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In this  paper,  a  polynomial  time algorithm is  presented for  solving the
Eden  problem for  graph  cellular  automata.  The  algorithm is  based  on
our neighborhood elimination operation, which removes local neighbor-
hood configurations that cannot be used in a preimage of the given con-
figuration.  This  paper  presents  a  detailed  derivation  of  our  algorithm
from first principles, and a detailed complexity and accuracy analysis is
also given. In the case of time complexity, it is shown that the average-

case time complexity of the algorithm is QIn2M,  and the best and worst

cases  are WHnL  and OIn3M,  respectively.  This  represents  a vast  improve-

ment in the upper bound over current methods, without compromising
average-case performance. 

1. Introduction

Cellular  automata  and,  more  generally,  discrete  dynamical  systems
are  powerful  tools  for  modeling of  complex phenomena [1].  This  in-
cludes  applications  from  physics,  biology,  and  computer  science  [2].
Some  have  even  speculated  that  the  study  of  cellular  automata  may
lead to a Grand Unified Theory of everything [3].

The  study  of  the  global  dynamics  of  cellular  automata  (i.e.,  the
study  of  automata  configuration  transition  graphs)  can  provide
unique  insight  into  complex  systems  [4].  Efficient  construction  of  a
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configuration  transition  graph  typically  requires  a  method  to  deter-
mine  if  the  given  configuration  is  located  on  a  leaf  node  of  this
graph![5].

This problem is known as the Eden problem, and has been shown
to  be  computationally  intractable  for  d-dimensional  systems  when
d > 1. This is reflected in the worst-case computational complexity of
algorithms  that  solve  the  Eden  problem  for  higher  dimensions  (e.g.,
Wuensche’s general reverse algorithm [6]). 

We  present  a  new  algorithm  for  approximately  solving  the  Eden
problem  for  graph  cellular  automata  (i.e.,  cellular  automata  on
graphs  [7,  8]),  the  most  general  form  of  deterministic  cellular  au-
tomata.  Although  there  exist  rare  instances  in  which  the  algorithm
will fail to identify the nonexistence of a preimage, this is made up for

by its asymptotic complexity class,  which is OIn3M  for the worst case

and QIn2M  for  the  average  case.  This  provides  a  method that  is  more
computationally  feasible  in  the  worst  case  than approaches  based on
Wuensche and Lesser’s  reverse algorithm [4] and Wuensche’s  general
reverse  algorithm [6]  for  the  study of  the  global  dynamics  of  higher-
dimensional discrete dynamical systems with potentially a large num-
ber of cells. 

2. Background

2.1 Discrete Dynamical Systems
A regular cellular automaton can be defined as a lattice of finite state
automata, typically referred to as cells or sites. A state transition func-
tion defines how a cell updates its state based on its current state and
the state of its neighbors. Cells update synchronously in discrete time
intervals.  The sequence of  all  cell  states  at  a given time is  referred to
as the automaton’s configuration.

Random Boolean  networks  are  binary  cellular  automata  with  one
critical  difference:  there  is  no  requirement  that  cells  be  located  on  a
regular  lattice  [6].  Instead,  neighborhoods  are  constructed  via  a  ran-
dom  wiring.  This  random  wiring  makes  random  Boolean  networks
useful for theoretical biological models of genetic regulatory networks
[9,!10].

Graph cellular  automata  (also  referred  to  as  generalized  automata
networks  [11])  are  a  generalization  of  both  cellular  automata  and
random Boolean networks.  For a graph cellular automaton,  cell  con-
nectivity  is  defined by a connected graph.  The class  of  graph cellular
automata contains regular cellular automata and random Boolean net-
works  as  subclasses.  Cellular  automata  and  random  Boolean  net-
works can be considered as discrete  dynamical  systems.  Despite  their
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simple  construction,  discrete  dynamical  systems  have  been  shown  to
be capable of very complex behavior [12–14]. Furthermore, computa-
tionally intractable and formally undecidable problems relating to dis-
crete dynamical systems have been shown to exist [15, 16]. 

2.2 The Eden Problem
A particular problem of interest in the study of the global dynamics of
discrete  dynamical  systems is  the  so-called Eden problem (also called
the  predecessor  existence  problem  [17,  18]).  The  Eden  problem  at-
tempts to determine, for a given automaton, if there exists a configura-
tion (i.e.,  preimage) that will  evolve to the given configuration in the
next  time  step.  If  the  Eden  problem  is  resolved  to  be  false,  then  the
configuration is called a Garden of Eden configuration (i.e., it has no
preimage).  Wuensche  and  Lesser  studied  the  Eden  problem  in  depth
and developed a  reverse  algorithm for  one-dimensional  regular  cellu-
lar  automata  [4].  Wuensche  further  generalized  this  approach  to  the
case  of  random  Boolean  networks,  which  may  also  be  applied  to
graph cellular automata [6, 5]. While Wuensche and Lesser’s method
performs  very  well  for  small  cellular  automata,  this  method’s  upper
bound is OH2nL (as we will show in Section 5), which prevents explo-
ration of large discrete dynamical systems.

For  one-dimensional  finite  cellular  automata,  the  Eden  problem is
in  P;  however,  for  multi-dimensional  finite  cellular  automata,  the
Eden problem has been shown to be NP-Complete [17]. Even certain
variants  of  the  Eden  problem  in  one  dimension  (such  as  the  con-
strained Eden problem [16]) have been shown to be NP-Complete. As-
suming that P ! NP, then there does not exist a polynomial time algo-
rithm to solve the Eden problem for graph cellular automata. 

If  we assume P ! NP,  then a  complete  solution to the  Eden prob-
lem for graph cellular automata is computationally intractable. How-
ever, this does not exclude the possibility of a good solution (i.e., one
that  can  identify  most  Garden  of  Eden  configurations)  being  achiev-
able  in  polynomial  time.  In  this  paper,  we  present  an  algorithm that
provides  a  good  solution  to  the  Eden  problem  for  graph  cellular
automata in cubic time. By solving the problem for graph cellular au-
tomata  we,  by  extension,  solve  the  problem  for  regular  cellular  au-
tomata  and  random  Boolean  networks.  Furthermore,  we  can  show
that  our  algorithm solves  the  Eden  problem  exactly  when  the  topol-
ogy  of  the  graph  cellular  automaton  is  equivalent  to  a  one-dimen-
sional finite cellular automaton with periodic boundary conditions. 

2.3 Formal Definition of Graph Cellular Automata
In  this  section,  we  provide  a  formal  definition  of  graph  cellular  au-
tomata.  Our  formalism  is  based  heavily  on  the  work  of  Fates  [19],
Marr et al. [7, 8], and Tomassini [11].
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We consider a graph cellular automaton to be defined as a 4-tuple
consisting of a connected graph, a set of states, a set of neighborhood
mappings,  and  a  set  of  state  transition  functions.  This  is  given  for-
mally in Definition 1. 

Definition 1.  Let  A ! HG, S, U, GL  define  a  graph  cellular  automaton,
where  G ! HV, EL  is  a  graph  with  vertices  V Õ !  and  edges
E Œ V äV,  S  is  a  finite  set  of  symbols  referred  to  as  the  alphabet,
U ! 8hi : i œ V<  is  the  set  of  neighborhoods  hi ! 8i< ‹ 8j : Hi, jL œ
E Ó Hj, iL œ E<, and G ! 8gi : i œ V< is the set of all state transition func-

tions gi : S hi Ø S. 

In  Definition  1,  the  vertices  of  the  graph  G  represent  the  cells  of
the automaton A. Note that the neighborhood hi of each cell i is effec-
tively the set of cells that are connected to cell i via the set of edges E,
including i  itself.  Note  that  the  construction of  hi  in  Definition 1 as-
sumes an undirected graph; the definition for a directed graph would
be hi ! 8i< ‹ 8j : Hj, iL œ E<. 

At any time t, each cell is associated with a state s. For this we de-
fine  the  mapping  in  Definition  2.  From  this  we  can  construct  the
global configuration of the automaton in Definition 3. 

Definition 2.  Let  C : V Ø S  be  a  mapping  from  a  cell  i œ V  to  a  state
s œ S  such  that  CtHiL  represents  the  state  of  cell  i  at  time  t.  Let

CtHhiL œ S hi  be the neighborhood configuration of i. 

Definition 3. Let ft ! 9CtHiL : i œ V= be the configuration of the automa-

ton  A  at  time  t.  ft œ F,  where  F  is  the  set  of  all  possible  configura-
tions of A. 

Finally,  we  define  the  evolution  of  a  graph  cellular  automaton  as
the sequence of configurations generated by repeated synchronous ap-
plication of the local state transition functions. This is given as a recur-
rence  relation  expressed  in  terms  of  the  global  configuration  transi-
tion function. This is given in Definition 4. 

Definition 4. Let the recurrence relation ft+1 ! f IftM, t ¥ 0 be the evolu-

tion of A,  where f : F Ø F  is the global configuration transition func-
tion

 f IftM ! 9Ift, ft+1M : ft ! 9CtHiL : i œ V= Ô ft+1 ! 9giICtHhiLM : i œ V==. 
We can now define formally an instance of the Eden problem. 

Definition 5. Let EDEN denote the Eden problem, with instances consist-

ing  of  a  graph  cellular  automaton  A  and  configuration  f œ S†V§,  and
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with  the  question,  does  there  exist  an  initial  condition  f0  such  that

f ! f If0M under the evolution of A?

In Section 3, we will rely on the formalism given in this section to
derive  a  polynomial  time  algorithm  that  provides  the  solution  to
EDEN(A,f) in all but rare circumstances. 

3. The Algorithm

In this section, we present a detailed derivation of our Eden detection
algorithm, denoted by EDEN-DET(A,f). There are a number of steps in-
volved in this derivation. First, some new mathematical constructions
are  defined.  Then  the  fundamental  operation  of  EDEN-DET(A,f),  the
neighborhood elimination operation, denoted by NH-ELIM(A,H), is de-
rived.  After  presenting  NH-ELIM(A,H),  a  simple  Eden  detection  algo-
rithm is provided, denoted by S-EDEN-DET(A,f). Using S-EDEN-DET(A,f)
as a starting point, we then derive a two-phase construction of EDEN-
DET(A,f).

3.1 Preliminaries
The  graph  cellular  automata  formalism  given  in  Section  2.3  is  not
quite sufficient for us to express our Eden detection algorithm clearly.
In this section, we present the definitions and notations that form the
mathematical foundations of the algorithm. All definitions, notations,
and  theorems  in  this  section  assume  the  formalism  in  Section  2.3  to
be  given,  and  hence  symbols  used  from  Section  2.3  will  not  be
redefined.

We  will  assume,  without  loss  of  generality,  that  " i œ V, †hi§ ! k.
This is done purely for notational convenience. All of the concepts ap-
plied in the construction of our algorithm can be extended trivially to
nonuniform †hi§.  Note  that  we  do  not  assume  a  uniform update  rule
across all cells " i, j œ V, gi ! gj. 

To describe our algorithm, we need a method of consistently refer-
ring  to  a  specific  neighborhood  configuration  (see  Section  3.2).  The
notation for this reference is given in the following definition. 

Definition 6.  Assume  that  some  ordering  scheme  has  been  applied  to

the  set  of  all  neighborhood  configurations  Sk.  Subject  to  this  order-

ing, the nth neighborhood configuration is denoted by yn œ Sk. 

Note that the actual ordering scheme is arbitrary; all we require is
an index into the possible neighborhood configuration space. For our
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implementation,  we simply map each configuration to its  raw binary
representation. 

It is necessary for us to specify a set that contains all the cells that
join  adjacent  neighborhoods.  We  refer  to  this  set  using  the  notation
i Xj, and it is defined in Definition 7. 

Definition 7. Let

 i Xj ! 8i< ‹ 8j< ‹ 8x : HHx, iL œ E Ó Hi, xL œ EL Ô HHx, jL œ E Ó Hj, xL œ EL<
denote the boundary set of hi  and hj. The nth boundary cell, x œ V, is

denoted by x ! i Xn
j . 

The  basis  of  our  algorithm is  the  detection  and  removal  of  neigh-
borhood configurations that cannot exist in any preimage of ft  due to
an inconsistency across boundary sets. 

Definition 8.  If  there  exists  an  initial  configuration  f0  such  that

C0HhiL ! yn  and C0IhjM ! ym, then yn  is said to be i,j-consistent with

respect to ym. 

The concept of i,j-consistency is readily visualized as shown in Fig-
ure 1. However, it would be preferable if a direct method of evaluat-
ing  the  i,j-consistency  of  two  neighborhood  configurations  could  be
found. The function we require is given in Definition 9. 

Figure 1. Example  of  i,j-consistency  where  i ! 3,  j ! 6,  and
i Xj ! 83, 4, 5, 6<.  Left:  yn  is not i,j-consistent with respect to ym,  since they
cause an inconsistent state in the boundary set  (i.e.,  cell  5).  Right:  A modifi-
cation  to  ym  allows  consistency  across  the  boundary  set;  hence,  yn  is  now
i,j-consistent to ym.
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Definition 9. Let qi
i Xj

: Sk Ø S†iXj•  be a function that maps neighborhood

configurations of hi  to the configuration of the boundary set i Xj. The
function is defined as 

qi
i Xj ! :Hyn, yn

£ L : yn,s
£ ! yn,q Ô y ! hi,q Ô y !i Xs

j Ô s œ A0, i XjM>. 
The  definition  of  q  given  in  Definition  9  may  seem strange,  but  it

leads us into Theorem 1, which is a vital component of our algorithm. 

Theorem 1. If qi
i Xj HynL ! qj

i Xj HymL, then yn  is i,j-consistent with respect

to ym. 

A formal proof is given in Appendix A.

3.2 Neighborhood Elimination
We can now formulate the core operation of our Eden detection algo-
rithm. This  core operation we call  neighborhood elimination and de-
note  it  as  NH-ELIM(A,H).  As  the  name may suggest,  its  function  is  to
eliminate  neighborhood  configurations  that  cannot  be  a  component
of any preimage of the automaton configuration in question.

To  explain  how  we  perform  this  operation,  we  first  consider  the

matrix H œ 80, 1<†S§kä†V§, where 

(1)Hi,j !
 0,  impossible for yi ! C0IhjM 
 1,  otherwise. 

It  is  important to note in equation (1) that Hi,j ! 1 should not be

interpreted  as  yi ! C0IhjM  in  at  least  one  preimage.  Instead,  Hi,j ! 1

means we cannot yet  determine if  yi ! C0IhjM  or not.  This  is  not the

case for Hi,j ! 0, which indicates that we have proven that there is no

preimage such that yi ! C0IhjM. 
The  algorithm  can  be  described  as  follows:  Consider  the  case  in

which we have already determined that Hi,j ! 0 for specific i,j by the

techniques  described in  Section 3.3.  If  we start  with an arbitrary cell
neighborhood  hi,  then  the  column  vector  H*,i  provides  us  with  the

neighborhood  configurations  still  under  consideration.  If  Hn,i ! 1,

but  the  neighborhood  configuration  yn  is  not  i,j-consistent  with
respect  to  any  candidate  configurations  in  one  or  more  connected
neighborhoods hj, then yn  can be excluded from the realm of possible

configurations for hi, as at least one boundary cell state cannot be sat-
isfied  consistently.  By  updating  H*,i,  this  will  affect  the  validity  of
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other  configurations,  so  we  repeat  the  process  for  every  neighbor-
hood. 

Theorem 1 provides us with a comparison operation for testing the
i,j-consistency of two neighborhood configurations. With the function

qi
i Xj

 as  defined  in  Section  3.1,  we  arrive  at  NH-ELIM(A,H)  (i.e.,  Algo-
rithm 1). 

for all i œ V do
for all j œ hi - 8i< do

Qi ! :x : x œ qi
i Xj IypM Ô Hp,i ! 1> 

Qj ! :x : x œ qi
i Xj IyqM Ô Hq,j ! 1> 

zi ! 9x : x œ Qi Ô x – Qj= 
" p, Hp,i ! 0 if qi

i Xj IypM œ zi 

end for 
end for

Algorithm 1. NH-ELIM(A,H): neighborhood elimination.

One  step  of  NH-ELIM(A,H)  is  shown  in  Figure  2,  which  displays
contents of the data structures Qi, Qj, and zi, along with the effect on

the  state  of  H.  It  should  be  noted  that  although  the  example  in  Fig-
ure!2  is  for  a  small,  one-dimensional  cellular  automaton  with  k ! 3,
NH-ELIM(A,H)  is  general  enough  to  operate  on  graph  cellular  au-
tomata. 

One particularly useful property of NH-ELIM(A,H)  is  that the num-
ber  of  zero  elements  in  H  can  never  decrease.  Therefore,  repeating
NH-ELIM(A,H) on H  in an iterative fashion will eventually result in an
array H  in which only configurations i,j-consistent with respect to all
neighbors  are  candidates  for  preimage  construction.  This  property
also enables us to put an upper bound on the number of iterations re-
quired, which aids us in our complexity analysis (see Section 4). 
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Figure 2. One step of NH-ELIM(A,H). The upper-left matrix is H at the start of
the iteration. After the iteration is completed, H4,k  is set to 0, resulting in the

lower-left matrix H£.

3.3 Garden of Eden Detection
In  this  section,  we will  describe  our  Eden detection algorithm (EDEN-
DET(A,f))  in  full.  Throughout  this  description  we  rely  heavily  on  the
formalism in Sections 2.3 and 3.1. 

So far we have assumed that H  is not all ones or all zeros, but we
have not  mentioned how H  is  initialized.  If  we are  given an instance
of  EDEN(A,f),  we  can  prove  the  impossibility  of  some  neighborhood
configurations explicitly  by using f  and the state transition functions
gi œ G; that is, 

(2)Hi,j !
 0, gjHyiL ! fj 

 1, gjHyiL ! fj. 

In  Section  3.2,  it  was  stated  for  NH-ELIM(A,H)  (Algorithm  1)  that
the number of zeros in H  can never decrease. Therefore, repeated in-
voking of NH-ELIM(A,H) is guaranteed to converge to a steady state. 

Once H  is initialized, we can repeatedly operate the neighborhood
elimination  algorithm  on  H.  Clearly,  if  for  any  column  " i, Hi,j ! 0

during  an  iteration,  then  there  is  no  possible  yi  that  can  be  selected
for hj  in any preimage. Furthermore, the steady state that H  will con-
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verge  to  in  this  case  will  be  " i, j, Hi,j ! 0.  Therefore,  we  can  con-

clude that f is a Garden of Eden configuration. 
We might also assume that all  Garden of Eden configurations will

cause  the  condition  " i, Hi,j ! 0.  Therefore,  we  could  simply  iterate

until a steady state is reached and then look at the elements in H  for
any nonzero elements. This leads us to derive our initial algorithm for
Eden  detection,  which  we  call  simple  Eden  detection  and  denote  as
S-EDEN-DET(A,f) (Algorithm 2). 

" i, j, Hi,j ! 0 if i, j, IgjHyiL " fjM
" i, j, Hi,j ! 1 if i, j, IgjHyiL ! fjM
while H " H£ do

H£ ! H
H ! NH-ELIMHA, H£L 

end while 
if " i, j, Hi,j ! 0 then

GoE ! true 
else 

GoE ! false 
end if
return GoE

Algorithm 2. S-EDEN-DET(A,f): simple Eden detection.

Unfortunately,  S-EDEN-DET(A,f)  is  not  quite  complete  (hence  the
name “simple Eden detection”). It can be shown that " i, Hi,j ! 0 is a

sufficient  but  not  necessary  condition  of  Eden.  It  is  possible  for  cells
within  a  cycle  of  G  to  have  i,j-consistent  neighbors,  but  there  does
not exist a combination of possible neighborhood configurations that
can form a consistent chain. Figure 3 gives an example of such a case;
note  that  for  a  one-dimensional  cellular  automaton  the  topology
graph G  contains one cycle that includes all  cells.  Clearly,  more pro-
cessing  is  required  once  S-EDEN-DET(A,f)  has  converged,  and  there
does not exist a j œ V such that " i, Hi,j ! 0. 

If  for  any  possible  neighborhood  configuration  (i.e.,  Hi,j ! 1)  we

can  construct  at  least  one  preimage,  then  we  can  conclude  that  f  is
not  a  Garden  of  Eden  configuration.  However,  if  it  is  found  that  a

valid  preimage  cannot  be  constructed  with  C0IhjM ! yi,  then  we  can

set  Hi,j ! 0  and  repeat  S-EDEN-DET(A,f)  until  a  new  steady  state  is

reached. This leads us to a second and more complete approach: EDEN-
DET(A,H). 
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Figure 3. Counterexample for S-EDEN-DET(A,f) (Algorithm 2). Left:  the result-
ing nonzero steady state  of  H,  where  A30  is  the  elementary cellular  automa-
ton  rule  30  (according  to  Wolfram’s  numbering  scheme  [12])  with  periodic
boundary  conditions  and  †V§ ! 4.  Right:  the  main  configuration  transition
graph for A30; clearly f ! 80, 0, 1, 1< has no preimage.

In practice, we locate each instance of Hi,j ! 1 and temporarily set

" k ! i,  Hk,j ! 0.  This  has  the  effect  of  assuming  that  C0IhjM ! yi.

We then apply one iteration of NH-ELIM(A,H), ensuring that cell j œ V
is  visited last,  then we examine the state  of  Hi,j.  If  Hi,j ! 1,  then we

have  no reason to  reject  our  assumption.  Otherwise,  our  assumption
is disproved via contradiction, so we set Hi,j ! 0 and repeat the loop

in S-EDEN-DET(A,f). If none of the Hi,j ! 1 can be disproved, then it is

reasonable  to conclude that  f  has  at  least  one preimage (we show in
Section 6 that there are rare cases when this is an invalid conclusion). 

We  now  have  a  two-phase  procedure.  Phase  1,  denoted  by
PH1(A,H) (Algorithm 3), is effectively the loop from S-EDEN-DET(A,8).
Phase  2,  denoted  by  PH2(A,H)  (Algorithm  4),  is  the  assumption-
testing  process  described  in  the  preceding  paragraph.  These  two
phases  are  then  combined  to  form our  full  Eden  detection  algorithm
EDEN-DET(A,f)) (Algorithm 5). An implementation of EDEN-DET(A,f) is
provided  as  part  of  the  analysis  software  developed  by  Warne  [20].
This  software,  called  GCALab,  is  a  command  line  analysis  tool  de-
signed for parallel computation of graph cellular automata properties. 
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while H " H£ do
H£ ! H
H ! NH-ELIMHA, H£L

end while

Algorithm 3. PH1(A,H): Eden detection phase 1.

for all i œ V do

for all j œ S k  do
if Hi,j ! 1 then

Htmp ! H
" s, Hs " jL, Hi,s

tmp
! 0

Htmp ! NH-ELIMHA, HtmpL
if Hi,j

tmp ! 0 then

Hi,j ! 0 

return 
end if

end if
end for 

end for

Algorithm 4. PH2(A,H): Eden detection phase 2.

" i, j, Hi,j ! 0 if i, j, IgjHyiL " fjM
" i, j, Hi,j ! 1 if i, j, IgjHyiL ! fjM
repeat

CALL PH1(A,H)
if " i, j, Hi,j ! 0 then

GoE ! true
return GoE

else
CALL PH2(A,H)
GoE ! false 

end if
until H£ ! H 
return GoE

Algorithm 5. EDEN-DET(A,f): Eden detection.
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Leaving  the  details  to  Section  4,  we  simply  claim  that  EDEN-
DET(A,f) is guaranteed to complete in polynomial time. More specifi-
cally, it can be shown to have a cubic worst-case time efficiency. Fur-
thermore,  when  EDEN-DET(A,f)  returns  GoE ! false,  then  H  encodes
the  complete  set  of  preimages  to  ft  (except  for  rare  cases  when
GoE ! false is a false negative, as shown in Section 6). 

4. Time Complexity Analysis

In  this  section,  we  present  the  time  complexity  analysis  for  EDEN-
DET(A,f)  (Algorithm 5).  We  show that  the  number  of  operations  for
the best case is a linear function of the number of cells; the worst case
is shown to be cubic,  and the average case is  shown to be quadratic.
Experimental  results  are  also  presented  to  reinforce  theory  with
practice.

4.1 Time Complexity of NH-ELIM(A,H)
The fundamental operation of EDEN-DET(A,f) is clearly NH-ELIM(A,H).
From the pseudocode for NH-ELIM(A,H) (Algorithm 1), it is also clear
that the number of operations executed by NH-ELIM(A,H) is a function
of the number of cells n ! †V§. We will show that this operation is in
QHnL.

The four lines within the innermost loop of NH-ELIM(A,H) are only
dependent  on  the  number  of  neighborhood  configurations.  Without
loss of generality, we assume " i, †hi§ ! k; thus the construction of Qi
and  Qj  requires  searching  only  a  single  column  of  H.  That  is,

CQ ! c0 °Sk•,  where  c0 º k  is  the  number  of  operations  to  evaluate

qi
†iXj•

.  The  construction  of  zi  is  dependent  only  on  the  size  of  the  Q;
hence,  Cz § CQ.  Furthermore,  the  number  of  elements  in  H  is  equal

to the number of elements in zi § °Sk•. Thus the total operation count
within the inner loop is given by 

(3)Cinner ! 2 CQ + Cz + †z§ º 3 °Sk•.
Given  equation  (3),  we  can  derive  the  total  operation  count  for
NH-ELIM(A,H):

(4)CN HHnL ! ‚
i!1

n ‚
j!1

k

Cinner ! k Cinner n º 3 k °Sk• n.

Therefore CN HHnL œ QHnL.
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4.2 Best Case
We  now  consider  the  best-case  time  complexity  of  EDEN-DET(A,f).
The best case occurs when there exist few possible i,j-consistent pairs
for some subsequence in f. This is very common in cellular automata
in  which  Langton’s  l  [14]  is  small.  An  example  of  this  is  when  A  is
the elementary cellular automaton rule 2,  and f  has a contiguous se-
quence of ones.

In this  special  case,  only PH1(A,H)  (Algorithm 3)  will  be required.
Furthermore, a column of zeros will develop very quickly, as each iter-
ation will eliminate at least one possible configuration from the unnat-
ural area (due to few or no i,j-consistent neighborhood pairs); that is,

I < °Sk•,  where I  is  the number of  iterations of  the while  loop.  Using
the results from equation (4), we have

(5)CbestHnL ! ‚
i!1

°Sk•
CN HHnL ! °Sk•CN HHnL º 3 k °Sk§2 n.

Therefore Cbest œ WHnL.
4.3 Worst Case

For the worst case, we must consider the full expression for the num-
ber of operations executed by EDEN-DET(A,f). This is given by

(6)CopsHnL ! ‚
t!1

J ‚
i!1

I

CN HHnL
PH1HA,HL

+ ‚
j!1

V ‚
i!1

Sk

CN HHnL
PH2HA,HL

,

where J and I simply denote the number of iterations taken by the con-
ditional loops. We require an upper bound on these loops.

In Section 3.3 we noted that the number of zeros in H can never de-
crease.  Now we also  note  that  if  the  number  of  zeros  in  H  does  not
increase  after  an  execution  of  PH2(A,H)  (Algorithm  4),  then  EDEN-
DET(A,f)  terminates  with  GoE ! false.  Hence  for  the  worst  case  we
must assume that the number of zeros decreases by exactly one. Fur-
thermore,  every  iteration  of  PH1(A,H)  will  increase  the  number  of
zeros, terminate EDEN-DET(A,f) with GoE ! true, or continue to an it-

eration of PH2(A,H). Since H œ 80, 1<°Sk•än, it must hold that 

(7)JHI + 1L § °Sk• n.

We want to maximize the value of J, as it has the greater effect on
the  total  number  of  calls  to  NH-ELIM(A,H).  If  we  assume  the  upper
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bound is  reachable,  then as I Ø 1 we have J Ø °Sk• ë 2 n.  We can ap-
ply this result to equation (6) to obtain an upper bound on CopsHnL, 

CopsHnL § ‚
t!1

°Sk•ë2 n

CN HHnL + ‚
j!1

†V§ ‚
i!1

°Sk•
CN HHnL !

°Sk•
2

nICN HHnL + †V§ °Sk•CN HHnLM !
°Sk•
2

I°Sk• n2 + nMCN HHnL.
Furthermore,  we  have  already  shown  that  CN H œ QHnL.  Therefore

Cworst œ OIn3M.
4.4 Average Case

Best-  and  worst-case  bounds  are  important,  but  of  limited  practical
use  without  an  indication  of  the  likelihood  of  EDEN(A,f)  instances
that cause these bounds to occur.  In this  section we will  show, using
empirical data, that the average case is quadratic in time.

Consider equation (6): the values affecting the computational com-
plexity  are  the  number  of  iterations  taken  by  the  while  loop  of
PH1(A,H),  the  number  of  iterations  taken  by  the  repeat-until  loop,
and  the  number  of  times  PH2(A,H)  needs  to  be  executed.  As  in  Sec-
tion!4.3, we will denote the number of outer loops as J and the num-
ber  of  PH1(A,H)  loops  as  I.  Furthermore,  we  denote  the  number  of
iterations in which PH2(A,H) is executed as K. 

We took random EDEN(A,f)  instances for †V§ ! n ! 2i,  2 § i § 13,
where  G  is  a  single  circuit.  For  each  value  of  n,  over  1000  samples
were taken. The values of I,  J,  and K  were counted for each sample.
The expected values  computed from these  samples  are  shown in Fig-
ure 4. 

From  Figure  4  we  can  derive  the  overall  expected  values
EHIL ! 2.88, EHJL ! 1.06, and EHKL ! 0.25. So it  is  reasonable to ap-
proximate the average case as follows, 

CaverageHnL º ‚
i!1

3

CN HHnL äPrHŸ KL +

‚
i!1

3

CN HHnL + ‚
j!1

†V§ ‚
i!1

°Sk•
CN HHnL äPrHKL !
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H3 CN H HnLLä 3

4
+ I3 CN HHnL + °Sk• n CN HHnLMä 1

4
!

°Sk•
4

n CN HHnL + 3 CN HHnL.
Since  CN HHnL œ QHnL,  the  approximate  overall  expected  time  com-

plexity is CaverageHnL œ QIn2M. Section 4.5 provides further experimen-
tation to validate this approximation.

Figure 4. Expected  iteration values.  Based on 1000 random samples  for  each
number of cells.

4.5 Experimental Results
For validation of the average case, we took a new random sample of

1000  instances  of  EDEN(A,f)  for  °V• ! n ! 2i,  2 § i § 13.  For  each
sample,  the  average  runtime  of  five  separate  runs  was  taken.  Results
were separated into two groups,  based on whether EDEN-DET(A,f)  re-
turned  with  GoE ! true  or  GoE ! false.  The  resulting  average  run-
times are shown in Figure 5.

Note  that  on  average  the  runtime  when  GoE ! false  is  approxi-
mately 16 times the runtime when GoE ! true. This is because only a
Garden of  Eden configuration fe  can cause  EDEN-DET(A,fe)  to  return
before Phase 2 is executed, which will complete in OHnL operations. 

To confirm that the curves in Figure 5 are in fact quadratic, we can

take the ratio R ! CI2i+1M ë CI2iM,  where CHnL  is  the average runtime,
as a function of the number of cells  n.  We would expect R º 4 for a
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quadratic  (i.e.,  doubling  the  input  takes  four  times  longer).  Figure  6
shows the R for the samples taken for Figure 5. 

Figure 5. Runtimes for EDEN-DET (Algorithm 5).

Figure 6. Ratio of runtimes CH2 nL ê CHnLL.
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From Figure 6 it is clear that R º 4 (considering that R º 2 for lin-
ear and R º 8 for cubic).  This  provides support  for our approximate
average  time  complexity  for  EDEN-DET(A,f)  that  we  provided  in  Sec-
tion 4.4. 

5. Comparison with Wuensche and Lesser’s Reverse Algorithm

In this section, we will compare the performance of EDEN-DET against
the reverse algorithm developed by Wuensche and Lesser [4]. For the
sake  of  simplicity,  we  will  restrict  the  comparison  to  the  simplest
form of cellular automata: that of finite elementary cellular automata
with  periodic  boundary  conditions.  As  a  result,  we  must  emphasize
that the following discussion and analysis relate specifically to Wuen-
sche  and  Lesser’s  one-dimensional  reverse  algorithm  [4]  and  not
Wuensche’s more general reverse algorithm, which applies to random
Boolean  networks  and  graph  cellular  automata  [6,  5].  The  results  of
this analysis, however, can certainly be generalized to the graph cellu-
lar automata case.

For a finite elementary cellular automaton with periodic boundary

conditions A, a configuration ft, and a partial preimage ft-1 in which
the first i cell states are known, Wuensche and Lesser’s method is de-
scribed as follows [4]: 

1. If  gIfi-1
t-1, fi

t-1, 0M ! gHfi-1
t - 1, fi

t, 1L " fi
t,  then  abandon  the  partial

preimage. Resume derivation of next partial preimage (go to step 5). 

2. If  gIfi-1
t-1, fi

t-1, 0M " gHfi-1
t - 1, fi

t, 1L,  then fi+1
t-1  can be  uniquely  deter-

mined. Proceed with next cell (go to step 1). 

3. If  gIfi-1
t-1, fi

t-1, 0M ! gHfi-1
t - 1, fi

t, 1L ! fi
t,  then  fi+1

t-1  could  be  0  or  1.

Push  the  partial  preimage  If0
t-1, f1

t-1, … , fi
t-1, 1M  onto  the  preimage

queue to be processed later and continue with fi+1
t-1 ! 0. 

4. When  i ! n - 1,  check  that  gIfn-2
t-1 , fn-1

t-1 , f0
t-1M " gIfn-1

t-1 , f0
t-1, f1

t-1M,
then abandon this preimage; otherwise, add to the valid preimage list. 

5. Take  a  new  partial  preimage  from  the  queue  and  continue  processing
(step 1). 

6. When the partial preimage queue is empty, all possible preimages start-

ing with the start values of f0
t-1, f1

t-1  are derived. Repeat for all possi-

ble f0
t-1, f1

t-1. 

Note that the primary purpose of Wuensche and Lesser’s method is
the  construction of  all  valid  preimages,  but  it  can be utilized directly
to  compute  the  solution to  the  Eden problem.  Clearly,  we can assert
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GoE ! false as soon as a valid preimage is found. We need not com-
pute all  of them. GoE ! true will  be asserted when no preimages are
found. 

5.1 Worst-Case Complexity Analysis
With a brief description of Wuensche and Lesser’s one-dimensional re-
verse  algorithm,  we  can  now  show  that  the  worst-case  computation
time is  not  bounded by  a  polynomial  in  the  number  of  cells  n.  Con-
sider Algorithm 6, which depicts Wuensche and Lesser’s method modi-
fied for solving the Eden problem without computing all preimages.

GoE ! true 
for all Hp1, p2L œ 8H0, 0L, H0, 1L, H1, 0L, H1, 1L< do

ft-1 ! Hp1, p2L 
Q ! 9ft-1= 
while Q " 8< do 

ft-1 ! popHQL 
x ! °ft-1• - 1 

for all i œ @x, nD do
T0 ! gIfi-1

t-1, fi
t-1, 0M 

T1 ! gIfi-1
t-1, fi

t-1, 1M 
if T0 ! T1 " fi

t then
break for loop 

else 
if T0 " T1 then 

if T0 ! fi
t-1 then 

ft-1 ! ft-1 ‹ 80< 
else 

ft-1 ! ft-1 ‹ 81< 
end if

else 

pushIQ, ft-1 ‹ 81<M 
ft-1 ! ft-1 ‹ 80< 

end if
end if

end for 
Tn ! gIfn-1

t-1 , fn
t-1, f1

t-1M 
T1 ! gIfn

t-1, f1
t-1, f2

t-1M 
if Tn ! T1 then

GoE ! false 
return GoE 

end if
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end while 
end for 
return GoE

Algorithm 6. REVERSE(A,f): Wuensche and Lesser’s reverse algorithm.

Let  Cinner  denote  the  number  of  operations  performed on a  single
iteration of the innermost loop in REVERSE(A,f). Without loss of gener-
ality, we will assume Cinner is a constant. Clearly this is not true in re-
ality, but instead 3 § Cinner § 6. 

Now, let  CxHnL  denote the number of  operations required to com-

plete  ignoring partial  preimages already in Q  before reaching the xth

cell in the current preimage. We can express CxHnL as the following re-
currence relation, 

CxHnL ! ‚
i!x

n

Cinner + eHxL ‚
i!x+1

n

aHiLCiHnL,
where eHxL ! 0 if T0 ! T1 ! fx

t-i; otherwise eHxL ! 1, and aHxL ! 1 if

T0 ! T1 ! fx
t-1; otherwise aHxL ! 0. 

The worst case for CxHnL occurs when the number of partial preim-
ages  being  pushed  onto  the  queue  is  every  iteration.  In  this  case,  we
have  " i > x, Ha HiL ! 1 Ô e HiL ! 1L,  and  the  recurrence  relation
becomes

CxHnL ! ‚
i!x

n

Cinner + ‚
i!x+1

n

CiHnL.
We  can  now  solve  this  recurrence  relation.  First  consider  expanding
the Cx+1HnL term in the summation,

CxHnL ! ‚
i!x

n

Cinner + ‚
i!x+1

n

CiHnL !

‚
i!x

n

Cinner + Cx+1HnL + ‚
i!x+2

n

CiHnL ! Cinner +

‚
i!x+1

n

Cinner + ‚
i!x+1

n

Cinner + ‚
i!x+2

n

CiHnL + ‚
i!x+2

n

CiHnL !

‚
i!x

n

Cinner + ‚
i!x+1

n

Cinner + ‚
i!x+2

n

CiHnL + ‚
i!x+2

n

CiHnL !
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Cinner + 2 ‚
i!x+1

n

Cinner + 2 ‚
i!x+2

n

CiHnL.
Now, expanding the Cx+2HnL term,

CxHnL ! Cinner + 2 ‚
i!x+1

n

Cinner + 2 ‚
i!x+2

n

CiHnL !

Cinner + 2 ‚
i!x+1

n

Cinner + 2 Cx+2HnL + 2 ‚
i!x+3

n

CiHnL !

Cinner + 2 Cinner + 2 ‚
i!x+2

n

Cinner +

2 ‚
i!x+2

n

Cinner + ‚
x+3

m

CiHnL + 2 ‚
i!x+3

n

CiHnL !

Cinner + 2 Cinner + 4 ‚
i!x+2

n

Cinner + 4 ‚
i!x+3

n

CiHnL.
Repeating this process yields

CxHnL ! Cinner + 2 Cinner + 4 Cinner +! + 2n-x Cinner !

Cinner ‚
i!x

n

2i-x.

The worst  case  for  REVERSE(A,f)  requires  that  C2HnL  operations  be
executed four times, 

Cworst ! 4 C2HnL ! 4 Cinner ‚
i!2

n

2i-2 ! Cinner ‚
i!2

n

2i,

hence REVERSE(A,f) is in OH2nL. It is worth noting that this worst case
can only be achieved if  the f  is  a Garden of Eden configuration, and

the  cell  that  determines  this  is  the  nth  cell.  For  example,
f ! H0, 0, … , 0, 1, 1L  for  the  elementary  cellular  automaton  rule  2.
However,  according  to  Wuensche  and  Lesser  [4]  the  average  case  is
orders  of  magnitude  better.  We  confirm  this  experimentally  in
Section!5.2.

5.2 Experimental Comparison
We  benchmarked  EDEN-DET(A,f)  against  REVERSE(A,f).  Each  experi-
ment consisted of solving the Eden problem for 1000 random configu-
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rations.  Experiments  were  performed  for  both  EDEN-DET(A,f)  and
REVERSE(A,f),  using  all  the  elementary  cellular  automata  with  cell
counts ranging from 4 to 32. As shown in Figure 7, the benchmark av-
erage  case  is  effectively  the  same  order  of  magnitude  for  both
methods.

Figure 7. Comparison of EDEN-DET(A,f) against REVERSE(A,f), using a random
sampling of configurations.

The worst case for REVERSE(A,f) is only approached for Garden of
Eden configurations that are nearly identical to a non-Garden of Eden
configuration,  only  differing  in  the  last  few  cells.  This  is  more  likely
to be possible with sparse configurations (i.e.,  very few 1 states com-
pared with 0 states). If we restrict the random sample of test configu-
rations to that of sparse configuration, then the probability of select-
ing  a  configuration  that  degrades  the  performance  of  REVERSE(A,f)
increases. 

Figure  8  indicates  that  the  benchmark  results  are  very  different
when we restrict  the configuration sample this  way.  Such cases  place
a  limitation  on  the  usability  of  REVERSE(A,f)  for  large  cell  counts  (as
the  cell  count  increases,  any  configuration  with  a  relatively  small
sparse  subsequence  could  render  the  Eden  problem  computationally
intractable  for  REVERSE(A,f)).  The  performance  of  EDEN-DET(A,f),
however, is hardly affected by such sparse configurations. 

The main difference in our approach,  which provides  such a large
improvement  in  the  worst-case  performance,  is  the  neighborhood
elimination step. This operation performance is  not affected by shifts
(or  rotations  in  a  higher  dimension)  in  the  same  configuration,  be-
cause it treats each cell neighborhood independently of each other. As
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a  result,  EDEN-DET(A,f)  provides a solution to the Eden problem that
is scalable to very large cellular automata. EDEN-DET(A,f) could be con-
sidered  as  a  more  stable  alternative  to  Wuesnche  and  Lesser’s
REVERSE(A,f),  as the worst case is vastly improved without degrading
the average case. 

Figure 8. Comparison of EDEN-DET(A,f) against REVERSE(A,f), using a random
sampling of sparse configurations.

6. Algorithm Correctness

In this section, we discuss the correctness of EDEN-DET(A,f) in solving
the  Eden  problem for  graph  cellular  automata.  We  are  able  to  show
that  EDEN-DET(A,f)  is  completely  correct  for  graphs  with  a  single  cy-
cle. For graphs with more than one cycle, it is possible for incorrect re-
sults to be returned (i.e., false negatives); however, we show that these
cases are rare.

It  is  first  worth  discussing  the  correctness  of  the  solution  when
EDEN-DET(A,f) returns with GoE ! true. This result will never occur if
f  has  a  preimage  (i.e.,  false  positives  cannot  occur).  This  is  because
elements  in  H  are  only  ever  set  to  0  when  there  is  no  i,j-consistent
pair in a neighbor cell.  If  GoE ! true is returned, then at some point
there must have existed an i such that " j, Hj,i ! 0 (i.e., a cell has no

possible  i,j-consistent  neighborhood  configurations).  For  f  to  have  a
preimage, each cell must have at least one i,j-consistent neighborhood
configuration.  Therefore,  only  a  true  Garden  of  Eden  configuration
can cause GoE ! true to be returned. 
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When  EDEN-DET(A,f)  returns  with  GoE ! false,  there  are  possible
false identifications. That is, it is possible for a Garden of Eden config-
uration to cause GoE ! false  to be returned.  However,  this  rare case
is only a possibility when the graph G has more than one cycle. 

We will now show that for EDEN-DET(A,f) to return GoE ! false is
always  correct  if  G  contains  only  one  cycle.  Consider  H,  which  has
reached  a  nonzero  steady  state  after  executing  PH1(A,H).  If  we  as-
sume  a  neighborhood  configuration  Hj,i ! 1  (see  Section  3.3)  and

carry out an iteration of NH-ELIM(A,H), we are essentially propagating
the assumption around the cycle of G. When this propagation returns
to i,  then there  are  only two possibilities:  (1)  the assumed Hj,i  is  not

eliminated, meaning a chain of i,j-consistent pairs can be constructed
(i.e.,  a  preimage  can  exist  under  this  assumption);  and  (2)  the  as-
sumed Hj,i is eliminated; hence, yj cannot contribute to any preimage.

Since  EDEN-DET(A,f)  only  returns  GoE ! false  when every  element  in
H  has passed assumption testing,  we can conclude that this  can only
occur  if  f  does  in  fact  have  a  possible  preimage.  Therefore  EDEN-
DET(A,f) is completely correct for G with a single cycle. 

These correctness results for the single-cycle (i.e., one-dimensional)
case  have  also  been  supported  by  experimental  results.  We  executed
EDEN-DET(A,f) on the entire configuration space for all elementary cel-
lular automata where n ! 84, 8, 16<.  Each return value was validated
via a brute-force search for a preimage. This resulted in a 100% suc-
cess rate. 

Unfortunately,  things  are  not  so  easy  for  G  with  multiple  cycles.
The  assumption-testing  method  we  apply  in  PH2(A,H)  is  really  only
powerful  enough  to  test  consistency  within  a  single  cycle.  It  may  be
possible  for  every  Hj,i  to  pass  the  assumption  test,  but  any  choice

made from one cycle breaks consistency in another. Hence a complete
solution would require looking at pairs of cycles, triples of cycles, and
so forth (we do not have a rigorous proof of this). This is likely the re-
sult of the NP-complete nature of the Eden problem in more than one
dimension. 

Again,  we  look  to  empirical  data  to  show  that  in  the  majority  of
cases the single cycle accuracy is all we need. This time, over 170 000
random instances  of  EDEN(A,f)  (for  a  fixed choice  of  rules  represent-
ing Wolfram classes 1, 2, and 3 [13]) were taken as inputs. The topol-
ogy of the graph G was equivalent to a dodecahedron. Since †V§ ! 20,

the complete configuration space is 220. Every result was compared to
a brute-force approach. 

We found that for class 1 cellular automata (i.e., point attractors),
no  false  negatives  ever  seem  to  occur.  Rules  that  fall  under  class  2
(i.e., simple structures, maybe periodic) had a low number of false neg-
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atives,  around  0.01%.  Class  3  cellular  automata  (i.e.,  chaotic)  are  a
different story: around 16% of cases in which EDEN-DET(A,f) returned
GoE ! false  were  incorrect.  Over  all  samples,  the  false  negative  rate
was around 10%.

It is interesting to note that it is only class 3 cellular automata that
seem to cause PH2(A,H) to be executed in the one-dimensional case. 

False  negatives  can  be  detected  without  resorting  to  a  brute-force
sweep.  As  previously  stated  in  Section  3.3,  the  final  state  of  H  com-
pletely  encodes  all  possible  preimages.  Neighborhoods  in  H  can  be
stitched  together  using  a  method  similar  to  Wuensche’s  general  re-
verse algorithm [6];  if  no preimage can be constructed,  then we have
detected a false negative. In light of this, our algorithm could also be
considered  as  a  search-reduction  step  to  be  used  prior  to  invoking
Wuensche’s  general  method.  Combined,  these  would  provide  a  com-
pletely  correct  and more  efficient  method for  constructing  configura-
tion transition graphs. 

7. Conclusion

In  this  paper  we  have  presented  an  efficient  algorithm  (i.e.,  average

case  in  QIn2M),  EDEN-DET(A,H),  for  solving  the  Eden  problem  for
graph  cellular  automata.  By  changing  the  topology  of  the  graph  G,
the Eden problem can be solved for all classes of deterministic discrete
dynamical  systems  (e.g.,  regular  cellular  automata  and  random
Boolean networks).  This  analysis  provides  a  firm foundation for  fur-
ther study of the global dynamics of discrete dynamical systems.

Appendix

A. Proof of Theorem 1

First consider the equality

qi
i Xj HynL ! qj

i Xj HymL.
Given Definition 9, we can expand the above expression. This yields

ª " s, Jyn,s
£ ! ym,s

£ Ô $ p, Jyn,p ! yn,s
£ Ô y ! hi,p Ô y ! i Xs

j N Ô
$ q, Jym,q ! ym

£ , s Ô z ! hj,q Ô z ! i Xs
j NN.
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This can be reduced using predicate calculus,

ª " s, Jyn,s
£ ! ym,s

£ Ô $ p, Jyn,p ! yn,s
£ Ô hi,p ! i Xs

j N Ô
$ q, Jym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª

" s, Jyn,s
£ ! ym,s

£ Ô $ p, q Jyn,p ! yn,s
£ Ô hi,p !

i Xs
j Ô ym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª

" s, J$ p, q Jyn,s
£ ! ym,s

£ Ô yn,p ! yn,s
£ Ô hi,p !

i Xs
j Ô ym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª " s,

J$ p, q Jyn,p ! ym,q Ô hi,p ! i Xs
j Ô hj,q ! i Xs

j NN.
Now  let  C0HhiL ! yn  and  C0IhjM ! ym;  hence,  C0Ihi,pM ! yn,p  and

C0Ihj,qM ! ym,q:

£ " s, J$ p, q Jyn,p ! ym,q Ô hi,p ! i Xs
j Ô hj,q ! i Xs

j N Ô C0Ihi,pM !

yn,p Ô C0Ihj,qM ! ym,qN ª
" s, J$ p, q Jhi,p ! i Xs

j Ô hj,q ! i Xs
j N Ô C0Ihi,pM ! C0Ihj,qMN.

This satisfies our definition of i,j-consistency (i.e., Definition 8). There-

fore yn and ym are i,j-consistent. ·
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