An Efficient Algorithm for the Nearest Smallers Problem on
Distributed Shared Memory Systems with Applications *

T. Graf
Department ICG-4
Research Centre Jilich
52425 Jilich, Germany
t.graf@kfa-juelich.de

Abstract

We present a simple and efficient algorithm for the
nearest smallers problem (NSP, [1]) on a distributed
shared memory (DSM) system with applications to
problems from diverse arecas. We adopt the block dis-
tributed memory (BDM) model of computation as de-
scribed in [2]. To the best of our knowledge this is the
first known algorithm for the NSP on DSM systems.
Since the NSP is fundamental in many problems, a
solution for it on DSM systems implies DSM-based so-
lutions for a variety of problems in diverse areas as
discussed in this paper. Parallel algorithms known so
far for the NSP are based on shared memory systems
[1] and are therefore less scalable than our elgorithm.

1. Introduction

1.1. Motivation

The nearest smallers problem (NSP) is a fundamen-
tal problem and finds extensive applications in merging
sorted lists, triangulation, binary tree reconstruction,
parenthesis matching etc., [1].

Based on their memory organization, parallel com-
puting systems fall into two categories: Shared mem-
ory systems and distributed memory systems. Shared
memory systems are relatively easy to program (due
to a single address space) but less scalable than dis-
tributed memory systems. Configuring a distributed
memory system to have a single address space results

*This work was supported in part by the IISC-IBM joint
project on High Performance Computing using Distributed
Shared Memory under the Shared University Research Program

0-8186-7901-8/97 $10.00 © 1997 IEEE

V. Kamakoti
Laboratory for High Performance Computing
Supercomputer Education and Research Centre
Indian Institute of Science
Bangalore - 560 012, India
{ kama, balki}@serc.iisc.ernet.in

N. Balakrishnan

in a system that is both scalable and easy to program.
Such systems are called scalable shared memory sys-
tems or disiributed shared memory systems (DSM).
In other words, a DSM system is a shared memory
layer on top of any distributed memory system like
IBM’s SP2, CRAY’s T3E, or a cluster of workstations.
In [2] the block distributed memory (BDM) model of
computation is presented which serves as a bridge be-
tween the shared memory programming model and the
distributed memory message-passing architecture. In
other words, the BDM model attempts to capture the
performance of a DSM system. So far, all parallel al-
gorithms for the NSP are based on shared memory
systems; [1] presents a °— processor, O(logn) time
CREW-PRAM parallel algorithm and a Eg—l"@; pro-
cessor, O(loglog n) time CRCW-PRAM parallel algo-
rithm for the NSP. This paper presents a simple and
efficient algorithm for the NSP on DSM systems using
the BDM model. To the best of our knowledge, this
is the only reported algorithm for the NSP on DSM
systems.

Definition 1 (Nearest Smallers [1]) The input to
this problem is an array A = (a1,as,...,a,) of n el
ements from a totally ordered domain. For each a;,
1 < i< n, find the nearest element to its left and the
nearest element to its right, that are less than a;, if
such elements exist. That is, for each 1 < i < n, find
the mazimel 1 < j < 4, and the munimal i < k < n
such that a; < a; and ar < a;. We say that a; is the
left match and ax is the right match of a;.

In the rest of this paper we will concentrate on find-
ing the left match for every element of a given input
sequence. Finding the right match can be done in a
similar fashion.

The BDM model [2] is defined in terms of four pa-
rameters: number p of processors, mazimum initial la-
tency time T taken for a processor to receive the packet
1t requested from some other processor, {tme o taken
to inject a word into or recewve a word from the nei-
work, and number m of consecutive words sent dur-
ing each transfer. The processors are connected to a
common communication network. Data are communi-
cated between processors via point-to-point messages
in blocks of m consecutive words rather than a single
word. This is done keeping in mind the spatial local-
1ty of programs in execution. Let PR;, 0 < i< p—1
denote the i*? processor in the BDM system. Any pro-
cessor can communicate with any other processor, but
the time for communication depends upon the latency
and bandwidth of the network, as described in the fol-
lowing facts about the BDM given in [2]:

1. No processor can send or receive more than one
packet (a block of m consecutive words) at a time.

. The model allows the initial placement of input
data in the local memories of the processors and
the memory latency hiding technique of pipelined
prefelching.

If 7 i1s any permutation on p elements, then, a re-
mote memory request for b words issued by every
processor PR; and destined for processor PR
can be completed in 7 + ma[%] time for all pro-
cessors PR;, 0 < 1 < p — 1, simultaneously. &
remote access requests issued by k distinct pro-
cessors and destined to the same processor will re-
quire k(7 +mo) time to be completed, and the re-
quests will be served in arbitrary order. k prefetch
read operations issued by a processor can be com-
pleted in 74+kmo time, using pipelined prefetching.
k prefetch read operations of k blocks of [;ﬂ words
each, can be completed in 7+ akm(}%1 time.

. There are two time-complexity measures for a par-
allel algorithm on the BDM model; the compu-
tation time Ttomp, and the communication time
Teomm. The measure Ty, refers to the maxi-
mum of the local computations performed on any
processor as measured in the model of computa-
tion supported by it. The measure Teomm refers
to the total amount of communication time spent
by the overall algorithm in accessing remote data.

Definition 2 (IED Storage)

A sequence F' = (f(1), f(2),..., f(n)) of n elements is
said to be Inorder Equally Distributed (IED) stored on
a two-dimensional array B[1..%7 : 0.4—1] in somet < p
processors PR; ,PR;.,...,PR;, | of a BDM machine if

368

and only of, B[j,i]| = flix(n/t)+7), for 0 <i<t—1,
1 <j < nft and (B[1,4],B[2,1],...,B[%,1]) are stored
i processor PR;, in this order, 0 <i <1t -—1.

2. Algorithm for the NSP

2.1. Preliminaries

Before presenting the algorithm we define some func-
tions that are used by the algorithm.

1. BDPRECOMP: Performs prefix computation
on a sequence [ED stored on a p-processor BDM
machine. For details refer Theorem A.1 in Ap-
pendix A.

BLOCKMERGE: Merges two sorted lists L
and Ly each of length ¢(n/p) elements, ¢ > 0 an
integer, such that L; is IED stored on an array
BL, in the processors PR;,PR; 4,...,PRi1(1-1)a
and Ly is IED stored on an array BL, in the
processors PRiitq, PRiy(141)a,+ s P Rig(2t-1)q, for
some integer a > (), and outputs the merged sorted
list L of length 2t(n/p), IED stored on an array
BL in the processors PR;, PRi.,_a,.“,PRH(Qt_l)a.
For details refer Theorem A.2 and the discussion
preceding it in Appendix A.

RANDOMROUTE: A randomized function
which routes the data stored in each of the pro-
cessors to their respective destinations. The input
to this function is a [2] x p array A of n elements
initially stored one column per processor in a p-
processor BDM machine. Each element of A con-
sists of a pair (7, data), where i is the index of the
processor to which the data has to be relocated.

For details refer Theorem A.3 in Appendix A.
2.2. The Algorithm

The Sequential Algorithm.

Definition 3 Let A = (T, a1, ay,...,a,) be an array of
elements from a totally ordered domain, where T is a
dummy element such thaiT' < a;, 1 < i< n. Then,

1. Ny = (aj,,a5,, -, aj,,) such that j1 =n, a;,,, is
the left match of a;,, 1 <i <k, and a;, =T.

My = (c1,¢2,...,¢) is a subsequence of A com-
prising of the elemenis which do not have a left

match, listed in the same order as they appear in
A.

L4 is the list of elements having left matches along
with their left matches.

We assume the standard stack operations
Push(e,S), which pushes the element e onto a
stack S, T'op(S) which returns the topmost element of
S, and Pop(S) which returns and removes the topmost
element of S.

Function SEQNSP(A): (Na,Ma,La)

Input: An array A = (T, a1,4as,...,a,) of elements
from a totally ordered domain.

Output: Ny, M4 and L, as defined in Definition 3.

begin

1. Let S be an empty stack; Ng := Mg := L4 = 0;
2. Push(T, 5);

3. fori—1tondo

4. while (a; < TOP(S)) Pop(S); endwhile;

5. if (Top(S) =T) then append (a;) to My;

6. else append (< @;,TOP(S) >) to Ly;

7. Push(a;, S);

8. endfor;

9. N4 := contents of S from top to bottom;

10.return{N4, Ma, L 4)
end.

Theorem 1 Given an array A of n elements, the

function SEQNSP(A) takes O(n) time.

The Distributed Algorithm for DSM systems.

We assume that the input array A is of the form
(T, aq, aq, ..., an). W.lo.g. we assume that n is a power
of 2. We first present a divide-and-conquer algo-
rithm for the NSP which we then parallelize: Split
A it into two halves A1 = ([',ay,a2,...,an/2) and
Ay = (T, an/241, 02, ..., an) and solve the NSP for A;
and A, separately. Let the solutions for A; and A,
be (Na,,Ma,,La,)and (Na,, Ma,, La,), respectively.
We will now see how to compute (N4, M4, La).

Lemma 1 If an element e € My, has a left maich |,
then [€ Ny, .

Proof: Obviously, | € A;. Let Nga,
(aj,,aj;, ..., aj,). Suppose | ¢ Nyu,, then | = a,
such that j; > r > j;41 for some 1 < 7 < k. We obtain
easily that @, > a;;, and j; > r. This implies that a;,
is closer to e than [and less than e, contradicting our
assumption that [is the left match of e. O

We easily see that M, and N4, = (aj,,a;,,...,a;,)
are sorted in decreasing order. Merge M4, with Ny,
to obtain Ty := (ay,,ay,, ..., ay,) sorted in decreasing
order. Form an auxiliary array P[l..{] such that for
every element ay, € Ty, P[i] :=< fi,ay, > ifa;, € Na,
and P[i] :=< 0,T > otherwise, 1 < ¢ < . We then

369

compute the suffix maxima PM AX, on the first entries
of the P-array elements. We easily obtain the following

Lemma 2 Let Ty = (ay,,ay,, ...,
1<i<t, we have

if PMAX[i] =<
left match in A.

aft). Forap, € Ma,,

1 0,T' > then, ay, does not have a

if PMAX[]] =< fr,ay, > then, ay, is the left
match for a;, in A.

Now, our method to compute N4, M4 and L4 from
Na, My, , La,, Na,, My,, and L4, is as follows: The
list My is the list M4, appended to its tail the list of
elements of My, that satisfy condition 1 of Lemma 2,
in the same order as they appear in M4,. The elements
of L4 are the elements of L4,, L4, and those elements
of M4, that satisfy condition 2 of Lemma 2. The list
N4 consists of Ny, (without last element I') appended
to its tail all elements in N4, that are less than every
element in M4,: Let e be the last, i.e. smallest, element
of My, and a;, < e < aj,,, for Na, = (a;,,a5,, ..., a5,);
since a;, = I' such an ¢,1 <1 < k exists. Hence, Ny is
the list N4, appended to its tail the list (a;,,,, ..., aj,)-
Definition 3 and Lemmas 1 and 2 imply the correctness
of this method. Example 1 gives an illustration:

Example 1 (Divide and Conquer NSP) Let A =
(1,7,3,2,4,6,8,1,5). Hence, A; = (I,7,3,2,4) and
A, = (I,6,8,1,5). We obtain My, = (7,3,2),
Na, = (4,2.1), La, = (< 4,2 >), Ma, = (6,1),
NA2=(511‘) LAZ—_-(<86><51>) Ty =
(6,4,2,1,T), P = (<« 0, >, < 4,4 >,< 3,2 >,<

0,I'>,<0,T>), andPMAX (<4,4>,<4,4>,<
3,2>,<0,T > < 0,T >). Our merging method then
returns

Ly=1La + La, +(< 6,4 >),’ My =My + (1) =
(7,3,2,1); and, Ny = (5,1,T)

Now, the distributed algorithm works recursively,
basically boiling down to the assumption that the n
elements of the input A are IED stored on the array
DA on the processors PRy, PRy, ..., PR, of the p
processors BDM machine. The BDM model permits
to assume such initial placements (fact 2 on page 2).
W.lo.g. we assume that p is a power of two. We
further assume that also L4, M4, Ny are IED stored
on arrays DLps, DMpas, DNpa, respectively, on the
processors PRy, PRy,...,PR,_1. Each processor
PR;, 0 <7< p—1, solves the NSP for the elements
stored within itself sequentially using the function
SEQNSP presented before. The p individual solutions
are merged using a method similar to the divide-and-
conquer approach discussed above to get the final

solution. The function BLOCKNSP below gives the
pseudocode for this recursive DSM algorithm. We
assume that DLpa,n,p are global array and global
variables, respectively, since this allows outputting the
left match of an element e at any level of recursion.
At the end of every level of recursion DLp4 1is
updated using the RANDOMROUTE function for all
elements which found left matches during that level.
All elements in the DLp4 array are assumed to be
initialized to I' at the beginning.

Function

BLOCKNSP(DA, S, E) . (DNDA, DMDA)

Input: The sequence A of (E — S+ 1)n/p elements
as defined above, IED stored on the array DA in the
processors PRs, PRsy1,...,PRg, E > S.

Output: DNp4 and DMp4 for DA, such that every
entry of DNp4 and DMp,4 is a dummy or is of the
form < DA[j,4),4,i >. The elements of DNp4 and
DMp, are assumed to be initialized to be dummy
elements at the beginning.

begin

1.if (S = E) then solve the NSP for the
n/p elements stored in the sequence DAJj, 5],
1 < j < n/p, sequentially using the func-
tion SEQNSP; from the result form the arrays
DNDA[j)S]aDMDA[j)SleLDA[jaS]a 1 <] <
n/p;
return(DNpa, DMpa);

/* Note that if we scan the lists DNp4[j, 5] and
DMpalj, S} in order from j = 1 to j = n/p leav-
ing the dummies we get N4 and M4, respectively,
as in Example 1 in increasing order. We assume
w.l.o.g. that £ — S+ 1 is a power of two. */

2. do in parallel /+ Corresponds to computing
Ny, My, Ny, M, L1, Ly in Example 1. /

(DN},,DMb,) = BLOCKNSP(DA,S,
S .

E— il)
2 k)

(DN%,,DM3 ,) = BLOCKNSP(DA, E=5+1 4
1, E);

3. DTpa =
DNbANS; E_——Qé'j—_l_’ l)a
/* Corresponds to computing T4 in Example 1.
From the definitions of DMp4 and DNp4 we see

that every element of DTp4 will be of the form
< DA[j,], 4,5 >. */

BLOCKMERGE(DM},,

4. for each processor PR;, S <i < E, do in paral-
lel,

370

for j — 1 to n/p do sequentially /+ Let
DTDA[j: Z] =< e;f)g > */
it (9> E54) e o
DP[j,{]:=<0,T >

else /x e € DN}, */ DP[j,i] :=< g * (n/p) +
fre>;

/#* Corresponds to computing the list P in Exam-
ple 1. %/

€ DMi, %/ then

. DPMAX := BDPRECOMP(DP, Maxz);

/* Corresponds to computing the list PMAX in
Example 1. */

. DPMIN := BDPRECOMP(DP, Min);

/* Will be useful in finding DNp 4. */

. for each processor PR;, S < i < %ﬂ, do in

parallel,

for j + 1 ton/p do sequentially /* All elements
of DMLI)A belong to DMp,. */

DMpalj,] := DM} 4[5, 4);

. for each processor PRy, E—“—‘;il +1<i<E do

in parallel,

for j — 1 ton/p do sequentially /+ All elements
of DN, belong to DNp4. */

DNpA[j,i] == DN§ 4[4, 4];

. for each processor PR;, S <1 < F, do in paral-

lel

for j — 1 to n/p do sequentially /+ Let
DTDA[jai] =< evf:g >. */

if g < E=3%l then /[« e € DNp,; let
DPMIN[j,i =< a,b>. %/

if (a # 0) then from the definition of DP
we can see that there does not exist any ele-
ment of DMJ , that is less than e in DTpy4.
From Example 1 and the discussion preced-
ing it we see that e € DNpy and hence
DNpalf,9] =< e,f,g >. This has to be
updated in processor g. Hence add < g,<
fre >>to an array TEM P1[1..n/p, 1;

else /x e € DM} 4; let DPMAX[j,4] =< a,b >.
*/

if (b = T') then from the definition of DP
we can see that e has no left match. Hence
DMpalf,g9] =< e,f,g >. This has to be
updated in processor g. Hence add < g, <
f,e >> to an array TEM Ps[1..n/p, 1;

if (b # T') then from the definition of DP we
can see that b is the left match of e. Hence
DLpalf,g] = e. This has to be updated in
processor g. Hence add < g,< f,e >> to an
array TEM P3[1..n/p,{;

/* The arrays TEM P,, TEM P, and T E M P5 con-
tain data to be routed. x/

10. (TEMP],¢;) := RANDOMROUTE(TEM P,);
(TEM P}, ¢5) RANDOMROUTE(TEM P,);

(TEM P§, ¢3) := RANDOMROUTE(TEM Ps);
/* The function RANDOMROUTE and Theo-
rem A.3 can be applied to TEM Py, TEM P5 and
TEMP;. RANDOMROUTE updates the arrays
DNpa,DMpa and DLp 4 in all processors. */

11. for each processor PR;, S < i < E, do in paral-

lel

Scan the arrays TEMPi[1..c1(%), 4],
TEMP3[1..c2(%), 4], TEMPg1..c3(%),1] and up-
date the arrays DNpa[l..n/p,t], DMpa[l..n/p,i]
and DLp4[l..n/p,i];

12. return(DNp4, DMp4)

/* Note that, if we scan the arrays DNpa[j, 7] and
DMpalj,i] in order from j = 1to j=n/pand i =0
to ¢ = p — 1 leaving the dummies we get Ny and M4
as in Example 1, respectively, in increasing order. x/
end.

At the end of execution of the function BLOCKNSP,
the following facts about e := DA[j, 4] are satisfied:

1. If there exists a left match [for e then,
DLpalj,i] = e and DMp4[j,i] = dummy.

2. If there is no left match for e then, DLp4[j,i] =T
and DMDA[j, Z] =< e, j,t>.

If e € DNp,4 then, DNDA[j,i] =<e,jJ,t>.

Time Complexity.

From Theorem 1 and the Function BLOCKNSP we see

that steps 1,4,7,8 and 9 take O(n/p) time. Theorem
. . nlog,(E=211)

A.2 implies that step 3 takes O(————;—Z—) compu-

tation time and O((7 + om[-2])logy(£=511)) com-

munication time. Theorem A.l implies that steps 5

and 6 take 47[%?%9—:11))] +7 4+ om communication

time and O(% + %&%) computation time. For

each execution of the RANDOMROUTE function in

371

step 10 at most n/p elements are destined per proces-
sor. Hence o < 1 in Theorem A.3. Substituting for «
in Theorem A.3 we see that step 10 takes 2(7 + c[%])
communication time and O(c[2]) computation time
with high probability, where ¢ is a constant. Theorem
A.3 also implies that ci1,cy and c3 in step 10 can be
output in constant time. Hence, step 11 takes O(n/p)
time. Let ¢ :== E — S+ 1 and T¢omp(t) be the com-
putation time taken by BLOCKNSP(DA, S, F). From
Theorem 1 we see that T¢,mp (1) = O(n/p). From func-
tion BLOCKNSP we see that,

nlog,t
p

Tlog,
omlogy(;= +1)

t
Teomp(t) = Teom(5)+0

Tloggt
omlog, (= + 1)

om

~0 (nloggt +
p

Let T,omm () be the communication time taken by
BLOCKNSP(DA, S, E). From Theorem 1 we see that
Teomm(1) = 0. From function BLOCKNSP we see
that,

Tcomm(t) = Tcomm(%) + 0] ((T + O'mfﬁn‘-l) logz t)

=0 ((r+om L) 10g3t)

Given the input array DA, the function is called as
BLOCKNSP(DA,0,p—1). This and the above discus-
sion imply the following theorem.

mn
and

can be solved
communication time

Theorem 2 The NSP

) ((T +om[2-1) log2 p
nlogZ p 7log2p

o (p Tt omlo; (a5)

DSM system using the BDM model of computaiion.

) computation time on a

3. Applications

Our BDM-based algorithm for the NSP gives BDM-
based algorithms for the following problems, that are
mapped onto the NSP in [1]:

1. Triangulating monotone polygons (a mono-
tone polygon is one that can be split into two
monotone polygonal chains such that the vertices
of the chains are increasing (or decreasing) by the
z-coordinate).

2. Reconstruction of binary trees from their
traversals (from inorder and preorder traversals).

3. Parentheses matching (find the level of nesting
for each parenthesis in a legal sequence of paran-
thesis, and also find for each parenthesis its left
mate).

4. Conclusion

In this paper we presented a simple and efficient algo-
rithm for the nearest smallers problem (NSP), which,
to the best of our knowledge is the first of its kind
for DSM systems. Since the NSP is fundamental in
many problems, a solution for it on DSM systems im-
plies DSM-based solutions for a variety of problems in
diverse areas as discussed in this paper.

A. Appendix

Function BDPRECOMP(A, v7) : (4).

Input: Given a sequence of ordered pairs <
ay,data; >, < as,datag >,---,< ap,data, >, IED
stored on the array A on a p-processor BDM ma-
chine, data; is the data (if any) associated with a;,
1 < 7 < r. ¥ is a binary associative operator €
{+, Min, Maz,..}.

Output: A sequence of ordered pairs < a},data) >
, < ab,datal, >,---,< al.,datal, >, IED stored on the
array A’ on the p-processor BDM machine, where,
a} = 7% _,a; and data! is the data associated with a]
(if any).

From Theorem 9 of [4] we infer the following theo-
rem.

Theorem A.1 ([4]) Given a sequence (ai,as,...,a,)
of numbers IED stored on a p-processor BDM, we can
compute the prefiz sums ps; = Z;Il a;, 1 <<,

: log, p
in AT ey
o+

Tlog, p
omlog, (5 +1)

plexity holds for prefic mazima, prefiz minima and sim-

tlar associative operators.

1 47+ om communication time and

) computation time. This com-

Theorem A.2 ([3]) Function
BLOCKMERGE(BL:,BLs,it,a)
computation time and O((t+ om|
munication time.

takes ~O(21%E2l)

Nlog,t) com-

o
pm

Function RANDOMROUTE(A) : (4',¢)

Input: Input array A[l : [%1 ,0:p— 1] IED stored on
a p-processor BDM machine, such that each element of
A consists of a packet (7, data;) of constant size, where
1 1s the index of the processor to which data; has to be

372

routed. « is a constant such that no processor is the
destination of more than ozf%] elements on the whole.
Output: Output array A'[1: c[%],O : p— 1] holding
the routed data IEDstored on a p-processor BDM ma-
chine, such that all the data with the processor PR;,
0 <7 < p—1, as the destination will be available in one
of the locations A'[5,7], 1 < j < cl'%], in the proces-
sor PR;, where ¢ is larger than max{1 + %, o+ iz‘i}
The function stores a copy of ¢ in every processor PR;,
0<i<p-1.

The function is implemented using the random-
ized_routing algorithm suggested in [2].

Theorem A.3 The function RANDOMROUTE(A)
completes within 2(t + cl-%]) commaunication time and
O(c[’-g—}) computation time with high probability, where

n

¢ 1s larger than maz{ 1 + %, o+ @ 1, p? < e
and o ts such that every processor ts a destination for

at most a% messages. O
References
[1] O. Berkman, B. Schieber, and U. Vishkin. Some

doubly logarithmic optimal parallel algorithms based
on finding nearest smallers. Research Report RC
14128 (#63291) 10/24/88, Computer Science, IBM Re-
search Division, T.J. Watson Research Center, York-
town Heights, N.Y. 10598.

F.J. JaJa and K. W. Ryu. The block distributed mem-
ory model. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(8):830-840, 1996.

V. Kamakoti and N. Balakrishnan. Efficient algorithms
for prefix and general prefix computation on distributed
shared memory systems with applications. Report,
Communicated, 1996.

V. Kamakoti and N. Balakrishnan. Efficient random-
ized algorithm for the closest pair problem on dis-
tributed shared memory systems. Report, Communi-
cated, 1996.

