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SUMMARY

This paper presents a new computer algorithm for generating spatially-correlated random �elds. Such
�elds are often encountered in hydrology and hydrogeology and in the earth sciences and used as inputs
for Monte Carlo simulations. The algorithm is designed by using a multilevel grid strategy and combin-
ing the matrix decomposition (MD) method and the screening sequential simulation (SSS) method. The
idea originates from the facts: (i) the MD method accounts for all possible nodal correlation values and
hence the accuracy of the method is high, but it can be extremely computationally intensive for �ne
meshes with large number of nodes, and (ii) the SSS method is more e�cient because a small search
neighbourhood for conditioning can be used due to the screening e�ect of measurements, however, for
large separation distances, correlation values from the SSS method is signi�cantly inferior to the values
obtained by the MD method. Numerical examples are presented to demonstrate the new method. It
is shown that the presented method is much more e�cient than the MD method and more accurate
than the SSS method. The new algorithm is also versatile: it can directly simulate �elds of irregular
geometry without additional e�orts. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation techniques for generating random �elds have many important applications in hy-
drology and hydrogeology, as well as in the earth sciences [1]. For example, they are often
used to generate input parameter �elds for the Monte Carlo simulation (MCS) of some phys-
ical process. MCS is a versatile mathematical tool capable of handling stochastic problems
where all other methods such as perturbation methods fail. The implementation of the method
consists of numerically generating a population of the random parameters by a generation
method (generator), solving the deterministic problem associated with each member of that
population, and obtaining a population of the random response quantities. This population
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can then be used to obtain statistics of the prediction by ensemble averaging. As a general
requirement, the generated realizations of the random parameters should honor the prescribed
(measured or inferred) statistics and the generator should be computationally e�cient.
A variety of di�erent methods of generating realizations of random �eld exists, princi-

pally the spectral method [2], the matrix decomposition method [3–5], the turning bands
method [6–9], and the screening sequential simulation method [10–12]. Among them, the
matrix decomposition (MD) method and the screening sequential simulation (SSS) method
are simple to implement in practice and suitable for conditional simulation. Furthermore the
two methods have the advantage of allowing �elds of irregular geometry without additional
computational e�ort. The MD method essentially involves the construction of the covariance
matrix of the random �eld and its subsequent Cholesky decomposition into an upper and
lower triangular matrix. The lower triangular matrix is then multiplied by a vector of un-
correlated standard Gaussian variables, producing a stochastic �eld possessing the prescribed
covariance function. It is recognized that the covariance function serves as an input quantity
in the model. The accuracy of the method is supposed to be high due to the fact that the
generation accounts for all possible nodal correlation values. However, a practical limit on
the number of nodes emerges because of the Cholesky decomposition and the storage of the
matrix. An advantage of the method is that the matrix decomposition step needs only to be
performed once for Monte Carlo simulations because only backward substitution is required
to generate each additional realization. The SSS method is based upon the fact that a one-
dimensional Gaussian random �eld with exponential correlation function is a Markov process,
which means that the value at one point only has to be conditioned on values at neighbour
points. Omre et al. [11] have shown that such a process may be simulated very e�ciently in
O(n) elementary operations. Correspondingly, the Cholesky decomposition and product in the
MD method require O(n3) and O(n2) operations, respectively. ln two- and three-dimensional
problems the Markov property is not uniquely de�ned due to lack of ordering in the domain.
However, a natural way of generalizing the one-dimensional method is to let the value at
one point be conditioned on points within a small search neighbourhood. The conditioning is
based upon the prescribed correlation function. The screening e�ect of measurements assures
high accuracy of the SSS method for the predictions of the variance and correlation functions
of generated �elds. However, for large separation distances, correlation values from the SSS
method is signi�cantly inferior to the values obtained by the MD method.
Our goal here is to develop a generator for spatially-correlated random functions which will

be fast and e�ective and reproduce accurately the prescribed spatial statistics without introduc-
ing any arti�cial e�ects. This paper presents the method and shows that the above goals have
been obtained through the adoption of a multilevel grid strategy and a proper combination
of the two methods brie�y described above. In Section 2, the theoretical background and the
implementation of the new algorithm are presented. Section 3 gives numerical examples to
demonstrate the method and discusses some computational issues. Finally, a summary of the
results is given in Section 4.

2. THEORY AND IMPLEMENTATION

The purpose of the new algorithm is to generate a stationary, real-valued �eld y(x) where
x denotes the spatial co-ordinate. The spatial variability of y(x) is modelled as a space
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Figure 1. Example of domain discretization by a multilevel grid.

random function (SRF) Y (x). Here and subsequently boldface letters denote vectors, capital
letters denote SRFs and lower case letters denote realizations of Y (x). Y (x) is characterized
statistically by its moments, namely, its expected value:

〈Y (x)〉=mY (x) (1)

where 〈•〉 denotes the expectation operator, and its covariance function:
CY (x;x′)= 〈[Y (x)−mY (x)][Y (x′)−mY (x′)]〉=CY (r=x − x′) (2)

In this study we assume the random �eld Y follows a multivariate Gaussian distribution, for
which the entire distribution is then speci�ed by (1) and (2). While Y is generally a continuous
function, the proposed algorithm consists in generating the Y �eld discretely over a pre-
generated arbitrary multilevel grid. An example of such a grid is given in Figure 1. The grid
and the associated information, i.e. co-ordinates and indices of nodes, can be supplied either
by modern mesh generation softwares [13] or by user-de�ned programs.
At the �rst step, a realization y(x) on the nodes of the coarse grid is generated using the MD

method. Let R= {Rij} be the covarince matrix for the random �eld; that is, Rij=CY (xi ;xj),
where xi and xj are the co-ordinates of node i and j in the coarse grid. It is obvious that
R is a symmetric, positive-de�nite, square N×N matrix (N is the total number of nodes
in the coarse grid). Therefore the matrix can be factorized as R=LLT by the Cholesky
decomposition method, where L is the lower triangular decomposition of R. The matrix L is
then multiplied by a vector z of N uncorrelated, standard Gaussian variables, producing the
vector y=Lz, which, after adding the mean values, represent values of the random �eld on
the nodes of the coarse grid. It can be readily shown that the nodal values exactly recover
the prescribed covariance structure. Once y(x) on the nodes of the coarse grid is generated,
it is considered as a datum and it will be used to condition the y values on the nodes of the
�ne grids. It is important to point out that the number of nodes in the coarse grid N must be
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chosen in such a way that the performance of the Cholesky decomposition is computationally
a�ordable at this stage.
At the next step, generation of a realization on the nodes in the �ne grid of level 1

is performed by using the SSS method. Choosing a starting point, say xN+1, Y (xN+1) is
conditioned on the neighbouring N nodal values from the coarse grid generated in the previous
step, using the Gaussian conditioning procedure. The conditional expected value of Y (xN+1)
is given by

〈Y c(xN+1)〉=mY (xN+1) +
N∑

j=1
�j(xN+1)[y(xj)−mY (xj)] (3)

while the conditional variance is given by

�2cY (xN+1)=�
2
Y −

N∑

j=1
�j(xN+1)CY (xN+1;xj) (4)

Once these last two statistics are computed, a realization y(xN+1) is generated from any stan-
dard Gaussian random number generator which uses these two statistics as target statistics. The
generated value is added to the data base for conditioning at later steps. The only di�erence
between consecutive steps is in the number of data used for conditioning. The interpolation
coe�cients �j are the solution of the following linear system [14]:

N∑

j=1
�j(xN+1)CY (xj;xi)=CY (xN+1;xi); i=1; : : : ; N (5)

The repetitive solution of (5) for each new node is computationally the most demanding
step in the algorithm. The computational e�ort in this step can be alleviated signi�cantly when
considering the following points: (i) The decay of the covariance function is rapid due to the
fact that the integral scale of Y is �nite; (ii) the interpolation coe�cients �j associated with
any node xi do not depend on the actual values of y(xi) and y(xj) but rather on the distances
xi−xj; j=1; : : : ; N ; (iii) The large-scale spatial correlation is already adequately respected at
an early stage by the MD method, the Y values for the �ne grids can be conditioned only on
the points nearby by utilizing the screening e�ect often employed in geostatistical applications.
As a result, Y (xN+1) needs to be conditioned only to a limited search neighbourhood, and
furthermore, if a �xed searching radius with a �xed generation path is used, the spatial
con�guration of conditioning data for each node in the �ne grids is then also �xed, which
leads to the fact that the set of coe�cients needs to be computed once and only once and
can then be used repeatedly for di�erent realizations. A salient question is the size of the
searching radius. This was resolved in our study through numerical experiments.
As a summary, the simulation procedure of the new algorithm consists of the following

steps:

(i) Compute the covariance matrix R, factorize it as R=LLT, and store the lower trian-
gular matrix L.

(ii) De�ne a �xed path through all nodes in the �ne grids to be simulated (normally
just follow the node numbering). Search sequently the available conditioning data for
each node inside the search neighbourhood. Then compute and store the interpolation
coe�cients for each node by solving the linear system (5).
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(iii) Generate a realization y(x) on the nodes in the coarse grid by �rst generating a vector
z of N uncorrelated, standard Gaussian variables and then performing the multiplication
Lz and adding the mean values.

(iv) Compute 〈Y c(xN+1)〉 and �2cY (xN+1) by using Equations (3) and (4) with the inter-
polation coe�cients computed at step (ii). Generate a realization y(xN+1) using the
conditional mean and variance just calculated as target statistics.

(v) Add y(xN+1) to the data base for conditioning of y(x) on the next node.
(vi) Move to next node according to the path de�ned in step (ii) and go to step (iv).
(vii) Repeat the steps (iv)–(vi) till all nodal values are created. Go back to step (iii) for

another realization.

The algorithm presented above is suitable for irregular grids such as those encountered
often in the �nite element discretization of irregular domains. It can also be used to the case
of conditional simulation which accounts for the actual measured values of Y at a �nite set
of locations. The purpose can be realized in the stage of generation in the coarse grid, where
the conditional statistical properties of Y conditioned on the measured data are used in the
MD method instead of the unconditional ones and additional nodes corresponding to measured
locations are created.

3. NUMERICAL EXAMPLES

To demonstrate and evaluate the new algorithm, random �elds over a square domain are
presented and discussed. Without loss of generality, the problems will be non-dimensionalized
by the half of the side length of the square, and it will be assumed that, in unconditional
simulation, Y has a constant mean over the domain, mY =0, and the standard deviations of Y
is �Y =1. An exponential isotropic covariance function is used; CY (r)=�2Y exp(−|r|=I), where
I is the correlation scale. The domain is uniformly divided into a two-level grid, a coarse and
�ne grid consisting of 21× 21 and 81×81− 21×21 nodes, respectively. Hence the spacing of
the coarse grid is b=0:1.
In order to address model accuracy, the covariance CY (x1;x) along the diagonal from the

left-low corner x1 to the right-up corner is calculated by the new algorithm for di�erent values
of I ranging from b=2 to 5b. In all cases, the results with the searching radius rs not smaller
than 2b show excellent reproduction of the prescribed covariance model for all separation
distances. As a demonstration, the results for the case of I = b is shown in Figure 2.
The computational cost of the SSS method and the presented method for generating 10 000

realizations is compared in Figure 3. The computational cost of the MD method, especially
resulting from matrix decomposition operation, is very expensive for the �ne mesh used
here, and hence the associated CPU time is not shown in Figure 3. It is found from the
�gure that the SSS method and the new method with the same searching radius are compa-
rable in the computational cost. The accuracy of the three methods is compared in Figure 4,
where the two lines are superposed. Obviously, the covariance values predicted by the MD
method coincide with the theoretical results. Hence the MD method has the highest accu-
racy. Covariance values from the new method at large separation distances is signi�cantly
superior to the values from the SSS method and comparable to the values from the MD
method.
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Figure 2. Covariance CY (x1;x) for the case of I = b.
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Figure 3. Computational costs for generating 10 000 realizations.

Some other correlation functions have also been tested. It is found that, for the Gaus-
sian correlation function exp(−r2=I 2), the predictions by both the SSS method and the new
method have large oscillations (negative values) at long separation distances, which cannot be
removed completely by re�ning the mesh and/or increasing the searching radius, while for the
exponential one used above and another function 1=(1 + r2=I 2), there is no such a problem.
A solution of this problem will be left to future work.

4. CONCLUSIONS

A new computer algorithm for generating spatially-correlated random �elds is presented. The
algorithm consists of using a multilevel grid strategy and combining the matrix decomposition
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Figure 4. Covariance CY (x1;x) for the case of I =2b predicted by di�erent methods.

method and the screening sequential simulation method. Numerical results of random �elds
over a square domain are presented to demonstrate and evaluate the new method. In all cases,
the results with the searching radius not smaller than twice of the coarse grid spacing show
excellent reproduction of the prescribed covariance model for all separation distances. Con-
cerning the computational cost and accuracy of the three methods considered, the MD method
gives the highest accuracy, however the computational cost is intensive for �ne meshes, the
presented method and the SSS method are comparable in the computational cost and more
e�cient than the MD method, and the accuracy of the presented method at large separation
distances is signi�cantly superior to that of the SSS method and comparable to that of the MD
method. Overall the presented method o�ers a new way to generate random �elds e�ciently
and accurately. The new algorithm is also versatile: it can directly simulate �elds of irregular
geometry without additional e�orts.
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