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Abstract—In recent years, the mining research over data 

stream has been prominent as they can be applied in 

many alternative areas in the real worlds. In [20], a 

framework for mining frequent itemsets over a data 

stream is proposed by the use of weighted slide window 

model. Two algorithms of single pass (WSW) and the 

WSW-Imp (improving one) using weighted sliding model 

were proposed in there to solve the data stream problems. 

The disadvantage of these algorithms is that they have to 

seek all data stream many times and generate a large set 

of candidates. In this paper, we have proposed a process 

of mining frequent itemsets with weights over a data 

stream. Based on the downward closure property and FP-

Growth method [8, 9] an alternative algorithm called 

WSWFP-stream has been proposed. This algorithm is 

proved working more efficiently regarding to computing 

time and memory aspects. 

 
Index Terms—Data mining, frequent itemsets, data 

stream, weighted sliding window, weighted supports, tree 

data structure. 

 

I. INTRODUCTION 

Recent years, the data mining in particular to the 

mining over data stream has been concerned by many 

researchers [1,3-7,10-25], and it has been applied 

successfully in many real areas. As the processing data is 

no longer static, it becomes to dynamic, and sometimes 

has been extended continuously into undefined 

upper/lower boundary [1,3,4,5,6,8]. All these dynamical 

data can be called as a data stream. The examples are very 

popular in the real world such as data in a network traffic 

analysis, in a web click stream, in a network of intrusion 

detection, or in an on-line transaction analysis. The 

continuous data streams mentioned above are main causes 

of challenges in data mining [1] as: Large seeking sphere 

for frequent itemsets (in power function representation); 

explosion of data while the used memory has been limited; 

and the performed time (as fast as possible to extract the 

results). Take all into account, new efficient data mining 

algorithm over data streams is necessary. 

Mining in frequent itemsets is a fundamental data 

mining task over a data stream. Almost traditional 

algorithms were used for the data mining frequent 

itemsets in static database. This allows retrieving each 

item more than one time in a database. However, the 

mining algorithms over data stream cannot access data 

stream more than one time as its continuousness property 

and the limitation of memory. Therefore, a necessary 

algorithm for mining over a data streams should be 

applied. Moreover, the algorithm efficient factors should 

be considered in applying data stream problems in aspect 

of the performed time and the memory. 

In [20], Tsai P. S. M. has proposed a new approach for 

mining frequent itemsets over a data stream based on the 

weighted slide window model via two algorithms WSW 

and WSW-Imp (an improved one). Both of these 

algorithm are based the Apriori algorithm [2]. The 

algorithms based Apriori have the downward closure 

property of frequent itemsets. This means as any subsets 

of a frequent itemset is also a frequent itemset. The 

disadvantage of these kinds of algorithms as the need to 

generate and test too many candidate sub-itemsets and 

scan database many times. Therefore, the mining 

performance is seems to be low. The WSW-Imp 

algorithm (based on WSW) improves its performance by 

applying the following property: if two itemsets Xp and 

Xq are combined to form a new candidate itemset c by 

downward closure property, then the weighted support of 

c is not higher than the weighted supports of Xp and Xq.  

In this paper, we have proposed a new efficient 

algorithm called WSWFP-stream (Window Sliding 

Weights Frequent Pattern over stream) for mining 

frequent itemsets over data streams. This is based on 

Tsai's model [20], but it is applied the FP-growth 

(Frequent Pattern) approach [8, 9]. The theoretical 

analysis and experiment show the better performance of 

WSWFP-stream than the WSW and WSW-Imp 
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algorithms, regarding to saving in computing time and 

memory. 

This paper will focus on the following sections. The 

related works can be seen in section II. In section III, we 

present an overview of the data mining frequent itemsets 

over a data stream using the weighted sliding window 

model. Section IV introduces a new proposed algorithm, 

WSWFP-stream, which is based on the weighted sliding 

window model. Section V shows the experiments and the 

discussion its results. Last section gives the conclusion 

and further works. 

 

II. RELATED WORKS 

There are many researches on frequent itemsets over 

data stream [1]. The popular mining researches can be 

seen as: Landmark model, titled-time window model, and 

sliding window model.  

The landmark model [17] considers all data in one 

window. It involves all transactions from a fixed past time 

point to present, and treats them all similarly. In [17] 

Manku G. et al have proposed a model that counts the 

frequency of elements over the threshold defined by users. 

Their model differs from models based on Apriori by 

removing the candidate in generation phase. The proposal 

model, therefore, requires small main memory footprints. 

Base on Landmark model, Li Su et al in [13] has also 

introduced a model that deal with classification of 

association rules on a data stream by applying Lossy 

Counting algorithm. In [13], data structure was divided 

into three modules of BUFFER, TRIE, and SETGEN. 

Then, subsets of these transactions were enumerated along 

with their frequencies. 

The tilted-time window model [7] is a modification of 

the landmark model. It considers the data at the time point 

of a system started up to present. The processing time is 

divided into alternative time slots, and the data is split into 

different batches by time. A batch, that closer to present, 

has been assigned a higher weight (to be a fine granularity 

[7]).  

Differ from landmark model, the sliding model [5] 

focuses on new data backward to the fixed past time point. 

Moreover, the window size might be taken from given 

number of transactions. By using a compact data structure, 

the closed enumeration tree (CET), which monitors 

closed frequent itemsets as well as itemsets that form the 

boundary between the closed frequent itemsets and the 

rest of the itemsets, will be maintained a dynamically 

selected set of itemsets over a sliding-window. The cost 

of mining closed frequent itemsets over a sliding window 

in [5] was dramatically reduced to that of mining 

transactions, and they can be the possible causes 

boundary movements in the CET.   

The other method of doing on frequent itemsets over 

data stream can be seen in [18]. In there, the authors have 

compared of use of Hoeffding trees and Hoeffding Option 

tree. The Hoeffding Option tree has shown the better 

under various memory limits as it added splitting options 

in the internal nodes to improve accuracy, stability and 

reduce ambiguity. 

The new approach for mining frequent itemsets over a 

data stream based on the weighted slide window can be 

seen in [20]. Tsai P. S. M. has proposed two algorithms 

WSW and WSW-Imp used the downward closure 

property of frequent itemsets of Apriori [2] during the 

process. 

Continue to the weighted sliding window model, in [24], 

Yong C. et al have proposed two algorithms of SWSS and 

SWSS-Imp to mine frequent sequential patterns. By 

building W-Tree to store frequent sequences, each node in 

W-Tree will has a W-List to maintain bitmaps of current 

sequence. As each sequence could be presented in each 

sliding window, the users can define the size of the sliding 

windows. 

To inherit the advance in Tsai' approach [20], in this 

paper, we have proposed an improved algorithm called 

WSWFP-stream for mining frequent itemsets over data 

streams. This is based on Tsai's model [20], but it is 

applied the FP-growth (Frequent Pattern) approach [8, 9]. 

 

III. MINING FREQUENT ITEMSETS IN DATA STREAMS 

USING TREE DATA STRUCTURE 

Given I is a set of items,  1 2, ,..., kI i i i . A subset 

X I including k different items is called k-itemset or an 

itemset has length k. For simplification, an itemset 

{i1,i2,…,iq}would be written as i1i2…iq; for example, the 

itemset {a,b,c,d,e} is replaced by 𝑎𝑏𝑐𝑑𝑒  in short. A 

transaction is a tuple t=(TID,X) where TID is an 

identification index, and X is an itemset.  

A stream of transactions DS is an infinite range of 

transactions, DS={ti1,ti2,…,tim,…} meanwhile tij, i=1,2,…; 

j=1,2,… is a transaction at time i. A window W in a 

transaction stream is a set of transactions between time 

points i and j (j > i).  

In [20], Tsai P. S. M. has proposed a model for mining 

frequent itemsets over a data stream using weighted 

sliding window as follow. 

Assume that at the time point ( 1,2,...),iT i a sliding 

window W is split into N batches Wij and each batch Wij is 

assigned by a different number αij, 0<αij≤1, (i=1,2…; 

j=1,2,…,N). A weight of a data batch is the number 

assigned to all itemsets of any transaction in this batch. 

Definition 1: The support with weight of an itemset X 

is WSWsupp(X), estimated by following equation:  

 

1

( ) ( )


 
N

ij ij

j

WSWsupp X F X                 (1) 

 

Definition 2: The minimal support with weight of a data 

stream DS at time point Ti defined as:  

 

1

   
N

ij ij

j

minsupp W                      (2) 

 

where Wij is the number of transaction in batch j at time 

point Ti and minsupp is the minimal support set by user for 

a data stream DS.  
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Definition 3: Given k-itemset X I and a minimal 

support with weight , X is called a frequent itemset with 

weight over a data stream DS bases on sliding window 

model if: 

 

( )  WSWsupp X                           (3) 

 

If that we can say the itemset X is satisfied by , 

otherwise, we can say the itemset X is not satisfied by . 

For example: Given a data stream depicted in Table 1, 

the sliding window at time point T1 has 13 transactions 

and is split into 4 batches as W11, W12, W13, W14 with 

corresponding weights α11 =0.4, α12 =0.3, α13 =0.2, α14 

=0.1, the minimal support with weights of minsupp is 20%.  

Table 1. An Example of Data Stream At Time-Point T1. 

 
 

We have the weighted support of the itemset “cd” is:  

 

(" ") 0 0.4 2 0.3 1 0.2 3 0.1 1.1WSWsupp cd           

 

The minimal weighted support at the time point T1: 

 

1

20% (3 0.4 2 0.3 3 0.2 5 0.1) 0.58



   

         


N

ij ij

j

minsupp W
 

 

The (" ") 1.1 0.58WSWsupp cd     , means “cd” is a 

weighted frequent itemset over the given data stream. In 

the other words, we say that the itemset “cd” is satisfied 

by . 

Definition 4: Mining weighted frequent itemsets over a 

data stream DS using the sliding window model is finding 

a set WSW including all weighted frequent itemsets: 

 

 , ( )   WSW X X I WSWsupp X  

 

Lemma 1: If X is a weighted frequent itemset then all 

subset of X are weighted frequent itemsets.  

Proof . 

We have 

 

   XDS T DS X T  is a transaction set including X. 

   YDS T DS Y T  is a transaction set including Y. 

 

Assume that X is a weighted frequent itemset. This 

means ( )  WSWsupp X .  

For all subsets , , Y X X  we have   XT DS  

.     YT X Y T DS  

Therefore,  

 

  X Y X YDS DS DS DS  

 

( ) ( )   
Y X

ij ij

DS DS
F Y F X

DS DS
 

 

1

1

( ) ( )

( ) ( )





 

  





N

ij ij

j

N

ij ij

j

WSWsupp Y F Y

WSWsupp X F X

 

 

Therefore, it is proved that all subsets Y is weighted 

frequent itemsets. 

 

IV. PROCESS OF MINING WEIGHTED FREQUENT 

ITEMSETS OVER DATA STREAM USING TREE DATA 

STRUCTURE 

Process is given as follows:  

(i) Building WSWFP-tree (A procedure of building 

data tree structure);  

(ii) Mining WSWFP-tree (A Procedure SWFP-miner);  

(iii) Updating WSWFP-tree by updating window 

procedure (A Procedure Update Window);  

(iv) Re-mining WSWFP-tree (Algorithm of mining 

WSWFP-stream). 

 

A. WSWFP-Tree Construction: 

As a FP-tree [8,9], a WSWFP-tree has a structural tree 

and an item table. However, in order to construct a 

WSWFP-tree, our proposed algorithm has to access entire 

database one time only. The item table stores all items in 

the alphabetical order, their weights, the frequence of 

each item in each batch, and the pointer points to the first 

node on the WSWFP-tree that has the same name as the 

first one . The WSWFP-tree involves a root node called a 

null node (signs as {}) and a set of precedent trees that 

are subtrees of root node. The transactions of each batch 

in database are going to insert into WSWFP-tree by their 

items in alpabetical order. Except root node, each node on 

WSWFP-tree stores the name of item that the node 

represents, the frequence of each node in each batch on 

the branch from root node and pointers point to parents 

node, children nodes and the node with the same name on 

the tree. 
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When a new node is added into a WSWFP-tree by 

inserting a transaction from batch k of current window 

including N batches, a list of N frequent values in N 

batches are filled with the seting of 1 at the position k and 

0 at other positions. For instance, if the current window 

has 4 batches and “b” is a node appeares at the first time 

in the tree by inserting a transaction of batch 2, then the 

structure of node “b” is: 0,1,0,0. 

Here is some symbols definition using in each 

procedure and algorithm. 

Table 2. Symbols Definition. 

 

 

Procedure ConstructWSWFP-tree. 

Input: , , , ( 1,2,...; 1,2,..., ) i ijT K N W i j N   

Output: WSWFP-tree; 

Method 

 

1. If (point of T1) then create a Root, assign a label of 

Null ({}) 

2. Scan for (each transaction in current window)  

3. Begin 

4. With (each transaction   in the jth window) do 

revise the performing transaction to insert a node to 

the tree. The method can be seen as follows: 

 

- The transactions having the same prefix will go in 

the same way in the prefix in the WSWFP-tree 

- Information written in the node will be 

NameNode(w1,w2,..,wN).  

 

If the index in transaction is displayed at the appropriate 

batch, the wj=1 otherwise, wj=0. If the index is appeared 

many times, the appropriate wj will be added with 1. Note 

that, NameNode is a name of tree node, and it also is name 

of the index over stream. 

 

5. Build a index table with information as: TID, index, 

frequent distribution of index in N windows, count 

of index over stream, pointer pointing to the node 

that having the same index name in the WSWFP-

tree. 

6. End; 

7. Return WSWFP-tree 

 

For example, an index table and WSWFP-tree are 

created after inserting the batch W14 (see Fig. 1). 

 

Fig.1. ID Table and WSWFP-tree after Inserting Batch W14. 

After inserting 4 batches with 13 transactions in Table 1, 

the resulted ID table and WSWFP-tree can be seen in Fig. 

2. 

 

 

Fig.2. ID Table and WSWFP-tree for all Transaction in Table 1. 

Obviously, the structure of the nodes in the WSWFP-

tree store all required information for mining frequent 

itemsets in a current window of transaction stream. 

Moreover, a transaction of each batch is traced and 

updated easily by tracing and updating WSWFP-tree 

(delete oldfashion transations, add transactions of a new 

batch) when switching into mining new window. 

B. Mining A WSWFP-Tree 

A WSWFP-tree has important properties, which will 

be used in the proposal algorithm based on FP-growth 

approach [8, 9], as follow: 

 

Property 1: The high of WSWFP-tree equals to the 

length of the longest transaction. 

Property 2: The sum of frequent values in any node on 

tree is greater of equal to sum frequent values of any 

children nodes. 

Property 3: The appeared frequency of an item in each 

batch equals to summary of corresponding frequent values 

in all nodes have the same name. 

Property 4: The distribution of frequency in a batch of 

a branch on the tree is the distribution of frequency of an 

antecedent node 

 

By applying the FP–growth [8,9], the proposed 

algorithm called SWFP-miner for mining frequent 

itemsets with weight over a data stream can be seen as: 

 

Procedure SWFP-miner. 



 An Efficient Algorithm in Mining Frequent Itemsets with Weights over Data Stream Using Tree Data Structure 27 

Copyright © 2015 MECS                                                           I.J. Intelligent Systems and Applications, 2015, 12, 23-31 

Input: , , , , ( 1,2,...; 1,2,..., ),  i ij ijT K N W i j N minsupp  

Output: L. 

Method: 

 

1. Calculate the minimal support follows   by (3); 

2. From table of items, determine the set C1 is set of 

1-itemsets satisfy . 

3. 
1;L C  

4. For each (for each item  in the items‘ table, in 

reverse alphabetical order) do 

5. Begin 

 

5.1. Create the conditional-tree for corresponding item 

; 

5.2. Construct the candidate itemsets; 

5.3. Eiminate the candidate itemsets have the supports 

do not satisfy ; 

5.4. Insert the satisfied itemset  into L; 

5.5. Delete all processed node   on conditional-tree; 

 

6. End; 

7. Return L 

 

For example: Given the data in Table 1, at the point 

time T1 including 13 transactions and 4 batches as W11, 

W12, W13, W14. The appropriate weights are α11 =0.4, α12 

=0.3,  α13 =0.2, α14 =0.1 and the minimal support minsupp 

is 20%.  

Calculate  by (2), there is: 

 

1

0.58
N

ij ij

j

minsupp W


      

 

From the item table, count the supports of 1-itemsets 

are: :1.2, :1.8, : 2.2, :1.4, :1.0 .a b c d e  

The 1-itemsets satisfy =0.58. Therefore L=C1 

={a,b,c,d,e}. 

Construct and extract the condition trees for items in 

reverse alphabetical order from the bottom of the item 

table: 

Construct and extract the condition tree of item “e” 

Database of condition of the item “e” has precedent 

branch  :1,0,0,0; : 0,1,0,1; : 0,0,0,1; : 0,0,0,1ac bcd bd c  

From the conditional database, the sub-WSWFP-tree 

for item “e” can be built (see Fig. 3(a)). 

From the item table, count the appeared frequencies of 

two candidates 2-itemsets in the same batch with “e” are 

 :1,0,0,0; : 0,1,0,2; :1,1,0,2, : 0,1,0,2ae be ce de  and the 

supports with weight of the corresponding itemsets are:

: 0.4, : 0.5; : 0.9, : 0.5 .ae be ce de  There is an itemsets of 

"ce" satisfy . Insert the 2- itemsets of “ce” into the set L, 

we have:  , , , , , .L a b c d e ce  

Continuously extract the 2-itemsets of “ce”. Extract the 

conditional-tree of itemsets “ce”, Fig. 3(b), there are one 

candidate 3-itemsets  :1,0,0,0ace  and their weighted 

supports : 0.4ace do not satisfy . Continue to extract 

the conditional-tree of the itemsets of “ace” we have a 

result of null tree. Therefore,  , , , , , .L a b c d e ce  

 

 

Fig.3. The WSWFP- tree of item “e” and the Conditional-Tree of 
Itemsets “ce”.  

Construct and extract the condition tree of item “d” 

The database of condition of the item “d” has some 

precedent branches as 

 

 : 0,0,1,0; : 0,1,1,2; : 0,0,0,1; : 0,1,0,1ab bc b c   

 

The database of condition construct WSWFP-tree of 

the item “d” depicted in Fig. 4(a). 

 

 

Fig.4. The WSWFP-tree of item “d” and Conditional-Tree of two 
Itemsets "bd" and "cd". 

From the item table with the frequency of item “d”, 

there are candidates 2-itemsets of "bd" and "cd" satisfy , 

according to the windows of 

 : 0,0,1,0; : 0,1,2,3; : 0,2,1,3ad bd cd  and the appropriate 
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support with weights as : 0.2, :1.0; :1.1 .ad bd cd  

Therefore, we have  , , , , , , , .L a b c d e ce bd cd   

Mining conditional-tree of "bd" (Fig. 4(b)) we have a 

candidate 3-itemsets of  : 0,0,1,0 ,abd and the support 

with weight of : 0.2abd  do not satisfy .  

Mining conditional-tree of "cd" (Fig. 4(c)) we have a 

candidate 3-itemsets of  : 0,1,1,2 ?bcd and the support with 

weight of : 0.7bcd  satisfy . Inserting "bcd" into L, we 

have  , , , , , , , , .L a b c d e ce bd cd bcd   

Continue to mine the conditional-tree of "bcd" we have 

a null tree.  

Therefore, 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑐𝑒, 𝑏𝑑, 𝑐𝑑, 𝑏𝑐𝑑}. 

Construct and extract the condition tree of item “c” 

The database of condition of the item “c” has precedent 

branches  :1,0,1,0; :1,1,1, .a b   

The database of condition construct WSWFP-tree of 

the item “c” depicted in Fig. 5. 

 

 

Fig.5. WSWFP-tree Building from Database of "c". 

Do the same method as constructing and extract of 

other items above we have: 

 

 , , , , , , , , , ; .L a b c d e ce bd cd bcd ac bc  

 

Construct and extract the condition tree of item “b” 

The database of condition of the item “b” has one 

precedent branch  :1,0,1,0 .a   

The database of condition construct WSWFP-tree of 

the item “b” depicted in Fig. 6. 

 

 

Fig.6. The WSWFP-tree of item “b”. 

Do the same method as constructing and extract of 

other items above we have: 

 

 , , , , , , , , , ; ; .L a b c d e ce bd cd bcd ac bc ab  

 

Construct and extract the condition tree of item “a” 

The result is a null tree. 

At the time point T1, the set of weighted frequent 

itemsets and their supports are 

 

:1.2, :1.8, : 2.2, :1.4, :1.0, : 0.9, :1.0,

:1.1, : 0.7, : 0.6; :1.1; : 0.6

a b c d e ce bd
L

cd bcd ac bc ab

 
  
 

 

 

C. Update WSWFP-Tree by the Use of Update-Window 

Procedure 

To delete the information from oldfashtion batches on a 

tree, the following tasks have to be done as: 

 

- In the list of frequent values of each node on tree, 

replace the value at first position by 0, and the 

value at position of j (1<j≤N) is replace by the 

value of position of j-1. 

- Prune any node which has its all frequent values as 

0. 

 

After deleting the oldfashion batches, a new batch is 

inserted in to the tree as normal (call Procedure 

ConstructWSWFP-tree). 

For example: Fig. 7 represents a WSWFP-tree at the 

point time T1 after deleting the batch W14. 

Asume that at the point time T2, the window of data 

stream can be seen in Table 3. 

After deleting the old fashion batches, the transactions 

of new batch are inserted into tree and a new update tree 

at the point time T2 can be seen in Fig. 8. 

 

 

Fig.7. WSWFP-tree after Deleting Batch W14 with Database in Table 1. 

Table 3. An Example of Data Stream at Time-Point T2. 
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Fig.8. WSWFP-tree after Updating Batch of W21 at Time-Point T2. 

Procedure UpdateWindow(). 

 

1. For each (route in WSWFP-tree) do 

2.     Begin 

3. With (current node) then change Its values as: 

 1 2, , , NNameNode w w w  is replaced by 

 1 10, , , ;NNameNode w w   

4. If (for all 0jw  ) then delete the nodes in the 

route; 

5.    End; 

6. Scan for (all transactions in the new batch (
1iW )) 

7. Begin 

8. Call ConstructWSWFP-tree; // Only perform over 

transactions in the newest batch; 

9. End; 

10. Return WSWFP-tree 

 

D. Mining Frequent Data-Set with Weights over Data 

Stream by Using Tree 

The algorithm WSWFP-stream is built basing on 

mining many time the data stream in WSWFP-tree (delete 

the old fashion window and update the new one in the 3rd 

step). 

 

Algorithm WSWFP-stream. 

Input: , , , , ( 1,2,...; 1,2,..., ),i ij ijT K N W i j N minsupp;     

Output: L; 

Method: 

 

1. If (point of 
1T ) then  

2. Begin 

3. Call ConstructWSWFP-tree;   // Building a tree with 

all transactions over data stream  

4. Call SWFP-miner; // Mining WSWFP-tree for the 

first time  

5. End 

6. Else 

7. Begin 
8.     cont=”Y”; 

9. While (upper(cont)=”Y”) do   // Process will be 

repeated with variable of cont 

10. Begin 
11. Call ReleaseWindowOld; //Delete the oldfashion 

windows 

12. Call UpdateWindow; 

13. Call SWFP-miner;    // Re-mining WSWFP-tree 

(after updating) 

14. Accept “Do you want to mine data stream (Y/N)?” 

to cont; 

15. If (upper(cont)≠”Y”) then exit; 

16. End; 

17. End; 
18. Return L 

19. End.  

 

V. EXPERIMENT 

In order to evaluate the performance of WSWFP-stream 

and compare to the Tsai's two algorithms (WSW and 

WSW-Imp), we have run several tests on PC Pentium dual 

core 2.13 GHz CPU with 1GB memory of the use 

operating system Window 7. The program is coded by 

Microsoft Visual C++ version 6.0, and method to generate 

transactions has been done the same as one used in 

Apriori [2]. The given parameters for the experiment as: 

the number of items N = 1000, and the maximum number 

of frequent itemsets |L| = 2000. 

To simulate a data stream as a weighted sliding window 

model, each transaction is processed continuously. We 

also assume that the number of transactions in each batch 

is the same. In our experiment, the number of transactions 

in each batch is 4, and the weights of each batch Wi1, Wi2, 

Wi3 and Wi4 are 0.4, 0.3, 0.2 and 0.1, while the weight wi1 

is closest window of present time point i. 

Fig. 9 shows the processing times of three algorithms 

WSWFP-stream, WSW and WSW-Imp with different 

minimal supports. In this test, the total number of 

transactions is 100K and the number of each batch is 10K. 

Because the number of batches in each window is 4 then 

the number of time points is 7. The processing time is 

summary of times spent for all time points.  

In overall, it shows that the WSWFP-stream running 

time is better in alternative minimal supports. For example, 

WSWFP-stream running time is taken in about 27 seconds 

whereas WSW and WSW-Imp running time are over 32 

seconds. 

The figure shows that as the minimal support reduces 

the competitive advantage of WSW-Imp increases. 

 

 

Fig.9. The Processing Times of Three Algorithms Vs the Minimal 
Support.
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Fig. 10 depicts the processing times of three algorithms 

WSWFP-stream, WSW and WSW-Imp with different 

number of transactions in a sliding window at minimal 

support value 0.1. The processing times of three 

algorithms are increase as the number of transactions 

increase. The WSWFP-stream running time is nearly the 

same as two others at the small number of transaction. 

However, its running is quite different to the others when 

the number of transactions are increased. For example, 

with 250K of transaction the WSWFP-stream running 

time was taken in 90 seconds whereas the others running 

times were more than 100 seconds. In overall, the 

performance of WSWFP-stream is out standing from the 

two algorithms, WSW and WSW-Imp, in all situations. 

 

 

Fig.10. The Processing Time Vs the Number of Transactions in a 
Sliding Window. 

To compare the results of three algorithms, we have 

been experimented them to alternative size of batch. 

The Fig. 11 shows the effect of size of batch, from 1K 

to 20K of transactions, at the minimal support 0.5. We can 

see that as the size of a batch increases the different 

between the processing times of three algorithms 

WSWFP-stream, WSW and WSW-Imp decreases.  

For example, for 1K size of batch, the WSWFP-stream 

running time is taking in advance but its time is going to 

the same as WSW and WSW-Imp running times at the 

large size (over 20K). 

 

 

Fig.11. The Processing Time Vs The Size of Batch. 

When the size of batch is small the number of frequent 

itemsets is small also that cause the probability of 

infrequent itemsets in a batch is higher. In general, the 

performance of WSWFP-stream algorithm is better than 

the performances of two algorithms WSW and WSW-Imp. 

 

VI. CONCLUSION 

The mining frequent itemsets has an important role in 

data mining to mine the data n the real world. In this paper, 

basing on the weighted sliding window model derived 

from Tsai P. S. M. [20], we have proposed a new 

algorithm so-called WSWFP-stream for mining weighted 

frequent itemsets over a data stream. This algorithm is 

based on the FP-growth’s approach [8,9]. It means that the 

algorithm's process only needs to access the database one 

time, stores all information in a tree, which has an easily 

updating structure and does not generate large number of 

candidates during the extraction. Therefore, the proposed 

algorithm WSWFP-stream is theoretically more efficient 

than Tsai's algorithms (WSW and WSW-Imp) in 

processing time and memory aspects. The experiment also 

proved this point of view.  
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