t≤ ≤ ≥ ≤  
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Then, if we impose the constraint that ( )iP D RAT ζ≤ ≥  on 
every path, it ensures that the original timing constraint 
( )oP AT RAT ζ≤ ≥  is met. This is the simplest approach. It is 

possible to apply a heuristic approach to adjusting the path-
dependent coefficients, such that the conservatism is reduced. The 
probabilistic timing constraints can be represented by a percent 
point function: 
(5) 1( )

ii DD RATφ ζ σ−+ ≤  
where

oatσ is the standard deviation of the ith path at output o. In 
order to reduce the number of constraints and increase the sparsity 
of the constraint matrices, we further transform the path based 
constraints into node based constraints. In [21] it is shown that 
good results can be achieved by using a heuristic method of 
modeling the node delays with 0

0 1( )
ii dd φ ζ σ−+ , where 0

idσ is the 
standard deviation of the gate delay 0

id . This finally permits us to 
formulate the probabilistic timing constraint: 

(6) 
0

0 1

,   for 
( ) ,  for ( )

i

o

i j i id

AT RAT o PO
AT AT d d j FI iφ ζ σ−

≤ ∀ ∈
≥ + + + ∀ ∈  

We now have to handle the probabilistic power constraint in (4). 
Letting T

i iu s d s d= =∑ , max constP P P∆ = − , and ' 1η η= − , 
we can re-write the probabilistic constraint 
as (ln ln ) 'P u P η≤ ∆ ≥ . In section 3 we have shown that u can 

be modeled as a lognormal random variable. If 2~ ( , )u LN m δ , 

then, 2ln ~ ( , )u N µ σ . Now, if the mean of u is m and the 
standard deviation of u is δ , then, 
(7) ( )2 2 2ln /m mµ δ= + , 2 2ln(1 / )mσ δ= +  
The translation-invariance property of a normal distribution can 
be used to express (ln ln ) 'P u P η≤ ∆ ≥  as 

(8) ln ln ( ) 'u PP µ µ η
σ σ
− ∆ −≤ ≥  

Since (ln )/ ~ (0,1)u Nµ σ− , letting ( )φ ⋅  be the cdf of (0,1)N , 
(ln ln ) 'P u P η≤ ∆ ≥  is ((ln )/ ) 'Pφ µ σ η∆ − ≥ , and finally: 

1( ') ln( )Pµ φ η σ−+ ≤ ∆  
Using the above relationships between m and µ, and σ and s, we 
can finally express the probabilistic constraints as 

(9) 
( )2 2 2

1 2 2

ln /

( ') ln(1 / ) ln

m m

m P

δ
φ η δ−

+

+ + ≤ ∆
 

The advantage of our formulation is the ability to take into 
account uncertainty of the constraint function explicitly. Indeed, 
the mean of u is ( )T Tm E s d s d= = , and the variance is 

2 Td dδ = Σ , where Σ  is the covariance matrix of the vector of 
sensitivities s. Using the above non-linear probabilistic constraint, 
however, would require solving a non-linear optimization problem 
which is computationally expensive. However, we can 
reformulate this problem as a second-order conic program (SOCP) 
that can be solved efficiently. In general, an SOCP consists of 
minimizing a linear function over the convex set described by the 
intersection of an affine space with one or more second-order 
cones. 
From (9) we can define:  

2 2 2
0

1 2 2

( , , ) ln( / )

( ') ln(1 / )

f m k m m

m

δ δ

φ η δ−

= +

+ +
 

To formulate (4) as an SOCP, we need a percent point function 
which is linear in m and δ . Letting 1( ')k φ η−= , a least square 
of fit of 0f onto the linear function f of the form can be performed: 

1 2 3 4( , , ) ( ) ( )f m k a a k m a a kδ δ= + + +  
were a, b, c, e are the fitting coefficients. This fit is justified as 
the rms error is ~5%. The constraint (9) can now be re-written as: 

(10) 1 2 3 4( ) ( ) lnT Ta a k s d a a k d d P+ + + Σ ≤ ∆   

Using (9), we can formulate the SOCP as: 

(11) 1 2 3 4
1

 

. . ( ) ( ) ln
( ) ,
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i
T T

i j i i od

min d

s t a a k s d a a k d d P
AT AT d d AT RATφ ζ σ−

+ + + Σ ≤ ∆
≥ + + + ≤

∑

0
0

  

The optimization problem (11) has a special structure that can be 
exploited to result in very fast optimization. The reason is that the 
constraints in (11) are second-order conic functions that can be 
efficiently optimized by the interior point methods [20]. Because 
the second-order conic programs are convex [22], they guarantee 
a globally optimal solution. The reliance on interior-point 
methods means that the computational complexity of solving this 
non-linear program is close to 1.3( )O N  in the size of the circuit. 
The second phase of the power minimization algorithm is ( )O kN , 
where k is the number of alternatives in the gate configuration 
space. Thus, the overall complexity of our statistical power 
minimization algorithm is close to linear. 
 

5. IMPLEMENTATION AND RESULTS 
The algorithm was implemented in C as a pre-processing module 
to interface with a commercial conic solver available as part of 
MOSEK [23]. The benchmark circuits were synthesized to a cell 
library that was characterized for a 70 nm process using Berkeley 
Predictive Technology Model [24]. Gates have discrete sizes, 
ranging from 1x to 8x of minimum size. It is assumed that 
granularity of Vth allocation is at the NMOS/PMOS stack level. 
For NMOS (PMOS) transistors, the high threshold voltage is 
0.20V (-0.20V) and the low threshold voltage is 0.10V (-0.10V). 
Different levels of variability in Leff were explored ranging from 
3% to 8% of /σ µ . It is assumed that Vthσ  of a gate is inversely 
proportional to its size, and gate-length independent Vth variation 
is due to random dopant placement. Pelgrom’s model [25] is used 
to describe Vthσ dependence on transistor size. The assumed 
magnitude of Vth variability is /σ µ = 7%. The mean and 
covariance matrix of cell sensitivities were computed for all gate 
configurations using SPICE. Principal component analysis was 
used to orthogonalize the covariance matrix of cell sensitivity 
coefficients. The performance and run-time behavior of the 
optimization   algorithm   is validated on   the public ISCAS'85 
benchmark circuits and several industrial blocks. All comparisons 
are done for the same arrival time at the primary output. This can 
be achieved by performing the deterministic power optimization 
using statistical timing constraints. Deterministic optimization 
under the ‘worst-case’ conditions is assumed to result in 100% 
yield. Across the benchmarks results indicate that  the  savings of, 
on average, 33% in leakage power without the loss of timing or 
power yield can achieved by statistical optimization as opposed to 
the deterministic approach, Table 1. The level of Leff variability is 
assumed to  be /σ µ  = 8%. In the table, n is the number  of  gates 
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in the circuit, and Static and Total refer to static and total power in 
µW respectively. Table 1 also documents the run-time behavior of 
the statistical optimization algorithm. For the largest benchmark 
the run-time is of the order of a few (~4) minutes. It compares 
very favorably with existing approaches, yielding a 30X speedup 
compared to [11]. It is pertinent to mention that the speedup is 
obtained due to the special structure of the SOCP program that is 
not available to the general non-linear solvers enabling the 
optimization problem to be solved extremely efficiently. 
The fundamental reason for the reduction in power enabled by 
statistical optimization is the ability of the statistical algorithm to 
explicitly account for the variance of constraint and objective 
functions. This can be attributed to the fact that the statistical 
optimization allots slack more efficiently. One manifestation of 
the superiority of statistical optimization is the fact that it can 
assign more transistors to a high Vth. For example for the C432 
benchmark optimized for a target delay of 0.55ns for 99.9% 
timing and power yields, the number of transistors set to high Vth 
by the statistical algorithm is 20% more than the corresponding 
number for the deterministic algorithm.  As a result, the spread of 
the leakage distribution is reduced and the mean is shifted towards 
lower values. Figure 3 shows the pdf of static power obtained by a 
Monte Carlo simulation of the circuit configurations produced by 
the statistical and deterministic optimizations. Both the mean and 
variance of static power for the deterministically optimized circuit 
are greater, which implies that the static power   savings   increase   
at    higher percentiles. The superiority of statistical optimization 
over the deterministic optimization is illustrated in Figure 4. 
Under the same power and timing yield constraints ( ζ = η = 
99.9%), statistical optimization produces uniformly better power- 
delay curves. The improvement strongly depends on the 
underlying structure of physical process variation. As the amount 
of uncorrelated variability increases, i.e. the intra-chip component 
grows in comparison with the chip-to-chip component, the power 
savings  enabled by  statistical  optimization  increase. The  power  

savings at the 95th percentile are 23%, and those at 99th percentile 
are 27% respectively. 
The ability to directly control the level of parametric power and 
timing limited yield permits choosing a ‘sweet spot’ in the power-
delay space. Figures 5-6 show a set of power-delay curves for one 
of the benchmarks, c432. Figure 5 plots the total power vs. delay 
at the output obtained by running the statistical optimization for 
various timing yield levels ( ζ ), with the power yield set at 
99.9%. It can be observed that at tight timing constraints the 
difference in power optimized for different yield levels is 
significant. Figure 6 confirms that optimizing the circuit for a 
lower power yield will lead to higher total power consumption 
and longer delay. For the same yield, the trade-off between power 
and arrival time is much more marked at tighter timing 
constraints. The raw magnitude of variability of physical 
parameters is clearly important to assessing the effectiveness of 
statistical optimization. If the variance of Leff is reduced to 

/σ µ = 3%, the savings are smaller. Still, about 15% of savings 
in total power can be achieved at tighter timing constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Timing yield ζ = 99.9%, Power yieldη = 99.9% Timing yield ζ = 84%, Power yield η = 99.9% 
Deterministic 
Optimization  

    Statistical  
Optimization 

Savings in 
Power (%) 

Deterministic 
Optimization 

     Statistical  
Optimization  

Savings in 
Power (%) 

 n 

Static Total Static Total Static Total Static Total Static Total Static Total 

Run 
Time

(s) 

sc_ivlogic    40 29 140 19 111 35.2 20.8 19 113 12 97 33.3 14.8 9 
sc_inc12      78 45 218 28 176 37.7 19.4 32 192 21 149 35.0 22.0 10 
sc_edcs1 258 186 747 127 632 32.1 15.4 126 683 87 583 30.7 14.6 30
c432 261 157 858 107 696 32.3 18.9 112 783 75 620 32.8 20.8 31 
c499 641 457 1290 305 1066 33.4 17.3 302 1054 213 894 29.6 15.2 52 
c880 615 713 1217 492 1018 31.0 16.3 461 847 331 728 28.2 14.1 47 
c1355 685 531 1501 343 1216 35.5 19.0 379 1240 244 994 35.6 19.8 56 

c1908 1238 899 2559 611 2112 32.1 17.5 673 2284 503 1945 25.2 14.9 122 
c2670 2041 1468 4814 1055 4113 28.1 14.6 1112 3926 813 3382 26.9 13.9 153 
c3540 2582 1181 5549 809 4765 31.5 14.1 856 4498 602 3943 29.7 12.3 171 
c5315 3753 2984 5411 1960 4493 34.3 17.0 2096 3769 1456 3222 30.5 14.5 241 
c6288 2704 1178 5744 778 4691 34.0 18.3 746 4130 529 3429 29.1 17.0 273 

Average  savings 33.1 17.4  30.5 16.2  

Table 1: Power savings obtained by deterministic and statistical optimizations at different yield levels. 

  

Figure 3. PDFs of static (leakage) power produced by a Monte- 
Carlo simulation of the benchmark circuit (C432) optimized by 
the deterministic and statistical algorithms. 
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6. CONCLUSION 
In this paper we have presented a novel statistical algorithm for 
total power minimization that is based on a rigorous analytical 
formulation. We demonstrate that across the benchmarks our 
algorithm achieves significant reduction in static and total power. 
The algorithm also exhibits run-time that is substantially better 
than other known statistical algorithms. 
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Figure 4: Power-delay curves for 99.9% timing and power yield. 
Statistical optimization does uniformly better. For the case of 
mixed inter- and intra-chip variability, an equal breakdown is 
assumed. 
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Figure 6: Power-delay curves at different power limited yields.  
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Figure 5: Power-delay curves at different timing yield levels for 
the C432 benchmark. At larger delay, the power penalty for 
higher yield is smaller. 

Figure 7: Power-delay curves for different levels of variability.  
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