
An Efficient Algorithm for the Detection
of Eden

David J. Warne*

Ross F. Hayward

School of Electrical Engineering and Computer Science
Queensland University of Technology
Brisbane, Queensland 4001, Australia
*david.warne@qut.edu.au

Neil A. Kelson

High Performance Computing and Research Support
Queensland University of Technology
Brisbane, Queensland 4001, Australia

Dann G. Mallet

School of Mathematical Sciences
Queensland University of Technology
Brisbane, Queensland 4001, Australia

In this paper, a polynomial time algorithm is presented for solving the
Eden problem for graph cellular automata. The algorithm is based on
our neighborhood elimination operation, which removes local neighbor-
hood configurations that cannot be used in a preimage of the given con-
figuration. This paper presents a detailed derivation of our algorithm
from first principles, and a detailed complexity and accuracy analysis is
also given. In the case of time complexity, it is shown that the average-

case time complexity of the algorithm is QIn2M, and the best and worst

cases are WHnL and OIn3M, respectively. This represents a vast improve-

ment in the upper bound over current methods, without compromising
average-case performance.

1. Introduction

Cellular automata and, more generally, discrete dynamical systems
are powerful tools for modeling of complex phenomena [1]. This in-
cludes applications from physics, biology, and computer science [2].
Some have even speculated that the study of cellular automata may
lead to a Grand Unified Theory of everything [3].

The study of the global dynamics of cellular automata (i.e., the
study of automata configuration transition graphs) can provide
unique insight into complex systems [4]. Efficient construction of a

! Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

q g p y
configuration transition graph typically requires a method to deter-
mine if the given configuration is located on a leaf node of this
graph![5].

This problem is known as the Eden problem, and has been shown
to be computationally intractable for d-dimensional systems when
d > 1. This is reflected in the worst-case computational complexity of
algorithms that solve the Eden problem for higher dimensions (e.g.,
Wuensche’s general reverse algorithm [6]).

We present a new algorithm for approximately solving the Eden
problem for graph cellular automata (i.e., cellular automata on
graphs [7, 8]), the most general form of deterministic cellular au-
tomata. Although there exist rare instances in which the algorithm
will fail to identify the nonexistence of a preimage, this is made up for

by its asymptotic complexity class, which is OIn3M for the worst case

and QIn2M for the average case. This provides a method that is more
computationally feasible in the worst case than approaches based on
Wuensche and Lesser’s reverse algorithm [4] and Wuensche’s general
reverse algorithm [6] for the study of the global dynamics of higher-
dimensional discrete dynamical systems with potentially a large num-
ber of cells.

2. Background

2.1 Discrete Dynamical Systems
A regular cellular automaton can be defined as a lattice of finite state
automata, typically referred to as cells or sites. A state transition func-
tion defines how a cell updates its state based on its current state and
the state of its neighbors. Cells update synchronously in discrete time
intervals. The sequence of all cell states at a given time is referred to
as the automaton’s configuration.

Random Boolean networks are binary cellular automata with one
critical difference: there is no requirement that cells be located on a
regular lattice [6]. Instead, neighborhoods are constructed via a ran-
dom wiring. This random wiring makes random Boolean networks
useful for theoretical biological models of genetic regulatory networks
[9,!10].

Graph cellular automata (also referred to as generalized automata
networks [11]) are a generalization of both cellular automata and
random Boolean networks. For a graph cellular automaton, cell con-
nectivity is defined by a connected graph. The class of graph cellular
automata contains regular cellular automata and random Boolean net-
works as subclasses. Cellular automata and random Boolean net-
works can be considered as discrete dynamical systems. Despite their

378 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 y y p
simple construction, discrete dynamical systems have been shown to
be capable of very complex behavior [12–14]. Furthermore, computa-
tionally intractable and formally undecidable problems relating to dis-
crete dynamical systems have been shown to exist [15, 16].

2.2 The Eden Problem
A particular problem of interest in the study of the global dynamics of
discrete dynamical systems is the so-called Eden problem (also called
the predecessor existence problem [17, 18]). The Eden problem at-
tempts to determine, for a given automaton, if there exists a configura-
tion (i.e., preimage) that will evolve to the given configuration in the
next time step. If the Eden problem is resolved to be false, then the
configuration is called a Garden of Eden configuration (i.e., it has no
preimage). Wuensche and Lesser studied the Eden problem in depth
and developed a reverse algorithm for one-dimensional regular cellu-
lar automata [4]. Wuensche further generalized this approach to the
case of random Boolean networks, which may also be applied to
graph cellular automata [6, 5]. While Wuensche and Lesser’s method
performs very well for small cellular automata, this method’s upper
bound is OH2nL (as we will show in Section 5), which prevents explo-
ration of large discrete dynamical systems.

For one-dimensional finite cellular automata, the Eden problem is
in P; however, for multi-dimensional finite cellular automata, the
Eden problem has been shown to be NP-Complete [17]. Even certain
variants of the Eden problem in one dimension (such as the con-
strained Eden problem [16]) have been shown to be NP-Complete. As-
suming that P ! NP, then there does not exist a polynomial time algo-
rithm to solve the Eden problem for graph cellular automata.

If we assume P ! NP, then a complete solution to the Eden prob-
lem for graph cellular automata is computationally intractable. How-
ever, this does not exclude the possibility of a good solution (i.e., one
that can identify most Garden of Eden configurations) being achiev-
able in polynomial time. In this paper, we present an algorithm that
provides a good solution to the Eden problem for graph cellular
automata in cubic time. By solving the problem for graph cellular au-
tomata we, by extension, solve the problem for regular cellular au-
tomata and random Boolean networks. Furthermore, we can show
that our algorithm solves the Eden problem exactly when the topol-
ogy of the graph cellular automaton is equivalent to a one-dimen-
sional finite cellular automaton with periodic boundary conditions.

2.3 Formal Definition of Graph Cellular Automata
In this section, we provide a formal definition of graph cellular au-
tomata. Our formalism is based heavily on the work of Fates [19],
Marr et al. [7, 8], and Tomassini [11].

An Efficient Algorithm for the Detection of Eden 379

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

We consider a graph cellular automaton to be defined as a 4-tuple
consisting of a connected graph, a set of states, a set of neighborhood
mappings, and a set of state transition functions. This is given for-
mally in Definition 1.

Definition 1. Let A ! HG, S, U, GL define a graph cellular automaton,
where G ! HV, EL is a graph with vertices V Õ ! and edges
E Œ V äV, S is a finite set of symbols referred to as the alphabet,
U ! 8hi : i œ V< is the set of neighborhoods hi ! 8i< ‹ 8j : Hi, jL œ
E Ó Hj, iL œ E<, and G ! 8gi : i œ V< is the set of all state transition func-

tions gi : S hi Ø S.

In Definition 1, the vertices of the graph G represent the cells of
the automaton A. Note that the neighborhood hi of each cell i is effec-
tively the set of cells that are connected to cell i via the set of edges E,
including i itself. Note that the construction of hi in Definition 1 as-
sumes an undirected graph; the definition for a directed graph would
be hi ! 8i< ‹ 8j : Hj, iL œ E<.

At any time t, each cell is associated with a state s. For this we de-
fine the mapping in Definition 2. From this we can construct the
global configuration of the automaton in Definition 3.

Definition 2. Let C : V Ø S be a mapping from a cell i œ V to a state
s œ S such that CtHiL represents the state of cell i at time t. Let

CtHhiL œ S hi be the neighborhood configuration of i.

Definition 3. Let ft ! 9CtHiL : i œ V= be the configuration of the automa-

ton A at time t. ft œ F, where F is the set of all possible configura-
tions of A.

Finally, we define the evolution of a graph cellular automaton as
the sequence of configurations generated by repeated synchronous ap-
plication of the local state transition functions. This is given as a recur-
rence relation expressed in terms of the global configuration transi-
tion function. This is given in Definition 4.

Definition 4. Let the recurrence relation ft+1 ! f IftM, t ¥ 0 be the evolu-

tion of A, where f : F Ø F is the global configuration transition func-
tion

 f IftM ! 9Ift, ft+1M : ft ! 9CtHiL : i œ V= Ô ft+1 ! 9giICtHhiLM : i œ V==.
We can now define formally an instance of the Eden problem.

Definition 5. Let EDEN denote the Eden problem, with instances consist-

ing of a graph cellular automaton A and configuration f œ S†V§, and

380 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

g g p g

with the question, does there exist an initial condition f0 such that

f ! f If0M under the evolution of A?

In Section 3, we will rely on the formalism given in this section to
derive a polynomial time algorithm that provides the solution to
EDEN(A,f) in all but rare circumstances.

3. The Algorithm

In this section, we present a detailed derivation of our Eden detection
algorithm, denoted by EDEN-DET(A,f). There are a number of steps in-
volved in this derivation. First, some new mathematical constructions
are defined. Then the fundamental operation of EDEN-DET(A,f), the
neighborhood elimination operation, denoted by NH-ELIM(A,H), is de-
rived. After presenting NH-ELIM(A,H), a simple Eden detection algo-
rithm is provided, denoted by S-EDEN-DET(A,f). Using S-EDEN-DET(A,f)
as a starting point, we then derive a two-phase construction of EDEN-
DET(A,f).

3.1 Preliminaries
The graph cellular automata formalism given in Section 2.3 is not
quite sufficient for us to express our Eden detection algorithm clearly.
In this section, we present the definitions and notations that form the
mathematical foundations of the algorithm. All definitions, notations,
and theorems in this section assume the formalism in Section 2.3 to
be given, and hence symbols used from Section 2.3 will not be
redefined.

We will assume, without loss of generality, that " i œ V, †hi§ ! k.
This is done purely for notational convenience. All of the concepts ap-
plied in the construction of our algorithm can be extended trivially to
nonuniform †hi§. Note that we do not assume a uniform update rule
across all cells " i, j œ V, gi ! gj.

To describe our algorithm, we need a method of consistently refer-
ring to a specific neighborhood configuration (see Section 3.2). The
notation for this reference is given in the following definition.

Definition 6. Assume that some ordering scheme has been applied to

the set of all neighborhood configurations Sk. Subject to this order-

ing, the nth neighborhood configuration is denoted by yn œ Sk.

Note that the actual ordering scheme is arbitrary; all we require is
an index into the possible neighborhood configuration space. For our

An Efficient Algorithm for the Detection of Eden 381

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 p g g p

implementation, we simply map each configuration to its raw binary
representation.

It is necessary for us to specify a set that contains all the cells that
join adjacent neighborhoods. We refer to this set using the notation
i Xj, and it is defined in Definition 7.

Definition 7. Let

 i Xj ! 8i< ‹ 8j< ‹ 8x : HHx, iL œ E Ó Hi, xL œ EL Ô HHx, jL œ E Ó Hj, xL œ EL<
denote the boundary set of hi and hj. The nth boundary cell, x œ V, is

denoted by x ! i Xn
j .

The basis of our algorithm is the detection and removal of neigh-
borhood configurations that cannot exist in any preimage of ft due to
an inconsistency across boundary sets.

Definition 8. If there exists an initial configuration f0 such that

C0HhiL ! yn and C0IhjM ! ym, then yn is said to be i,j-consistent with

respect to ym.

The concept of i,j-consistency is readily visualized as shown in Fig-
ure 1. However, it would be preferable if a direct method of evaluat-
ing the i,j-consistency of two neighborhood configurations could be
found. The function we require is given in Definition 9.

Figure 1. Example of i,j-consistency where i ! 3, j ! 6, and
i Xj ! 83, 4, 5, 6<. Left: yn is not i,j-consistent with respect to ym, since they
cause an inconsistent state in the boundary set (i.e., cell 5). Right: A modifi-
cation to ym allows consistency across the boundary set; hence, yn is now
i,j-consistent to ym.

382 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

Definition 9. Let qi
i Xj

: Sk Ø S†iXj• be a function that maps neighborhood

configurations of hi to the configuration of the boundary set i Xj. The
function is defined as

qi
i Xj ! :Hyn, yn

£ L : yn,s
£ ! yn,q Ô y ! hi,q Ô y !i Xs

j Ô s œ A0, i XjM>.
The definition of q given in Definition 9 may seem strange, but it

leads us into Theorem 1, which is a vital component of our algorithm.

Theorem 1. If qi
i Xj HynL ! qj

i Xj HymL, then yn is i,j-consistent with respect

to ym.

A formal proof is given in Appendix A.

3.2 Neighborhood Elimination
We can now formulate the core operation of our Eden detection algo-
rithm. This core operation we call neighborhood elimination and de-
note it as NH-ELIM(A,H). As the name may suggest, its function is to
eliminate neighborhood configurations that cannot be a component
of any preimage of the automaton configuration in question.

To explain how we perform this operation, we first consider the

matrix H œ 80, 1<†S§kä†V§, where

(1)Hi,j !
 0, impossible for yi ! C0IhjM
 1, otherwise.

It is important to note in equation (1) that Hi,j ! 1 should not be

interpreted as yi ! C0IhjM in at least one preimage. Instead, Hi,j ! 1

means we cannot yet determine if yi ! C0IhjM or not. This is not the

case for Hi,j ! 0, which indicates that we have proven that there is no

preimage such that yi ! C0IhjM.
The algorithm can be described as follows: Consider the case in

which we have already determined that Hi,j ! 0 for specific i,j by the

techniques described in Section 3.3. If we start with an arbitrary cell
neighborhood hi, then the column vector H*,i provides us with the

neighborhood configurations still under consideration. If Hn,i ! 1,

but the neighborhood configuration yn is not i,j-consistent with
respect to any candidate configurations in one or more connected
neighborhoods hj, then yn can be excluded from the realm of possible

configurations for hi, as at least one boundary cell state cannot be sat-
isfied consistently. By updating H*,i, this will affect the validity of

An Efficient Algorithm for the Detection of Eden 383

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

other configurations, so we repeat the process for every neighbor-
hood.

Theorem 1 provides us with a comparison operation for testing the
i,j-consistency of two neighborhood configurations. With the function

qi
i Xj

 as defined in Section 3.1, we arrive at NH-ELIM(A,H) (i.e., Algo-
rithm 1).

for all i œ V do
for all j œ hi - 8i< do

Qi ! :x : x œ qi
i Xj IypM Ô Hp,i ! 1>

Qj ! :x : x œ qi
i Xj IyqM Ô Hq,j ! 1>

zi ! 9x : x œ Qi Ô x – Qj=
" p, Hp,i ! 0 if qi

i Xj IypM œ zi

end for
end for

Algorithm 1. NH-ELIM(A,H): neighborhood elimination.

One step of NH-ELIM(A,H) is shown in Figure 2, which displays
contents of the data structures Qi, Qj, and zi, along with the effect on

the state of H. It should be noted that although the example in Fig-
ure!2 is for a small, one-dimensional cellular automaton with k ! 3,
NH-ELIM(A,H) is general enough to operate on graph cellular au-
tomata.

One particularly useful property of NH-ELIM(A,H) is that the num-
ber of zero elements in H can never decrease. Therefore, repeating
NH-ELIM(A,H) on H in an iterative fashion will eventually result in an
array H in which only configurations i,j-consistent with respect to all
neighbors are candidates for preimage construction. This property
also enables us to put an upper bound on the number of iterations re-
quired, which aids us in our complexity analysis (see Section 4).

384 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

Figure 2. One step of NH-ELIM(A,H). The upper-left matrix is H at the start of
the iteration. After the iteration is completed, H4,k is set to 0, resulting in the

lower-left matrix H£.

3.3 Garden of Eden Detection
In this section, we will describe our Eden detection algorithm (EDEN-
DET(A,f)) in full. Throughout this description we rely heavily on the
formalism in Sections 2.3 and 3.1.

So far we have assumed that H is not all ones or all zeros, but we
have not mentioned how H is initialized. If we are given an instance
of EDEN(A,f), we can prove the impossibility of some neighborhood
configurations explicitly by using f and the state transition functions
gi œ G; that is,

(2)Hi,j !
 0, gjHyiL ! fj

 1, gjHyiL ! fj.

In Section 3.2, it was stated for NH-ELIM(A,H) (Algorithm 1) that
the number of zeros in H can never decrease. Therefore, repeated in-
voking of NH-ELIM(A,H) is guaranteed to converge to a steady state.

Once H is initialized, we can repeatedly operate the neighborhood
elimination algorithm on H. Clearly, if for any column " i, Hi,j ! 0

during an iteration, then there is no possible yi that can be selected
for hj in any preimage. Furthermore, the steady state that H will con-

An Efficient Algorithm for the Detection of Eden 385

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

verge to in this case will be " i, j, Hi,j ! 0. Therefore, we can con-

clude that f is a Garden of Eden configuration.
We might also assume that all Garden of Eden configurations will

cause the condition " i, Hi,j ! 0. Therefore, we could simply iterate

until a steady state is reached and then look at the elements in H for
any nonzero elements. This leads us to derive our initial algorithm for
Eden detection, which we call simple Eden detection and denote as
S-EDEN-DET(A,f) (Algorithm 2).

" i, j, Hi,j ! 0 if i, j, IgjHyiL " fjM
" i, j, Hi,j ! 1 if i, j, IgjHyiL ! fjM
while H " H£ do

H£ ! H
H ! NH-ELIMHA, H£L

end while
if " i, j, Hi,j ! 0 then

GoE ! true
else

GoE ! false
end if
return GoE

Algorithm 2. S-EDEN-DET(A,f): simple Eden detection.

Unfortunately, S-EDEN-DET(A,f) is not quite complete (hence the
name “simple Eden detection”). It can be shown that " i, Hi,j ! 0 is a

sufficient but not necessary condition of Eden. It is possible for cells
within a cycle of G to have i,j-consistent neighbors, but there does
not exist a combination of possible neighborhood configurations that
can form a consistent chain. Figure 3 gives an example of such a case;
note that for a one-dimensional cellular automaton the topology
graph G contains one cycle that includes all cells. Clearly, more pro-
cessing is required once S-EDEN-DET(A,f) has converged, and there
does not exist a j œ V such that " i, Hi,j ! 0.

If for any possible neighborhood configuration (i.e., Hi,j ! 1) we

can construct at least one preimage, then we can conclude that f is
not a Garden of Eden configuration. However, if it is found that a

valid preimage cannot be constructed with C0IhjM ! yi, then we can

set Hi,j ! 0 and repeat S-EDEN-DET(A,f) until a new steady state is

reached. This leads us to a second and more complete approach: EDEN-
DET(A,H).

386 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

Figure 3. Counterexample for S-EDEN-DET(A,f) (Algorithm 2). Left: the result-
ing nonzero steady state of H, where A30 is the elementary cellular automa-
ton rule 30 (according to Wolfram’s numbering scheme [12]) with periodic
boundary conditions and †V§ ! 4. Right: the main configuration transition
graph for A30; clearly f ! 80, 0, 1, 1< has no preimage.

In practice, we locate each instance of Hi,j ! 1 and temporarily set

" k ! i, Hk,j ! 0. This has the effect of assuming that C0IhjM ! yi.

We then apply one iteration of NH-ELIM(A,H), ensuring that cell j œ V
is visited last, then we examine the state of Hi,j. If Hi,j ! 1, then we

have no reason to reject our assumption. Otherwise, our assumption
is disproved via contradiction, so we set Hi,j ! 0 and repeat the loop

in S-EDEN-DET(A,f). If none of the Hi,j ! 1 can be disproved, then it is

reasonable to conclude that f has at least one preimage (we show in
Section 6 that there are rare cases when this is an invalid conclusion).

We now have a two-phase procedure. Phase 1, denoted by
PH1(A,H) (Algorithm 3), is effectively the loop from S-EDEN-DET(A,8).
Phase 2, denoted by PH2(A,H) (Algorithm 4), is the assumption-
testing process described in the preceding paragraph. These two
phases are then combined to form our full Eden detection algorithm
EDEN-DET(A,f)) (Algorithm 5). An implementation of EDEN-DET(A,f) is
provided as part of the analysis software developed by Warne [20].
This software, called GCALab, is a command line analysis tool de-
signed for parallel computation of graph cellular automata properties.

An Efficient Algorithm for the Detection of Eden 387

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

while H " H£ do
H£ ! H
H ! NH-ELIMHA, H£L

end while

Algorithm 3. PH1(A,H): Eden detection phase 1.

for all i œ V do

for all j œ S k do
if Hi,j ! 1 then

Htmp ! H
" s, Hs " jL, Hi,s

tmp
! 0

Htmp ! NH-ELIMHA, HtmpL
if Hi,j

tmp ! 0 then

Hi,j ! 0

return
end if

end if
end for

end for

Algorithm 4. PH2(A,H): Eden detection phase 2.

" i, j, Hi,j ! 0 if i, j, IgjHyiL " fjM
" i, j, Hi,j ! 1 if i, j, IgjHyiL ! fjM
repeat

CALL PH1(A,H)
if " i, j, Hi,j ! 0 then

GoE ! true
return GoE

else
CALL PH2(A,H)
GoE ! false

end if
until H£ ! H
return GoE

Algorithm 5. EDEN-DET(A,f): Eden detection.

388 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

Leaving the details to Section 4, we simply claim that EDEN-
DET(A,f) is guaranteed to complete in polynomial time. More specifi-
cally, it can be shown to have a cubic worst-case time efficiency. Fur-
thermore, when EDEN-DET(A,f) returns GoE ! false, then H encodes
the complete set of preimages to ft (except for rare cases when
GoE ! false is a false negative, as shown in Section 6).

4. Time Complexity Analysis

In this section, we present the time complexity analysis for EDEN-
DET(A,f) (Algorithm 5). We show that the number of operations for
the best case is a linear function of the number of cells; the worst case
is shown to be cubic, and the average case is shown to be quadratic.
Experimental results are also presented to reinforce theory with
practice.

4.1 Time Complexity of NH-ELIM(A,H)
The fundamental operation of EDEN-DET(A,f) is clearly NH-ELIM(A,H).
From the pseudocode for NH-ELIM(A,H) (Algorithm 1), it is also clear
that the number of operations executed by NH-ELIM(A,H) is a function
of the number of cells n ! †V§. We will show that this operation is in
QHnL.

The four lines within the innermost loop of NH-ELIM(A,H) are only
dependent on the number of neighborhood configurations. Without
loss of generality, we assume " i, †hi§ ! k; thus the construction of Qi
and Qj requires searching only a single column of H. That is,

CQ ! c0 °Sk•, where c0 º k is the number of operations to evaluate

qi
†iXj•

. The construction of zi is dependent only on the size of the Q;
hence, Cz § CQ. Furthermore, the number of elements in H is equal

to the number of elements in zi § °Sk•. Thus the total operation count
within the inner loop is given by

(3)Cinner ! 2 CQ + Cz + †z§ º 3 °Sk•.
Given equation (3), we can derive the total operation count for
NH-ELIM(A,H):

(4)CN HHnL ! ‚
i!1

n ‚
j!1

k

Cinner ! k Cinner n º 3 k °Sk• n.

Therefore CN HHnL œ QHnL.

An Efficient Algorithm for the Detection of Eden 389

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

4.2 Best Case
We now consider the best-case time complexity of EDEN-DET(A,f).
The best case occurs when there exist few possible i,j-consistent pairs
for some subsequence in f. This is very common in cellular automata
in which Langton’s l [14] is small. An example of this is when A is
the elementary cellular automaton rule 2, and f has a contiguous se-
quence of ones.

In this special case, only PH1(A,H) (Algorithm 3) will be required.
Furthermore, a column of zeros will develop very quickly, as each iter-
ation will eliminate at least one possible configuration from the unnat-
ural area (due to few or no i,j-consistent neighborhood pairs); that is,

I < °Sk•, where I is the number of iterations of the while loop. Using
the results from equation (4), we have

(5)CbestHnL ! ‚
i!1

°Sk•
CN HHnL ! °Sk•CN HHnL º 3 k °Sk§2 n.

Therefore Cbest œ WHnL.
4.3 Worst Case

For the worst case, we must consider the full expression for the num-
ber of operations executed by EDEN-DET(A,f). This is given by

(6)CopsHnL ! ‚
t!1

J ‚
i!1

I

CN HHnL
PH1HA,HL

+ ‚
j!1

V ‚
i!1

Sk

CN HHnL
PH2HA,HL

,

where J and I simply denote the number of iterations taken by the con-
ditional loops. We require an upper bound on these loops.

In Section 3.3 we noted that the number of zeros in H can never de-
crease. Now we also note that if the number of zeros in H does not
increase after an execution of PH2(A,H) (Algorithm 4), then EDEN-
DET(A,f) terminates with GoE ! false. Hence for the worst case we
must assume that the number of zeros decreases by exactly one. Fur-
thermore, every iteration of PH1(A,H) will increase the number of
zeros, terminate EDEN-DET(A,f) with GoE ! true, or continue to an it-

eration of PH2(A,H). Since H œ 80, 1<°Sk•än, it must hold that

(7)JHI + 1L § °Sk• n.

We want to maximize the value of J, as it has the greater effect on
the total number of calls to NH-ELIM(A,H). If we assume the upper

390 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 pp

bound is reachable, then as I Ø 1 we have J Ø °Sk• ë 2 n. We can ap-
ply this result to equation (6) to obtain an upper bound on CopsHnL,

CopsHnL § ‚
t!1

°Sk•ë2 n

CN HHnL + ‚
j!1

†V§ ‚
i!1

°Sk•
CN HHnL !

°Sk•
2

nICN HHnL + †V§ °Sk•CN HHnLM !
°Sk•
2

I°Sk• n2 + nMCN HHnL.
Furthermore, we have already shown that CN H œ QHnL. Therefore

Cworst œ OIn3M.
4.4 Average Case

Best- and worst-case bounds are important, but of limited practical
use without an indication of the likelihood of EDEN(A,f) instances
that cause these bounds to occur. In this section we will show, using
empirical data, that the average case is quadratic in time.

Consider equation (6): the values affecting the computational com-
plexity are the number of iterations taken by the while loop of
PH1(A,H), the number of iterations taken by the repeat-until loop,
and the number of times PH2(A,H) needs to be executed. As in Sec-
tion!4.3, we will denote the number of outer loops as J and the num-
ber of PH1(A,H) loops as I. Furthermore, we denote the number of
iterations in which PH2(A,H) is executed as K.

We took random EDEN(A,f) instances for †V§ ! n ! 2i, 2 § i § 13,
where G is a single circuit. For each value of n, over 1000 samples
were taken. The values of I, J, and K were counted for each sample.
The expected values computed from these samples are shown in Fig-
ure 4.

From Figure 4 we can derive the overall expected values
EHIL ! 2.88, EHJL ! 1.06, and EHKL ! 0.25. So it is reasonable to ap-
proximate the average case as follows,

CaverageHnL º ‚
i!1

3

CN HHnL äPrHŸ KL +

‚
i!1

3

CN HHnL + ‚
j!1

†V§ ‚
i!1

°Sk•
CN HHnL äPrHKL !

An Efficient Algorithm for the Detection of Eden 391

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

H3 CN H HnLLä 3

4
+ I3 CN HHnL + °Sk• n CN HHnLMä 1

4
!

°Sk•
4

n CN HHnL + 3 CN HHnL.
Since CN HHnL œ QHnL, the approximate overall expected time com-

plexity is CaverageHnL œ QIn2M. Section 4.5 provides further experimen-
tation to validate this approximation.

Figure 4. Expected iteration values. Based on 1000 random samples for each
number of cells.

4.5 Experimental Results
For validation of the average case, we took a new random sample of

1000 instances of EDEN(A,f) for °V• ! n ! 2i, 2 § i § 13. For each
sample, the average runtime of five separate runs was taken. Results
were separated into two groups, based on whether EDEN-DET(A,f) re-
turned with GoE ! true or GoE ! false. The resulting average run-
times are shown in Figure 5.

Note that on average the runtime when GoE ! false is approxi-
mately 16 times the runtime when GoE ! true. This is because only a
Garden of Eden configuration fe can cause EDEN-DET(A,fe) to return
before Phase 2 is executed, which will complete in OHnL operations.

To confirm that the curves in Figure 5 are in fact quadratic, we can

take the ratio R ! CI2i+1M ë CI2iM, where CHnL is the average runtime,
as a function of the number of cells n. We would expect R º 4 for a

392 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 p

quadratic (i.e., doubling the input takes four times longer). Figure 6
shows the R for the samples taken for Figure 5.

Figure 5. Runtimes for EDEN-DET (Algorithm 5).

Figure 6. Ratio of runtimes CH2 nL ê CHnLL.

An Efficient Algorithm for the Detection of Eden 393

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

From Figure 6 it is clear that R º 4 (considering that R º 2 for lin-
ear and R º 8 for cubic). This provides support for our approximate
average time complexity for EDEN-DET(A,f) that we provided in Sec-
tion 4.4.

5. Comparison with Wuensche and Lesser’s Reverse Algorithm

In this section, we will compare the performance of EDEN-DET against
the reverse algorithm developed by Wuensche and Lesser [4]. For the
sake of simplicity, we will restrict the comparison to the simplest
form of cellular automata: that of finite elementary cellular automata
with periodic boundary conditions. As a result, we must emphasize
that the following discussion and analysis relate specifically to Wuen-
sche and Lesser’s one-dimensional reverse algorithm [4] and not
Wuensche’s more general reverse algorithm, which applies to random
Boolean networks and graph cellular automata [6, 5]. The results of
this analysis, however, can certainly be generalized to the graph cellu-
lar automata case.

For a finite elementary cellular automaton with periodic boundary

conditions A, a configuration ft, and a partial preimage ft-1 in which
the first i cell states are known, Wuensche and Lesser’s method is de-
scribed as follows [4]:

1. If gIfi-1
t-1, fi

t-1, 0M ! gHfi-1
t - 1, fi

t, 1L " fi
t, then abandon the partial

preimage. Resume derivation of next partial preimage (go to step 5).

2. If gIfi-1
t-1, fi

t-1, 0M " gHfi-1
t - 1, fi

t, 1L, then fi+1
t-1 can be uniquely deter-

mined. Proceed with next cell (go to step 1).

3. If gIfi-1
t-1, fi

t-1, 0M ! gHfi-1
t - 1, fi

t, 1L ! fi
t, then fi+1

t-1 could be 0 or 1.

Push the partial preimage If0
t-1, f1

t-1, … , fi
t-1, 1M onto the preimage

queue to be processed later and continue with fi+1
t-1 ! 0.

4. When i ! n - 1, check that gIfn-2
t-1 , fn-1

t-1 , f0
t-1M " gIfn-1

t-1 , f0
t-1, f1

t-1M,
then abandon this preimage; otherwise, add to the valid preimage list.

5. Take a new partial preimage from the queue and continue processing
(step 1).

6. When the partial preimage queue is empty, all possible preimages start-

ing with the start values of f0
t-1, f1

t-1 are derived. Repeat for all possi-

ble f0
t-1, f1

t-1.

Note that the primary purpose of Wuensche and Lesser’s method is
the construction of all valid preimages, but it can be utilized directly
to compute the solution to the Eden problem. Clearly, we can assert

394 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 p p y
GoE ! false as soon as a valid preimage is found. We need not com-
pute all of them. GoE ! true will be asserted when no preimages are
found.

5.1 Worst-Case Complexity Analysis
With a brief description of Wuensche and Lesser’s one-dimensional re-
verse algorithm, we can now show that the worst-case computation
time is not bounded by a polynomial in the number of cells n. Con-
sider Algorithm 6, which depicts Wuensche and Lesser’s method modi-
fied for solving the Eden problem without computing all preimages.

GoE ! true
for all Hp1, p2L œ 8H0, 0L, H0, 1L, H1, 0L, H1, 1L< do

ft-1 ! Hp1, p2L
Q ! 9ft-1=
while Q " 8< do

ft-1 ! popHQL
x ! °ft-1• - 1

for all i œ @x, nD do
T0 ! gIfi-1

t-1, fi
t-1, 0M

T1 ! gIfi-1
t-1, fi

t-1, 1M
if T0 ! T1 " fi

t then
break for loop

else
if T0 " T1 then

if T0 ! fi
t-1 then

ft-1 ! ft-1 ‹ 80<
else

ft-1 ! ft-1 ‹ 81<
end if

else

pushIQ, ft-1 ‹ 81<M
ft-1 ! ft-1 ‹ 80<

end if
end if

end for
Tn ! gIfn-1

t-1 , fn
t-1, f1

t-1M
T1 ! gIfn

t-1, f1
t-1, f2

t-1M
if Tn ! T1 then

GoE ! false
return GoE

end if

An Efficient Algorithm for the Detection of Eden 395

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

end while
end for
return GoE

Algorithm 6. REVERSE(A,f): Wuensche and Lesser’s reverse algorithm.

Let Cinner denote the number of operations performed on a single
iteration of the innermost loop in REVERSE(A,f). Without loss of gener-
ality, we will assume Cinner is a constant. Clearly this is not true in re-
ality, but instead 3 § Cinner § 6.

Now, let CxHnL denote the number of operations required to com-

plete ignoring partial preimages already in Q before reaching the xth

cell in the current preimage. We can express CxHnL as the following re-
currence relation,

CxHnL ! ‚
i!x

n

Cinner + eHxL ‚
i!x+1

n

aHiLCiHnL,
where eHxL ! 0 if T0 ! T1 ! fx

t-i; otherwise eHxL ! 1, and aHxL ! 1 if

T0 ! T1 ! fx
t-1; otherwise aHxL ! 0.

The worst case for CxHnL occurs when the number of partial preim-
ages being pushed onto the queue is every iteration. In this case, we
have " i > x, Ha HiL ! 1 Ô e HiL ! 1L, and the recurrence relation
becomes

CxHnL ! ‚
i!x

n

Cinner + ‚
i!x+1

n

CiHnL.
We can now solve this recurrence relation. First consider expanding
the Cx+1HnL term in the summation,

CxHnL ! ‚
i!x

n

Cinner + ‚
i!x+1

n

CiHnL !

‚
i!x

n

Cinner + Cx+1HnL + ‚
i!x+2

n

CiHnL ! Cinner +

‚
i!x+1

n

Cinner + ‚
i!x+1

n

Cinner + ‚
i!x+2

n

CiHnL + ‚
i!x+2

n

CiHnL !

‚
i!x

n

Cinner + ‚
i!x+1

n

Cinner + ‚
i!x+2

n

CiHnL + ‚
i!x+2

n

CiHnL !

396 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

Cinner + 2 ‚
i!x+1

n

Cinner + 2 ‚
i!x+2

n

CiHnL.
Now, expanding the Cx+2HnL term,

CxHnL ! Cinner + 2 ‚
i!x+1

n

Cinner + 2 ‚
i!x+2

n

CiHnL !

Cinner + 2 ‚
i!x+1

n

Cinner + 2 Cx+2HnL + 2 ‚
i!x+3

n

CiHnL !

Cinner + 2 Cinner + 2 ‚
i!x+2

n

Cinner +

2 ‚
i!x+2

n

Cinner + ‚
x+3

m

CiHnL + 2 ‚
i!x+3

n

CiHnL !

Cinner + 2 Cinner + 4 ‚
i!x+2

n

Cinner + 4 ‚
i!x+3

n

CiHnL.
Repeating this process yields

CxHnL ! Cinner + 2 Cinner + 4 Cinner +! + 2n-x Cinner !

Cinner ‚
i!x

n

2i-x.

The worst case for REVERSE(A,f) requires that C2HnL operations be
executed four times,

Cworst ! 4 C2HnL ! 4 Cinner ‚
i!2

n

2i-2 ! Cinner ‚
i!2

n

2i,

hence REVERSE(A,f) is in OH2nL. It is worth noting that this worst case
can only be achieved if the f is a Garden of Eden configuration, and

the cell that determines this is the nth cell. For example,
f ! H0, 0, … , 0, 1, 1L for the elementary cellular automaton rule 2.
However, according to Wuensche and Lesser [4] the average case is
orders of magnitude better. We confirm this experimentally in
Section!5.2.

5.2 Experimental Comparison
We benchmarked EDEN-DET(A,f) against REVERSE(A,f). Each experi-
ment consisted of solving the Eden problem for 1000 random configu-

An Efficient Algorithm for the Detection of Eden 397

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 g p g

rations. Experiments were performed for both EDEN-DET(A,f) and
REVERSE(A,f), using all the elementary cellular automata with cell
counts ranging from 4 to 32. As shown in Figure 7, the benchmark av-
erage case is effectively the same order of magnitude for both
methods.

Figure 7. Comparison of EDEN-DET(A,f) against REVERSE(A,f), using a random
sampling of configurations.

The worst case for REVERSE(A,f) is only approached for Garden of
Eden configurations that are nearly identical to a non-Garden of Eden
configuration, only differing in the last few cells. This is more likely
to be possible with sparse configurations (i.e., very few 1 states com-
pared with 0 states). If we restrict the random sample of test configu-
rations to that of sparse configuration, then the probability of select-
ing a configuration that degrades the performance of REVERSE(A,f)
increases.

Figure 8 indicates that the benchmark results are very different
when we restrict the configuration sample this way. Such cases place
a limitation on the usability of REVERSE(A,f) for large cell counts (as
the cell count increases, any configuration with a relatively small
sparse subsequence could render the Eden problem computationally
intractable for REVERSE(A,f)). The performance of EDEN-DET(A,f),
however, is hardly affected by such sparse configurations.

The main difference in our approach, which provides such a large
improvement in the worst-case performance, is the neighborhood
elimination step. This operation performance is not affected by shifts
(or rotations in a higher dimension) in the same configuration, be-
cause it treats each cell neighborhood independently of each other. As

398 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 g p y
a result, EDEN-DET(A,f) provides a solution to the Eden problem that
is scalable to very large cellular automata. EDEN-DET(A,f) could be con-
sidered as a more stable alternative to Wuesnche and Lesser’s
REVERSE(A,f), as the worst case is vastly improved without degrading
the average case.

Figure 8. Comparison of EDEN-DET(A,f) against REVERSE(A,f), using a random
sampling of sparse configurations.

6. Algorithm Correctness

In this section, we discuss the correctness of EDEN-DET(A,f) in solving
the Eden problem for graph cellular automata. We are able to show
that EDEN-DET(A,f) is completely correct for graphs with a single cy-
cle. For graphs with more than one cycle, it is possible for incorrect re-
sults to be returned (i.e., false negatives); however, we show that these
cases are rare.

It is first worth discussing the correctness of the solution when
EDEN-DET(A,f) returns with GoE ! true. This result will never occur if
f has a preimage (i.e., false positives cannot occur). This is because
elements in H are only ever set to 0 when there is no i,j-consistent
pair in a neighbor cell. If GoE ! true is returned, then at some point
there must have existed an i such that " j, Hj,i ! 0 (i.e., a cell has no

possible i,j-consistent neighborhood configurations). For f to have a
preimage, each cell must have at least one i,j-consistent neighborhood
configuration. Therefore, only a true Garden of Eden configuration
can cause GoE ! true to be returned.

An Efficient Algorithm for the Detection of Eden 399

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

When EDEN-DET(A,f) returns with GoE ! false, there are possible
false identifications. That is, it is possible for a Garden of Eden config-
uration to cause GoE ! false to be returned. However, this rare case
is only a possibility when the graph G has more than one cycle.

We will now show that for EDEN-DET(A,f) to return GoE ! false is
always correct if G contains only one cycle. Consider H, which has
reached a nonzero steady state after executing PH1(A,H). If we as-
sume a neighborhood configuration Hj,i ! 1 (see Section 3.3) and

carry out an iteration of NH-ELIM(A,H), we are essentially propagating
the assumption around the cycle of G. When this propagation returns
to i, then there are only two possibilities: (1) the assumed Hj,i is not

eliminated, meaning a chain of i,j-consistent pairs can be constructed
(i.e., a preimage can exist under this assumption); and (2) the as-
sumed Hj,i is eliminated; hence, yj cannot contribute to any preimage.

Since EDEN-DET(A,f) only returns GoE ! false when every element in
H has passed assumption testing, we can conclude that this can only
occur if f does in fact have a possible preimage. Therefore EDEN-
DET(A,f) is completely correct for G with a single cycle.

These correctness results for the single-cycle (i.e., one-dimensional)
case have also been supported by experimental results. We executed
EDEN-DET(A,f) on the entire configuration space for all elementary cel-
lular automata where n ! 84, 8, 16<. Each return value was validated
via a brute-force search for a preimage. This resulted in a 100% suc-
cess rate.

Unfortunately, things are not so easy for G with multiple cycles.
The assumption-testing method we apply in PH2(A,H) is really only
powerful enough to test consistency within a single cycle. It may be
possible for every Hj,i to pass the assumption test, but any choice

made from one cycle breaks consistency in another. Hence a complete
solution would require looking at pairs of cycles, triples of cycles, and
so forth (we do not have a rigorous proof of this). This is likely the re-
sult of the NP-complete nature of the Eden problem in more than one
dimension.

Again, we look to empirical data to show that in the majority of
cases the single cycle accuracy is all we need. This time, over 170 000
random instances of EDEN(A,f) (for a fixed choice of rules represent-
ing Wolfram classes 1, 2, and 3 [13]) were taken as inputs. The topol-
ogy of the graph G was equivalent to a dodecahedron. Since †V§ ! 20,

the complete configuration space is 220. Every result was compared to
a brute-force approach.

We found that for class 1 cellular automata (i.e., point attractors),
no false negatives ever seem to occur. Rules that fall under class 2
(i.e., simple structures, maybe periodic) had a low number of false neg-

400 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

 p y p g
atives, around 0.01%. Class 3 cellular automata (i.e., chaotic) are a
different story: around 16% of cases in which EDEN-DET(A,f) returned
GoE ! false were incorrect. Over all samples, the false negative rate
was around 10%.

It is interesting to note that it is only class 3 cellular automata that
seem to cause PH2(A,H) to be executed in the one-dimensional case.

False negatives can be detected without resorting to a brute-force
sweep. As previously stated in Section 3.3, the final state of H com-
pletely encodes all possible preimages. Neighborhoods in H can be
stitched together using a method similar to Wuensche’s general re-
verse algorithm [6]; if no preimage can be constructed, then we have
detected a false negative. In light of this, our algorithm could also be
considered as a search-reduction step to be used prior to invoking
Wuensche’s general method. Combined, these would provide a com-
pletely correct and more efficient method for constructing configura-
tion transition graphs.

7. Conclusion

In this paper we have presented an efficient algorithm (i.e., average

case in QIn2M), EDEN-DET(A,H), for solving the Eden problem for
graph cellular automata. By changing the topology of the graph G,
the Eden problem can be solved for all classes of deterministic discrete
dynamical systems (e.g., regular cellular automata and random
Boolean networks). This analysis provides a firm foundation for fur-
ther study of the global dynamics of discrete dynamical systems.

Appendix

A. Proof of Theorem 1

First consider the equality

qi
i Xj HynL ! qj

i Xj HymL.
Given Definition 9, we can expand the above expression. This yields

ª " s, Jyn,s
£ ! ym,s

£ Ô $ p, Jyn,p ! yn,s
£ Ô y ! hi,p Ô y ! i Xs

j N Ô
$ q, Jym,q ! ym

£ , s Ô z ! hj,q Ô z ! i Xs
j NN.

An Efficient Algorithm for the Detection of Eden 401

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

This can be reduced using predicate calculus,

ª " s, Jyn,s
£ ! ym,s

£ Ô $ p, Jyn,p ! yn,s
£ Ô hi,p ! i Xs

j N Ô
$ q, Jym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª

" s, Jyn,s
£ ! ym,s

£ Ô $ p, q Jyn,p ! yn,s
£ Ô hi,p !

i Xs
j Ô ym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª

" s, J$ p, q Jyn,s
£ ! ym,s

£ Ô yn,p ! yn,s
£ Ô hi,p !

i Xs
j Ô ym,q ! ym

£ , s Ô hj,q ! i Xs
j NN ª " s,

J$ p, q Jyn,p ! ym,q Ô hi,p ! i Xs
j Ô hj,q ! i Xs

j NN.
Now let C0HhiL ! yn and C0IhjM ! ym; hence, C0Ihi,pM ! yn,p and

C0Ihj,qM ! ym,q:

£ " s, J$ p, q Jyn,p ! ym,q Ô hi,p ! i Xs
j Ô hj,q ! i Xs

j N Ô C0Ihi,pM !

yn,p Ô C0Ihj,qM ! ym,qN ª
" s, J$ p, q Jhi,p ! i Xs

j Ô hj,q ! i Xs
j N Ô C0Ihi,pM ! C0Ihj,qMN.

This satisfies our definition of i,j-consistency (i.e., Definition 8). There-

fore yn and ym are i,j-consistent. ·

References

[1] S. Wolfram, “Complex Systems Theory,” Emerging Syntheses in Sci-
ence: Proceedings of the Founding Workshops of the Santa Fe Institute
(D. Pines, ed.), Santa Fe Institute, 1985 pp. 261–266.
http://www.stephenwolfram.com/publications/academic/
complex-systems-theory.pdf.

[2] S. Bandini, G. Mauri, and R. Serra, “Cellular Automata: From a Theo-
retical Parallel Computational Model to Its Application to Complex Sys-
tems,” Parallel Computing, 27(5), 2001 pp. 539–553.
doi:10.1016/S0167-8191(00)00076-4.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] A. Wuensche and M. Lesser, The Global Dynamics of Cellular
Automata: An Atlas of Basin of Attraction Fields of One-Dimensional
Cellular Automata!, Reading, MA: Addison-Wesley, 1992.

402 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

http://www.stephenwolfram.com/publications/academic/complex-systems-theory.pdf
http://www.stephenwolfram.com/publications/academic/complex-systems-theory.pdf

[5] A. Wuensche, Exploring Discrete Dynamics, Frome, England: Luniver
Press, 2011.

[6] A. Wuensche, “The Ghost in the Machine: Basin of Attraction Fields of
Random Boolean Networks,” in Artificial Life III: Proceedings of the
Workshop on Artificial Life, Santa Fe, NM, 1992 (C. G. Langton, ed.),
Santa Fe Institute Studies in the Sciences of Complexity, Reading, MA:
Addison-Wesley, 1994.

[7] C. Marr and M. T. Hütt, “Topology Regulates Pattern Formation
Capacity of Binary Cellular Automata on Graphs,” Physica A: Statisti-
cal Mechanics and its Applications, 354, 2005 pp. 641–662.
doi:10.1016/j.physa.2005.02.019.

[8] C. Marr and M. T. Hütt, “Outer-Totalistic Cellular Automata on
Graphs,” Physics Letters A, 373(5), 2009 pp. 546–549.
doi:10.1016/j.physleta.2008.12.013.

[9] S. A. Kauffman, “Metabolic Stability and Epigenesis in Randomly Con-
structed Genetic Nets,” Journal of Theoretical Biology, 22(3), 1969
pp.!439–467. doi:10.1016/0022-5193(69)90015-0.

[10] A. Wuensche, “Genomic Regulation Modeled as a Network with Basins
of Attraction,” Proceedings of the 1998 Pacific Symposium on Biocom-
puting, Maui, HI, 1998 (R. B. Altman, A. K. Dunker, and T. E. Klein,
eds.), Singapore: World Scientific Publishing Company, 1998
pp. 89–102.

[11] M. Tomassini, “Generalized Automata Networks,” Lecture Notes in
Computer Science, 4173, 2006 pp. 14–28. doi:10.1007/11861201_5.

[12] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of
Modern Physics, 55(3), 1983 pp. 601–644.
http://www.stephenwolfram.com/publications/academic/
statistical-mechanics-cellular-automata.pdf.

[13] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[14] C. G. Langton, “Computation at the Edge of Chaos: Phase Transitions
and Emergent Computation,” Physica D: Nonlinear Phenomena, 42,
1990 pp. 12–37.

[15] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40.
http://www.complex-systems.com/pdf/15-1-1.pdf.

[16] S. Seif, “Constrained Eden,” Complex Systems, 18(3), 2009
pp. 379–385. http://www.complex-systems.com/pdf/18-3-7.pdf.

[17] K. Sutner, “On the Computational Complexity of Finite Cellular Au-
tomata,” Journal of Computer and System Sciences, 50(1), 1995
pp. 87–97. doi:10.1006/jcss.1995.1009.

An Efficient Algorithm for the Detection of Eden 403

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

http://www.stephenwolfram.com/publications/academic/statistical-mechanics-cellular-automata.pdf
http://www.stephenwolfram.com/publications/academic/statistical-mechanics-cellular-automata.pdf

[18] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz,
R. E. Streans, and M. Thakur, “Predecessor Existence Problems for
Finite Discrete Dynamical Systems,” Theoretical Computer Science,
386(1–2), 2007 pp. 3–37. doi:10.1016/j.tcs.2007.04.026.

[19] N. Fates, “Critical Phenomena in Cellular Automata: Perturbing the
Update, the Transitions, the Topology,”Acta Physica Polonica B, Pro-
ceedings Supplement, 3(2), 2010 pp. 315–325.

[20] D. J. Warne. “The Graph Cellular Automata Lab: A Tool for Analysis
of Dynamics of Cellular Automata Defined on Graphs.” (Oct 24, 2013)
https://github.com/davidwarne/GCALab).

404 D. J. Warne, R. F. Hayward, N. A. Kelson, and D. G. Mallet

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.22.4.377

