
An Efficient Algorithm to Locate
All Locally Optimal Alignments

Between Two Sequences
Allowing for Gaps

Geoffrey J. Barton

Laboratory of Molecular Biophysics
University of Oxford

Rex Richards Building
South Parks Road
Oxford OX1 3QU

U.K.

Tel: 0865-275368
Fax: 0865-510454

e-mail: gjb@bioch.ox.ac.uk

Keywords: Smith-Waterman / Dynamic programming / locally optimal
alignment / protein sequence

Running Head: Finding All Locally Optimal Alignments
This paper appeared in Computer Applications in the Biosciences, (1993), 9,

729-734

1 Abstract

An efficient algorithm is described to locate locally optimal alignments between
two sequences allowing for insertions and deletions. The algorithm is based on
that of Smith and Waterman (J. Mol. Biol., 147, 195–197, 1981) which returns
the single best local alignment. However, the algorithm described here permits
all non-intersecting locally optimal alignments to be determined in a single pass
through the comparison matrix. The algorithm simplifies the location of repeats,
multiple domains and shuffled motifs and is fast enough to be used on a
conventional workstation to scan large sequence databanks.

1

2 Introduction

Dynamic programming algorithms that locate optimal alignments of two
sequences are central techniques for the comparison of biological sequences
[Needleman & Wunsch, 1970, Sellers, 1974, Smith & Waterman, 1981] or
three-dimensional structures [Barton & Sternberg, 1988, Taylor & Orengo, 1989,
Sali & Blundell, 1990, Russell & Barton, 1992]. The algorithms can be divided
broadly into those that seek to find a global alignment between the sequences
(e.g. [Needleman & Wunsch, 1970] and those that find local alignments (e.g
[Erickson & Sellers, 1983, Smith & Waterman, 1981]). Global alignment
methods optimize the score for alignment over the full length of both sequences,
and are most appropriate when the sequences are known to be similar over their
entire length. Local alignment methods allow the common sub-regions of the two
sequences to be identified and are appropriate when it is not known in advance if
the sequences being compared are similar. Local alignment methods are effective
in locating common sub-domains between long sequences that otherwise share
little similarity. This feature makes such algorithms suitable for scanning large
sequence databanks for similarities to a newly determined sequence.

The Smith and Waterman [Smith & Waterman, 1981] algorithm is perhaps
the most widely used local similarity algorithm for biological sequence
comparison. The algorithm identifies the single highest scoring sub-sequence
alignment and allows for gaps (insertions/deletions). However, it is often true
that there may be more than one biologically important alignment between two
sequences. For example, a protein domain may be repeated, or domains may be
shuffled within multi-domain proteins. Waterman and Eggert
[Waterman & Eggert, 1987] have shown how the Smith-Waterman algorithm
may be extended to locate the second-best and subsequent local alignments with
minimal recalculation, subject to the primary restriction that the different
alignments should not intersect. Here, I describe an algorithm that allows all such
locally optimal alignments to be determined without the need for re-calculation.
The algorithm is similar in principle to that developed by Coulson et al. for the
parallel processing Distributed Array Processor (DAP) [Coulson et al., 1987].
However, the algorithm described here is general and has been implemented in C
for widely available computers. The algorithm may be applied to any problem
that is amenable to the Smith-Waterman dynamic programming algorithm.

2

3 Efficient Determination of Best Score

In order to simplify the explanation of the “all local alignment” algorithm I shall
first recapitulate a well known method for efficient computer implementation of
the Smith-Waterman [Smith & Waterman, 1981] algorithm. For a full
introduction to dynamic programming algorithms in sequence comparison see
[Kruskal, 1983].

The best score for a local alignment between two sequences
�

and � of
length � and � is determined by calculating the comparison matrix ����� 	 starting
with ��
��
 and working forwards through the matrix column by column. The
value of each cell ���� � is given by the equation:

���� ���������
����� ����
� ���
�� ���
�!#"%$'&�� (*)���� �+��
 !," $-&�� .��/��
�� � !#" .0� (*)1

2 ���3
���4

where " $-&�� (*) is the score for equivalencing
� and �5� , and " $-&�� .76 " .8� (*) are

the scores for aligning with a gap in � or
�

respectively. To calculate the value
of � �� � , it is only necessary to know the contents of the three predecessor cells
(� ���
�� ���
 69� �� �+��
 6:� ���
�� �). If just the best score is required, and no alignment,
then only the previous column, ; of the matrix, need be stored together with the
score for the current cell, < and previous cell, = in the column. This is illustrated
in Figure 1
 for the comparison of

�
=

C-C-A-A-T-C-T-A-C-T-A-C-T-G-C-T-T-G-C-A- G-T-A-C and � =
A-G-T-C-C-G-A-G-G-G-C-T-A-C-T-C-T-A-C-T-G-A- A-C with ">$'&?� (�) �A@ 1 if� �B� � , "%$'&C� (*) �EDGF if

� 7H�B� � , and "%$'&?� . � "I.8� (*) �JDGK 1 . This example is
used here to allow a direct comparison of the “all local alignment” algorithm
with the work of Waterman and Eggert [Waterman & Eggert, 1987].

Figure 1 L illustrates the processing of �NM � O and ��P � O . The cells of � that are
stored are shown in large numerals. The cells shown in small numerals are
discarded. The best overall score is updated if the value of the current cell is
greater than the maximum so far. This is the simplest efficient implementation of
the “best score only” local similarity algorithm, and may be coded to run very
fast. It is also straightforward, by the addition of a further 1-dimensional array toQ

Figure1.psR
Figure1.ps

3

adapt the algorithm to cope with a gap-penalty function having the form"IS �UT S7!#V where W is the gap-length [Gotoh, 1982].

4 All local alignment algorithm

Smith and Waterman [Smith & Waterman, 1981] identified the best local
alignment by storing the entire � matrix, finding the maximum element, then
tracing back through the matrix. Waterman and Eggert
[Waterman & Eggert, 1987] described an algorithm to identify alternative locally
optimal alignments by partial re-calculation of the � matrix subject to the
condition that the alignment paths do not intersect, and that the first and last
equivalenced pairs have a positive score. Here, I show that for a
length-dependent gap-penalty the scores for all such locally optimal alignments
can be obtained on a single pass through � . The essential observation is that
since alignment paths are not allowed to intersect, it is only possible to have one
path passing through each cell �X�� � . Therefore, when processing � it is simply
necessary to maintain a record of the starting residues and best score for the
alignment that passes throught the current cell �N�� � . The algorithm requires
storage for the column scores ; as for the single best score algorithm. In
addition, the current maximum path scores Y , and the start and end of the local
alignment, Z , [, where Z and [hold the co-ordinates of the cells in � where the
alignment starts and ends must also be stored.

Figure 2(a-i) \ illustrates the processing of � to find the first, but not the
highest scoring, locally optimal alignment between the sequences. For the sake
of clarity, only the elements of ; , Y , Z and [that are relevant to this alignment
are illustrated in each figure. Figure 2a] shows the first cell in the alignment� \ �
 �A@ 1 , this is also the maximum score for the alignment so far, and the
alignment starts and ends with the same pair of residues Z \ �^[\ �A_a`*6b@dc . In
Figure 2b O , the alignment is continued, but since the current cell,�] � L �A@e_�fAghY] �E@ 1di c , Z] , [] and Y] are left unchanged. In Figure 2c j ,� O�� \ �A@e@ , so [O and Y O are updated to 11 and (5,3) respectively. Similark

Figure2.psl
Figure2.psm
Figure2.psn
Figure2.ps

4

processing is shown in Figure 2(d-e) M where ; , Y , Z and [are updated to the
values 12, 21, (3,1), (6,4), while Figure 2f P illustrates termination of the path
when ��P � O � 1

. Now that this local alignment path has decayed to zero, the
starting and ending coordinates are saved together with the alignment score.
However, since we have not completed the processing of � , we do not yet know
if this is the best possible score for an alignment starting in � \ �
 . Figures 2f-i o ,
show that the alignment cannot be extended further, so the maximum score of 21
for an alignment starting in � \ �
 stands. Had it been possible for the alignment to
be extended, then the new best-score and end-point (Y and [) would have
replaced the 21, (6,4) currently saved on the results list. Once the entire matrix
has been calculated (but not stored), the results list contains the score, start and
end co-ordinates for all local alignments between the two sequences. Although
not essential for the functioning of the algorithm, it is often desirable to set a
minimum score threshold prq such that only those local alignments whereY stpuq will be saved on the results list.

If it is necessary to generate the alignments rather than just report the best
scores and end-points, then a direction matrix vw��� 	
[Smith et al., 1981, Gotoh, 1982] is saved during the calculation of � such that
each element vx�� � indicates which of �����
�� ���
b69���� �+��
 or �����
�� � contributed to the
value of ���� � . Accordingly, vx��� 	 may be a compact data type of as few as 3-bits
per element, so the memory overhead for finding all locally optimal alignments
between long sequences is modest compared to algorithms that require storage of� . Extension of the algorithm to allow gap-penalties of the form T S�!#V is
straightforward if only best scores and end-points are required, but generation of
the corresponding alignments will require two passes through � [Gotoh, 1982].

Figure 3
zy shows the 28 locally optimal alignments that are found between
the sequences

�
and � . Alignments of length 1 are normally uninteresting and

so are excluded. The two alignments illustrated by Waterman and Eggert
[Waterman & Eggert, 1987] are ranked 1 and 2, with a further six alignments
scoring {^` 1 . A total of 15 alignments score {BK 1 with the remaining 13 optimal
alignments scoring |A@bK . Figure 4
}
 illustrates the full � matrix with the paths
highlighted that correspond to the 15 alignments scoring {~K 1 .�

Figure2.ps�
Figure2.ps�
Figure2.psQC�
Figure3.psQaQ
Figure4.ps

5

5 Implementation and Efficiency

The “All local alignment” algorithm has been implemented in C. This language
allows the ; , Y , Z and [arrays to be grouped into a single data structure array
of length � . The resulting code is faster than when ; , Y , Z and [are coded
separately, since sequentially accessed values are adjacent in memory. The
results list is also of length � where each element points to a dynamically
allocated “ragged” list of structures containing values for Y , Z and [.

As a check of the relative efficiency of the “all local alignment” algorithm,
the protein sequence of human � – haemoglobin (141-residues, PIR code HAHU)
was compared to a small sequence databank (PIR 14.0: 6,858 sequences,
2,080,148 amino acids) using the Dayhoff MDM250 matrix
[Dayhoff et al., 1978] and gap-penalty of 8 ("�$'&�� . � "I.0� (*) �AD��). When run on
a Sun SPARCstation 2, the efficient “best score only” algorithm determined one
optimal local alignment for each databank sequence, and required 270 seconds to
complete the scan. Another implementation of the Smith-Waterman algorithm
SSEARCH [?] which also only returns the top scoring alignment for each
sequence pair, required 1,100 seconds for the same scan. In contrast, the “all
local alignment” algorithm described here with p�q��^`�� examined 30,690 local
alignments in only 1,000 seconds.

The value of prq has little effect on the execution time, except when set very
small such that large numbers of local alignments must be stored and sorted for
each sequence comparison. For example, comparison of HAHU (141 residues)
to one of the longest protein sequences known, Twitchin from Caenorhabditis
elegans (PIR code S07571 - 6048 residues), finds 32,299 alternative local
alignments when prq7� 1

and requires 16 sec CPU time. Setting p0q��B`�� reduces
the number of alignments to 58 and takes only 2 sec. The algorithms described
here have also been implemented to work with pscan [Barton, 1991] to allow
distributed processing on a network of workstations. pscan permits an
approximately linear decrease in elapsed scan time with increasing numbers of
processors.

6 Availability

An ANSI-C subroutine library that includes the “all local alignment” code and
utility routines is available from the author. The files are quite small and can be

6

e-mailed. Send requests to gjb@bioch.ox.ac.uk. Alternatively, please send a
DOS formatted 3.5 inch disk with suitable packaging and a return address label.

7 Acknowledgements

I thank the Royal Society and Prof. L. N. Johnson for support, and a referee for
pointing out the similarities between this work and that of Coulson et al. ,
[Coulson et al., 1987].

References

[Barton, 1991] Barton, G. J. (1991). Scanning the protein sequence databank
using a distributed processing workstation network. Comput. Appl. Biosci. 7,
85–88.

[Barton & Sternberg, 1988] Barton, G. J. & Sternberg, M. J. E. (1988). Lopal
and scamp: techniques for the comparison and display of protein structures. J.
Mol. Graph. 6, 190–196.

[Coulson et al., 1987] Coulson, A. F. W., Collins, J. F. & Lyall, A. (1987).
Protein and nucleic acid sequence database searching: a suitable case for
parallel processing. The Computer Journal, 30, 420–424.

[Dayhoff et al., 1978] Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978).
A model of evolutionary change in proteins. matrices for detecting distant
relationships. In Atlas of protein sequence and structure, (Dayhoff, M. O.,
ed.), vol. 5, pp. 345–358. National biomedical research foundation
Washington DC.

[Erickson & Sellers, 1983] Erickson, B. W. & Sellers, P. H. (1983). Recognition
of patterns in genetic sequences. In Time warps, string edits and
macromolecules: the theory and practice of sequence comparison, (Sankoff,
D. & Kruskal, J. B., eds), pp. 55–91. Addison Wesley.

[Gotoh, 1982] Gotoh, O. (1982). An improved algorithm for matching
biological sequences. J. Mol. Biol. 162, 705–708.

7

[Kruskal, 1983] Kruskal, J. B. (1983). An overview of squence comparison. In
Time warps, string edits and macromolecules: the theory and practice of
sequence comparison, (Sankoff, D. & Kruskal, J. B., eds), pp. 1–44. Addison
Wesley.

[Needleman & Wunsch, 1970] Needleman, S. B. & Wunsch, C. D. (1970). A
general method applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol. 48, 443–453.

[Russell & Barton, 1992] Russell, R. B. & Barton, G. J. (1992). Multiple protein
sequence alignment from tertiary structure comparison: assignment of global
and residue confidence levels. Proteins: Struct., Funct., Genet. 14, 309–323.

[Sali & Blundell, 1990] Sali, A. & Blundell, T. L. (1990). Definition of general
topological equivalence in protein structures a procedure involving
comparison of properties and relationships through simulated annealing and
dynamic programming. J. Mol. Biol. 212, 403–428.

[Sellers, 1974] Sellers, P. H. (1974). On the theory and computation of
evolutionary distances. SIAM J. Appl. Math. 26, 787–793.

[Smith & Waterman, 1981] Smith, T. F. & Waterman, M. S. (1981).
Identification of common molecular subsequences. J. Mol. Biol. 147,
195–197.

[Smith et al., 1981] Smith, T. F., Waterman, M. S. & Fitch, W. M. (1981).
Comparative biosequence metrics. J. Mol. Evol. 18, 38–46.

[Taylor & Orengo, 1989] Taylor, W. & Orengo, C. (1989). Protein structure
alignment. J. Mol. Biol. 208, 1–21.

[Waterman & Eggert, 1987] Waterman, M. S. & Eggert, M. (1987). A new
algorithm for best subsequence alignments with application to trna-rrna
comparisons. J. Mol. Biol. 197, 723–728.

8

8 Figure legends

8.1 Figure 1 - Efficient Determination of Best Score

Figure 1
 L
Two steps in the processing of the � matrix for the comparison of

sequences
�

and � (see text). Only the values shown in large numerals are
stored using a single vector ; and two scalar values = and < .
8.2 Figure 2a-i - Finding the first locally optimal alignment

without recalculation of �
Figure 2a-i
 \

Calculation of the � matrix. The vector ; shown in Figure 1 is joined by a
further five vectors to store the maximum score Y on the current path, and the
start Z and current end-point [for the optimal alignment. To simplify the figure,
only one element of each vector is illustrated. The sub-figures show the building
up of the score, start and end point for the first locally optimal alignment to be
found when processing the � matrix. In each sub-figure, the heavy-boxed cells
of � have been assigned to the optimal alignment. The lightly boxed cells lie on
the alignment path, but may follow the current maximum cell Y . In Figure 2f,
the score, start and end points of the locally optimal alignment has been stored in
the results list, indexed by the row in which the alignment starts (3).

8.3 Figure 3

Figure 3
]
The 28 locally optimal alignments found between

�
and � . The boxed

alignments all score {tK 1 and their paths are shown in Figure 4.

8.4 Figure 4

Figure 4
}OQCR
Figure1.psQ?k
Figure2.psQ?l
Figure3.psQCm
Figure4.ps

9

The completed � matrix with the paths for the top 15 alignments
highlighted.

10

