
I.J. Intelligent Systems and Applications, 2015, 12, 23-31
Published Online November 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.12.02

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

An Efficient Algorithm in Mining Frequent

Itemsets with Weights over Data Stream Using

Tree Data Structure

Long Nguyen Hung*

Email: ntthlong@gmail.com

Thuy Nguyen Thi Thu*

Email: NguyenTthuthuy@gmail.com

Giap Cu Nguyen*
*Informatics Department, Vietnam University of Commerce, Hanoi, Vietnam

Email: cunguyengiap@gmail.com

Abstract—In recent years, the mining research over data

stream has been prominent as they can be applied in

many alternative areas in the real worlds. In [20], a

framework for mining frequent itemsets over a data

stream is proposed by the use of weighted slide window

model. Two algorithms of single pass (WSW) and the

WSW-Imp (improving one) using weighted sliding model

were proposed in there to solve the data stream problems.

The disadvantage of these algorithms is that they have to

seek all data stream many times and generate a large set

of candidates. In this paper, we have proposed a process

of mining frequent itemsets with weights over a data

stream. Based on the downward closure property and FP-

Growth method [8, 9] an alternative algorithm called

WSWFP-stream has been proposed. This algorithm is

proved working more efficiently regarding to computing

time and memory aspects.

Index Terms—Data mining, frequent itemsets, data

stream, weighted sliding window, weighted supports, tree

data structure.

I. INTRODUCTION

Recent years, the data mining in particular to the

mining over data stream has been concerned by many

researchers [1,3-7,10-25], and it has been applied

successfully in many real areas. As the processing data is

no longer static, it becomes to dynamic, and sometimes

has been extended continuously into undefined

upper/lower boundary [1,3,4,5,6,8]. All these dynamical

data can be called as a data stream. The examples are very

popular in the real world such as data in a network traffic

analysis, in a web click stream, in a network of intrusion

detection, or in an on-line transaction analysis. The

continuous data streams mentioned above are main causes

of challenges in data mining [1] as: Large seeking sphere

for frequent itemsets (in power function representation);

explosion of data while the used memory has been limited;

and the performed time (as fast as possible to extract the

results). Take all into account, new efficient data mining

algorithm over data streams is necessary.

Mining in frequent itemsets is a fundamental data

mining task over a data stream. Almost traditional

algorithms were used for the data mining frequent

itemsets in static database. This allows retrieving each

item more than one time in a database. However, the

mining algorithms over data stream cannot access data

stream more than one time as its continuousness property

and the limitation of memory. Therefore, a necessary

algorithm for mining over a data streams should be

applied. Moreover, the algorithm efficient factors should

be considered in applying data stream problems in aspect

of the performed time and the memory.

In [20], Tsai P. S. M. has proposed a new approach for

mining frequent itemsets over a data stream based on the

weighted slide window model via two algorithms WSW

and WSW-Imp (an improved one). Both of these

algorithm are based the Apriori algorithm [2]. The

algorithms based Apriori have the downward closure

property of frequent itemsets. This means as any subsets

of a frequent itemset is also a frequent itemset. The

disadvantage of these kinds of algorithms as the need to

generate and test too many candidate sub-itemsets and

scan database many times. Therefore, the mining

performance is seems to be low. The WSW-Imp

algorithm (based on WSW) improves its performance by

applying the following property: if two itemsets Xp and

Xq are combined to form a new candidate itemset c by

downward closure property, then the weighted support of

c is not higher than the weighted supports of Xp and Xq.

In this paper, we have proposed a new efficient

algorithm called WSWFP-stream (Window Sliding

Weights Frequent Pattern over stream) for mining

frequent itemsets over data streams. This is based on

Tsai's model [20], but it is applied the FP-growth

(Frequent Pattern) approach [8, 9]. The theoretical

analysis and experiment show the better performance of

WSWFP-stream than the WSW and WSW-Imp

mailto:ntthlong@gmail.com

24 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

algorithms, regarding to saving in computing time and

memory.

This paper will focus on the following sections. The

related works can be seen in section II. In section III, we

present an overview of the data mining frequent itemsets

over a data stream using the weighted sliding window

model. Section IV introduces a new proposed algorithm,

WSWFP-stream, which is based on the weighted sliding

window model. Section V shows the experiments and the

discussion its results. Last section gives the conclusion

and further works.

II. RELATED WORKS

There are many researches on frequent itemsets over

data stream [1]. The popular mining researches can be

seen as: Landmark model, titled-time window model, and

sliding window model.

The landmark model [17] considers all data in one

window. It involves all transactions from a fixed past time

point to present, and treats them all similarly. In [17]

Manku G. et al have proposed a model that counts the

frequency of elements over the threshold defined by users.

Their model differs from models based on Apriori by

removing the candidate in generation phase. The proposal

model, therefore, requires small main memory footprints.

Base on Landmark model, Li Su et al in [13] has also

introduced a model that deal with classification of

association rules on a data stream by applying Lossy

Counting algorithm. In [13], data structure was divided

into three modules of BUFFER, TRIE, and SETGEN.

Then, subsets of these transactions were enumerated along

with their frequencies.

The tilted-time window model [7] is a modification of

the landmark model. It considers the data at the time point

of a system started up to present. The processing time is

divided into alternative time slots, and the data is split into

different batches by time. A batch, that closer to present,

has been assigned a higher weight (to be a fine granularity

[7]).

Differ from landmark model, the sliding model [5]

focuses on new data backward to the fixed past time point.

Moreover, the window size might be taken from given

number of transactions. By using a compact data structure,

the closed enumeration tree (CET), which monitors

closed frequent itemsets as well as itemsets that form the

boundary between the closed frequent itemsets and the

rest of the itemsets, will be maintained a dynamically

selected set of itemsets over a sliding-window. The cost

of mining closed frequent itemsets over a sliding window

in [5] was dramatically reduced to that of mining

transactions, and they can be the possible causes

boundary movements in the CET.

The other method of doing on frequent itemsets over

data stream can be seen in [18]. In there, the authors have

compared of use of Hoeffding trees and Hoeffding Option

tree. The Hoeffding Option tree has shown the better

under various memory limits as it added splitting options

in the internal nodes to improve accuracy, stability and

reduce ambiguity.

The new approach for mining frequent itemsets over a

data stream based on the weighted slide window can be

seen in [20]. Tsai P. S. M. has proposed two algorithms

WSW and WSW-Imp used the downward closure

property of frequent itemsets of Apriori [2] during the

process.

Continue to the weighted sliding window model, in [24],

Yong C. et al have proposed two algorithms of SWSS and

SWSS-Imp to mine frequent sequential patterns. By

building W-Tree to store frequent sequences, each node in

W-Tree will has a W-List to maintain bitmaps of current

sequence. As each sequence could be presented in each

sliding window, the users can define the size of the sliding

windows.

To inherit the advance in Tsai' approach [20], in this

paper, we have proposed an improved algorithm called

WSWFP-stream for mining frequent itemsets over data

streams. This is based on Tsai's model [20], but it is

applied the FP-growth (Frequent Pattern) approach [8, 9].

III. MINING FREQUENT ITEMSETS IN DATA STREAMS

USING TREE DATA STRUCTURE

Given I is a set of items,  1 2, ,..., kI i i i . A subset

X I including k different items is called k-itemset or an

itemset has length k. For simplification, an itemset

{i1,i2,…,iq}would be written as i1i2…iq; for example, the

itemset {a,b,c,d,e} is replaced by 𝑎𝑏𝑐𝑑𝑒 in short. A

transaction is a tuple t=(TID,X) where TID is an

identification index, and X is an itemset.

A stream of transactions DS is an infinite range of

transactions, DS={ti1,ti2,…,tim,…} meanwhile tij, i=1,2,…;

j=1,2,… is a transaction at time i. A window W in a

transaction stream is a set of transactions between time

points i and j (j > i).

In [20], Tsai P. S. M. has proposed a model for mining

frequent itemsets over a data stream using weighted

sliding window as follow.

Assume that at the time point (1,2,...),iT i a sliding

window W is split into N batches Wij and each batch Wij is

assigned by a different number αij, 0<αij≤1, (i=1,2…;

j=1,2,…,N). A weight of a data batch is the number

assigned to all itemsets of any transaction in this batch.

Definition 1: The support with weight of an itemset X

is WSWsupp(X), estimated by following equation:

1

() ()


 
N

ij ij

j

WSWsupp X F X (1)

Definition 2: The minimal support with weight of a data

stream DS at time point Ti defined as:

1

   
N

ij ij

j

minsupp W (2)

where Wij is the number of transaction in batch j at time

point Ti and minsupp is the minimal support set by user for

a data stream DS.

 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure 25

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

Definition 3: Given k-itemset X I and a minimal

support with weight , X is called a frequent itemset with

weight over a data stream DS bases on sliding window

model if:

()  WSWsupp X (3)

If that we can say the itemset X is satisfied by ,

otherwise, we can say the itemset X is not satisfied by .

For example: Given a data stream depicted in Table 1,

the sliding window at time point T1 has 13 transactions

and is split into 4 batches as W11, W12, W13, W14 with

corresponding weights α11 =0.4, α12 =0.3, α13 =0.2, α14

=0.1, the minimal support with weights of minsupp is 20%.

Table 1. An Example of Data Stream At Time-Point T1.

We have the weighted support of the itemset “cd” is:

(" ") 0 0.4 2 0.3 1 0.2 3 0.1 1.1WSWsupp cd         

The minimal weighted support at the time point T1:

1

20% (3 0.4 2 0.3 3 0.2 5 0.1) 0.58



   

         


N

ij ij

j

minsupp W

The (" ") 1.1 0.58WSWsupp cd     , means “cd” is a

weighted frequent itemset over the given data stream. In

the other words, we say that the itemset “cd” is satisfied

by .

Definition 4: Mining weighted frequent itemsets over a

data stream DS using the sliding window model is finding

a set WSW including all weighted frequent itemsets:

 , ()   WSW X X I WSWsupp X

Lemma 1: If X is a weighted frequent itemset then all

subset of X are weighted frequent itemsets.

Proof .

We have

   XDS T DS X T is a transaction set including X.

   YDS T DS Y T is a transaction set including Y.

Assume that X is a weighted frequent itemset. This

means ()  WSWsupp X .

For all subsets , , Y X X we have   XT DS

.     YT X Y T DS

Therefore,

  X Y X YDS DS DS DS

() ()   
Y X

ij ij

DS DS
F Y F X

DS DS

1

1

() ()

() ()





 

  





N

ij ij

j

N

ij ij

j

WSWsupp Y F Y

WSWsupp X F X

Therefore, it is proved that all subsets Y is weighted

frequent itemsets.

IV. PROCESS OF MINING WEIGHTED FREQUENT

ITEMSETS OVER DATA STREAM USING TREE DATA

STRUCTURE

Process is given as follows:

(i) Building WSWFP-tree (A procedure of building

data tree structure);

(ii) Mining WSWFP-tree (A Procedure SWFP-miner);

(iii) Updating WSWFP-tree by updating window

procedure (A Procedure Update Window);

(iv) Re-mining WSWFP-tree (Algorithm of mining

WSWFP-stream).

A. WSWFP-Tree Construction:

As a FP-tree [8,9], a WSWFP-tree has a structural tree

and an item table. However, in order to construct a

WSWFP-tree, our proposed algorithm has to access entire

database one time only. The item table stores all items in

the alphabetical order, their weights, the frequence of

each item in each batch, and the pointer points to the first

node on the WSWFP-tree that has the same name as the

first one . The WSWFP-tree involves a root node called a

null node (signs as {}) and a set of precedent trees that

are subtrees of root node. The transactions of each batch

in database are going to insert into WSWFP-tree by their

items in alpabetical order. Except root node, each node on

WSWFP-tree stores the name of item that the node

represents, the frequence of each node in each batch on

the branch from root node and pointers point to parents

node, children nodes and the node with the same name on

the tree.

26 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

When a new node is added into a WSWFP-tree by

inserting a transaction from batch k of current window

including N batches, a list of N frequent values in N

batches are filled with the seting of 1 at the position k and

0 at other positions. For instance, if the current window

has 4 batches and “b” is a node appeares at the first time

in the tree by inserting a transaction of batch 2, then the

structure of node “b” is: 0,1,0,0.

Here is some symbols definition using in each

procedure and algorithm.

Table 2. Symbols Definition.

Procedure ConstructWSWFP-tree.

Input: , , , (1,2,...; 1,2,...,) i ijT K N W i j N

Output: WSWFP-tree;

Method

1. If (point of T1) then create a Root, assign a label of

Null ({})

2. Scan for (each transaction in current window)

3. Begin

4. With (each transaction  in the jth window) do

revise the performing transaction to insert a node to

the tree. The method can be seen as follows:

- The transactions having the same prefix will go in

the same way in the prefix in the WSWFP-tree

- Information written in the node will be

NameNode(w1,w2,..,wN).

If the index in transaction is displayed at the appropriate

batch, the wj=1 otherwise, wj=0. If the index is appeared

many times, the appropriate wj will be added with 1. Note

that, NameNode is a name of tree node, and it also is name

of the index over stream.

5. Build a index table with information as: TID, index,

frequent distribution of index in N windows, count

of index over stream, pointer pointing to the node

that having the same index name in the WSWFP-

tree.

6. End;

7. Return WSWFP-tree

For example, an index table and WSWFP-tree are

created after inserting the batch W14 (see Fig. 1).

Fig.1. ID Table and WSWFP-tree after Inserting Batch W14.

After inserting 4 batches with 13 transactions in Table 1,

the resulted ID table and WSWFP-tree can be seen in Fig.

2.

Fig.2. ID Table and WSWFP-tree for all Transaction in Table 1.

Obviously, the structure of the nodes in the WSWFP-

tree store all required information for mining frequent

itemsets in a current window of transaction stream.

Moreover, a transaction of each batch is traced and

updated easily by tracing and updating WSWFP-tree

(delete oldfashion transations, add transactions of a new

batch) when switching into mining new window.

B. Mining A WSWFP-Tree

A WSWFP-tree has important properties, which will

be used in the proposal algorithm based on FP-growth

approach [8, 9], as follow:

Property 1: The high of WSWFP-tree equals to the

length of the longest transaction.

Property 2: The sum of frequent values in any node on

tree is greater of equal to sum frequent values of any

children nodes.

Property 3: The appeared frequency of an item in each

batch equals to summary of corresponding frequent values

in all nodes have the same name.

Property 4: The distribution of frequency in a batch of

a branch on the tree is the distribution of frequency of an

antecedent node

By applying the FP–growth [8,9], the proposed

algorithm called SWFP-miner for mining frequent

itemsets with weight over a data stream can be seen as:

Procedure SWFP-miner.

 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure 27

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

Input: , , , , (1,2,...; 1,2,...,),  i ij ijT K N W i j N minsupp

Output: L.

Method:

1. Calculate the minimal support follows  by (3);

2. From table of items, determine the set C1 is set of

1-itemsets satisfy .

3.
1;L C

4. For each (for each item  in the items‘ table, in

reverse alphabetical order) do

5. Begin

5.1. Create the conditional-tree for corresponding item

;

5.2. Construct the candidate itemsets;

5.3. Eiminate the candidate itemsets have the supports

do not satisfy ;

5.4. Insert the satisfied itemset  into L;

5.5. Delete all processed node  on conditional-tree;

6. End;

7. Return L

For example: Given the data in Table 1, at the point

time T1 including 13 transactions and 4 batches as W11,

W12, W13, W14. The appropriate weights are α11 =0.4, α12

=0.3, α13 =0.2, α14 =0.1 and the minimal support minsupp

is 20%.

Calculate  by (2), there is:

1

0.58
N

ij ij

j

minsupp W


    

From the item table, count the supports of 1-itemsets

are: :1.2, :1.8, : 2.2, :1.4, :1.0 .a b c d e

The 1-itemsets satisfy =0.58. Therefore L=C1

={a,b,c,d,e}.

Construct and extract the condition trees for items in

reverse alphabetical order from the bottom of the item

table:

Construct and extract the condition tree of item “e”

Database of condition of the item “e” has precedent

branch  :1,0,0,0; : 0,1,0,1; : 0,0,0,1; : 0,0,0,1ac bcd bd c

From the conditional database, the sub-WSWFP-tree

for item “e” can be built (see Fig. 3(a)).

From the item table, count the appeared frequencies of

two candidates 2-itemsets in the same batch with “e” are

 :1,0,0,0; : 0,1,0,2; :1,1,0,2, : 0,1,0,2ae be ce de and the

supports with weight of the corresponding itemsets are:

: 0.4, : 0.5; : 0.9, : 0.5 .ae be ce de There is an itemsets of

"ce" satisfy . Insert the 2- itemsets of “ce” into the set L,

we have:  , , , , , .L a b c d e ce

Continuously extract the 2-itemsets of “ce”. Extract the

conditional-tree of itemsets “ce”, Fig. 3(b), there are one

candidate 3-itemsets  :1,0,0,0ace and their weighted

supports : 0.4ace do not satisfy . Continue to extract

the conditional-tree of the itemsets of “ace” we have a

result of null tree. Therefore,  , , , , , .L a b c d e ce

Fig.3. The WSWFP- tree of item “e” and the Conditional-Tree of
Itemsets “ce”.

Construct and extract the condition tree of item “d”

The database of condition of the item “d” has some

precedent branches as

 : 0,0,1,0; : 0,1,1,2; : 0,0,0,1; : 0,1,0,1ab bc b c

The database of condition construct WSWFP-tree of

the item “d” depicted in Fig. 4(a).

Fig.4. The WSWFP-tree of item “d” and Conditional-Tree of two
Itemsets "bd" and "cd".

From the item table with the frequency of item “d”,

there are candidates 2-itemsets of "bd" and "cd" satisfy ,

according to the windows of

 : 0,0,1,0; : 0,1,2,3; : 0,2,1,3ad bd cd and the appropriate

28 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

support with weights as : 0.2, :1.0; :1.1 .ad bd cd

Therefore, we have  , , , , , , , .L a b c d e ce bd cd

Mining conditional-tree of "bd" (Fig. 4(b)) we have a

candidate 3-itemsets of  : 0,0,1,0 ,abd and the support

with weight of : 0.2abd do not satisfy .

Mining conditional-tree of "cd" (Fig. 4(c)) we have a

candidate 3-itemsets of  : 0,1,1,2 ?bcd and the support with

weight of : 0.7bcd satisfy . Inserting "bcd" into L, we

have  , , , , , , , , .L a b c d e ce bd cd bcd

Continue to mine the conditional-tree of "bcd" we have

a null tree.

Therefore, 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑐𝑒, 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑}.

Construct and extract the condition tree of item “c”

The database of condition of the item “c” has precedent

branches  :1,0,1,0; :1,1,1, .a b

The database of condition construct WSWFP-tree of

the item “c” depicted in Fig. 5.

Fig.5. WSWFP-tree Building from Database of "c".

Do the same method as constructing and extract of

other items above we have:

 , , , , , , , , , ; .L a b c d e ce bd cd bcd ac bc

Construct and extract the condition tree of item “b”

The database of condition of the item “b” has one

precedent branch  :1,0,1,0 .a

The database of condition construct WSWFP-tree of

the item “b” depicted in Fig. 6.

Fig.6. The WSWFP-tree of item “b”.

Do the same method as constructing and extract of

other items above we have:

 , , , , , , , , , ; ; .L a b c d e ce bd cd bcd ac bc ab

Construct and extract the condition tree of item “a”

The result is a null tree.

At the time point T1, the set of weighted frequent

itemsets and their supports are

:1.2, :1.8, : 2.2, :1.4, :1.0, : 0.9, :1.0,

:1.1, : 0.7, : 0.6; :1.1; : 0.6

a b c d e ce bd
L

cd bcd ac bc ab

 
  
 

C. Update WSWFP-Tree by the Use of Update-Window

Procedure

To delete the information from oldfashtion batches on a

tree, the following tasks have to be done as:

- In the list of frequent values of each node on tree,

replace the value at first position by 0, and the

value at position of j (1<j≤N) is replace by the

value of position of j-1.

- Prune any node which has its all frequent values as

0.

After deleting the oldfashion batches, a new batch is

inserted in to the tree as normal (call Procedure

ConstructWSWFP-tree).

For example: Fig. 7 represents a WSWFP-tree at the

point time T1 after deleting the batch W14.

Asume that at the point time T2, the window of data

stream can be seen in Table 3.

After deleting the old fashion batches, the transactions

of new batch are inserted into tree and a new update tree

at the point time T2 can be seen in Fig. 8.

Fig.7. WSWFP-tree after Deleting Batch W14 with Database in Table 1.

Table 3. An Example of Data Stream at Time-Point T2.

 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure 29

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

Fig.8. WSWFP-tree after Updating Batch of W21 at Time-Point T2.

Procedure UpdateWindow().

1. For each (route in WSWFP-tree) do

2. Begin

3. With (current node) then change Its values as:

 1 2, , , NNameNode w w w is replaced by

 1 10, , , ;NNameNode w w 

4. If (for all 0jw ) then delete the nodes in the

route;

5. End;

6. Scan for (all transactions in the new batch (
1iW))

7. Begin

8. Call ConstructWSWFP-tree; // Only perform over

transactions in the newest batch;

9. End;

10. Return WSWFP-tree

D. Mining Frequent Data-Set with Weights over Data

Stream by Using Tree

The algorithm WSWFP-stream is built basing on

mining many time the data stream in WSWFP-tree (delete

the old fashion window and update the new one in the 3rd

step).

Algorithm WSWFP-stream.

Input: , , , , (1,2,...; 1,2,...,),i ij ijT K N W i j N minsupp;  

Output: L;

Method:

1. If (point of
1T) then

2. Begin

3. Call ConstructWSWFP-tree; // Building a tree with

all transactions over data stream

4. Call SWFP-miner; // Mining WSWFP-tree for the

first time

5. End

6. Else

7. Begin
8. cont=”Y”;

9. While (upper(cont)=”Y”) do // Process will be

repeated with variable of cont

10. Begin
11. Call ReleaseWindowOld; //Delete the oldfashion

windows

12. Call UpdateWindow;

13. Call SWFP-miner; // Re-mining WSWFP-tree

(after updating)

14. Accept “Do you want to mine data stream (Y/N)?”

to cont;

15. If (upper(cont)≠”Y”) then exit;

16. End;

17. End;
18. Return L

19. End.

V. EXPERIMENT

In order to evaluate the performance of WSWFP-stream

and compare to the Tsai's two algorithms (WSW and

WSW-Imp), we have run several tests on PC Pentium dual

core 2.13 GHz CPU with 1GB memory of the use

operating system Window 7. The program is coded by

Microsoft Visual C++ version 6.0, and method to generate

transactions has been done the same as one used in

Apriori [2]. The given parameters for the experiment as:

the number of items N = 1000, and the maximum number

of frequent itemsets |L| = 2000.

To simulate a data stream as a weighted sliding window

model, each transaction is processed continuously. We

also assume that the number of transactions in each batch

is the same. In our experiment, the number of transactions

in each batch is 4, and the weights of each batch Wi1, Wi2,

Wi3 and Wi4 are 0.4, 0.3, 0.2 and 0.1, while the weight wi1

is closest window of present time point i.

Fig. 9 shows the processing times of three algorithms

WSWFP-stream, WSW and WSW-Imp with different

minimal supports. In this test, the total number of

transactions is 100K and the number of each batch is 10K.

Because the number of batches in each window is 4 then

the number of time points is 7. The processing time is

summary of times spent for all time points.

In overall, it shows that the WSWFP-stream running

time is better in alternative minimal supports. For example,

WSWFP-stream running time is taken in about 27 seconds

whereas WSW and WSW-Imp running time are over 32

seconds.

The figure shows that as the minimal support reduces

the competitive advantage of WSW-Imp increases.

Fig.9. The Processing Times of Three Algorithms Vs the Minimal
Support.

30 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

Fig. 10 depicts the processing times of three algorithms

WSWFP-stream, WSW and WSW-Imp with different

number of transactions in a sliding window at minimal

support value 0.1. The processing times of three

algorithms are increase as the number of transactions

increase. The WSWFP-stream running time is nearly the

same as two others at the small number of transaction.

However, its running is quite different to the others when

the number of transactions are increased. For example,

with 250K of transaction the WSWFP-stream running

time was taken in 90 seconds whereas the others running

times were more than 100 seconds. In overall, the

performance of WSWFP-stream is out standing from the

two algorithms, WSW and WSW-Imp, in all situations.

Fig.10. The Processing Time Vs the Number of Transactions in a
Sliding Window.

To compare the results of three algorithms, we have

been experimented them to alternative size of batch.

The Fig. 11 shows the effect of size of batch, from 1K

to 20K of transactions, at the minimal support 0.5. We can

see that as the size of a batch increases the different

between the processing times of three algorithms

WSWFP-stream, WSW and WSW-Imp decreases.

For example, for 1K size of batch, the WSWFP-stream

running time is taking in advance but its time is going to

the same as WSW and WSW-Imp running times at the

large size (over 20K).

Fig.11. The Processing Time Vs The Size of Batch.

When the size of batch is small the number of frequent

itemsets is small also that cause the probability of

infrequent itemsets in a batch is higher. In general, the

performance of WSWFP-stream algorithm is better than

the performances of two algorithms WSW and WSW-Imp.

VI. CONCLUSION

The mining frequent itemsets has an important role in

data mining to mine the data n the real world. In this paper,

basing on the weighted sliding window model derived

from Tsai P. S. M. [20], we have proposed a new

algorithm so-called WSWFP-stream for mining weighted

frequent itemsets over a data stream. This algorithm is

based on the FP-growth’s approach [8,9]. It means that the

algorithm's process only needs to access the database one

time, stores all information in a tree, which has an easily

updating structure and does not generate large number of

candidates during the extraction. Therefore, the proposed

algorithm WSWFP-stream is theoretically more efficient

than Tsai's algorithms (WSW and WSW-Imp) in

processing time and memory aspects. The experiment also

proved this point of view.

REFERENCES

[1] Aggarwal C. (Ed.), Data Streams: Models and algorithms.

Springer, (2007).

[2] Agrawal R., Srikant, R., Fast Algorithms for Mining

Association Rules. In: 20th Int. Conf. on Very Large Data

Bases (VLDB), pp. 487–499, (1994).

[3] Aneri P., Chaudhari M. B., Frequent pattern mining of

continuous data over data streams, Int. Jour. for

Technology Research Engineering, Vol. 1, Issue 9, pp.

935-940, (2014).

[4] Chang J.H., Lee W.S.: estWin, Online data stream mining

of recent frequent itemsets by sliding window method.

Journal of Information Sciences, Vol. 3, No. 2, pp. 76-90,

(2005).

[5] Chi Y., Wang H., Yu P. S., Muntz R. R., Catch the

moment: Maintaining closed frequent itemsets over a data

stream sliding window. Knowledge and Information

Systems, Vol. 10, No. 3, pp. 265–294, (2006).

[6] Fan W., Huang Y., Wang H., Yu, P. S. Active mining of

data streams. In: Proceedings of the Fourth SIAM Int.

Conf. on Data Mining, pp. 457-461, (2004).

[7] Giannella C., Han, J., Pei, J., Yan, X., & Yu, P. S., Mining

frequent patterns in data streams at multiple time

granularities. In: H. Kargupta, A. Joshi, K.Sivakumar, &

Y. Yesha (Eds.), Next generation data mining, pp. 191–

210, (2003).

[8] Han J., Kamber M., Data Mining: Concepts and

Techniques, Morgan Kanufmann, (2000).

[9] Han J., Pei J., Yin Y., Mao R., Mining frequent patterns

without candidate generation: a frequent-pattern tree

approach, Data Mining and Knowledge Discovery 8, pp.

53–87, (2004).

[10] Jothimani K., Thanamani A. S., An overview of mining

frequent itemsets over data streams using sliding window

model, Int. Jour. Of Emerging Trend & Technology in

Computer Science (IJETTCS), Vol. 1, Issue 1, pp. 86-89,

(2012).

[11] Keming T., Caiyan D., Ling C., A novel strategy for

mining frequent closed itemsets in data streams, Journal

of Computer, Vol. 7, No. 7, pp. 1564-1573, (2012).

[12] Kuen-Fang J., Chao-Wei L., A sliding-window based

adaptive approximating method to discover recent

 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure 31

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 23-31

frequent itemsets from data streams, Proc. of the Int.

Multiconference of Engineering and Computer Scientists

(IMECS 2010), Vol. I, March 17-19, Hong Kong, (2010).

[13] Li Su, Hong-yan Liu, A new classfication algorithm for

data stream, Int. Jour. Modern Education and Computer

Science, Vol. 3, No. 4, pp, 32-39, (2011).

[14] Lin C.H., Chiu D.Y., Wu Y.H., Chen A.L.P., Mining

frequent itemsets from data stream with a time-sensitive

sliding window. In: 5th SIAM Int. Conf. on Data Mining,

pp. 68-79, (2005).

[15] Mahmood D., Mohammad H. S., An efficient algorithm

for mining frequent itemsets within large windows over

data streams, Int. Jour. of Data Engineering, Vol. 2, Issue

3, pp. 119-125, (2011).

[16] Mahmood D., Mohammad H. S., Mehran T., An efficient

sliding window based algorithm for adaptive frequent

itemset mining over data streams, Journal of Information

Science and Engineering 29, pp. 1001-1020, (2013).

[17] Manku G., Motwani R., Approximate frequency counts

over data streams. In: Proceedings of the VLDB

conference, pp. 346–357, (2002).

[18] Reshma Yusuf B., Chenna Reddy B., Mining data stream

using option trees, Int. Jour. Network and Information

Security, Vol. 4, No. 8, pp. 49-54, (2012)

[19] Shaik H., Murthy J. V. R., Anuradha Y., Chandra M.,

Mining frequent patterns from data streams using dynamic

DP-tree ̧Int. Jour. of Computer Applications, Vol. 52, No.

19, pp. 23-27, (2012).

[20] Tsai P. S. M., Mining frequent itemsets in data Streams

using the weighted sliding window model. Expert Systems

with Applications, pp. 11617-11625, (2009).

[21] Vijayarani S., Sathya P., A survey on frequent pattern

mining over data streams, Int. Jour. of Computer Science

and Information Tech. & Sec. (IJCSITS), Vol. 2., No. 5,

pp. 1046-1050, (2012).

[22] Vikas K., Sangita., A review on algorithm for mining

frequent itemset over data stream, Int. Jour. of Data

Advanced Research in Comp. Sci. and Software

Engineering, Vol 3., Issue 4, pp. 917-919, (2013).

[23] Wang J., Zeng Y., SWFP-Miner: An efficient algorithm

for mining weight frequent pattern over data streams,

High Technology Letters, Vol. 3, No. 3, pp. 289-294,

(2012).

[24] Yong C., Rong F. B., Chuan X., A new approach for

maximal frequent sequential patterns mining over data

streams, Int. Jour. of Digital Content Technology and its

Applications, Vol. 5, No. 6, pp. 104-112, (2011)

[25] Younghee K., Wonyoung K., Ungmo K., Mining frequent

itemsets with normalized weight in continuous data

streams, Journal of Information Processing Systems, Vol.

6, No. 1, pp. 79-90, (2010).

Authors’ Profiles

Long Nguyen Hung is currently a lecturer

at Faculty of Economic Information System,

Vietnam Commercial University (VCU). He

received his B.Sc. degree in Informatics

from Hanoi University of Science in 1991,

and his M.Sc. degree in Information

Technology from Le Quy Don Technical

University in 2002. His research interests

include: Data Mining, Knowledge Discovery in Databases,

Information Systems, and Database.

Thuy T. T. Nguyen was born in 1973 in

Bacgiang, Vietnam. She graduated

university in 1993 in Math. In 1999, she

received MSc degree in Information

Technology in Hanoi National University.

She received PhD in Computer Science at

The University of Hull, UK in 2011

respectively. From 2001 afterward, she

joined to Vietnam University of Commerce, as a lecturer. Her

interested research includes data mining, neural network,

supervised/unsupervised learning techniques, information

systems especially to management information systems. Many

her publications also are concentrated to these areas.

Giap N. Cu was born in 1984 in Phutho

province, Vietnam. He received BSc. degree

of Information Technology at Hanoi

University of Technology in 2007. In 2012,

he received MSc. degree of Computer

Science in Vrije Universiteit Brussels. Now,

He is a lecturer in Faculty of Economic

Information System in Vietnam Commercial

University. His research interests include: Parallel & genetic

Algorithm; Neutral network; Expert & Prediction system.

How to cite this paper: Long Nguyen Hung, Thuy Nguyen Thi

Thu, Giap Cu Nguyen,"An Efficient Algorithm in Mining

Frequent Itemsets with Weights over Data Stream Using Tree

Data Structure", International Journal of Intelligent Systems and

Applications (IJISA), vol.7, no.12, pp.23-31, 2015. DOI:

10.5815/ijisa.2015.12.02

