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Abstract—Lattice-based cryptography (LBC) is a promising
and efficient public key cryptography scheme whose theoretical
foundation usually lies in Learning with Error (LWE) problem
and its variant such as Ring-LWE (R-LWE) is the most studied
cryptosystem which allows for more efficient implementation
while maintaining the hardness of an original problem. Polyno-
mial multiplication is the bottleneck of R-LWE, that can either be
done using Number Theoretic Transform (NTT) or schoolbook
polynomial multiplication (SPM) algorithm. The use of SPM is
wider and possible for all parameters of R-LWE schemes. This
work proposes an efficient and parallel strategy for SPM in
R-LWE; by successfully reducing its time complexity from n2

to n2/4 (making it 1.8× faster and 1.4× hardware efficient).
Furthermore, by adjusting the bit width for the error terms, the
polynomial multiplication and addition blocks are reused for both
encryption and decryption modules resulting in 14% reduced
area and 1.7× better throughput in comparison to state-of-art
SPM based R-LWE designs.

Index Terms—Lattice-based cryptography (LBC), Schoolbook
polynomial multiplication (SPM), Ring Learning with Errors (R-
LWE)

I. INTRODUCTION

Due to the algorithm proposed by Shor [1], classic public
key cryptography (PKC) algorithms such as elliptic curve
cryptography (ECC) and RSA have been proved to be vulner-
able to attacks performed by quantum computers. In the round
2 of National Institute of Standards and Technology (NIST)
post-quantum cryptography (PQC) standardization process,
lattice-based cryptosystems (LBC) are the most promising
candidates and account for 53% of the total of public key
encryption (PKE) schemes [2].

Polynomial multiplication is a core module in LBC and is
the bottleneck of the cryptosystem, which can be typically
implemented by schoolbook and NTT algorithm. To speed
up the operation of polynomial multiplication, usually NTT
algorithm is utilized. However, it can only be used with
selected parameters of cryptography and needs complex oper-
ations, including pre-computation, array reordering and post-
computation.

In fact, half of the round 2 LBC candidates such as LAC,
FRODO-KEM, Round5, Saber, Threebears and NTRUPrime
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in the NIST PQC initiative [2] have not used NTT method. In
spite of the time complexity of schoolbook algorithm being
larger than that of NTT algorithm, its simple implementation
and low resource consumption makes it attractive for resource-
constraint applications. Various architectures for NTT and
schoolbook algorithm are analyzed and implemented compre-
hensively in [3]. NTT based Compact R-LWE cryptoprocessor
are proposed in [4], [5], whereas NTT based high-throughput
R-LWE cryptoprocessor are proposed in [6], [7].

In schoolbook polynomial multiplication (SPM), very little
research is focused on the trade-off between performance and
resource consumption. A lightweight design for SPM was
proposed in [8], but it does not optimize the iteration clock
cycle, as a result the throughput is not very high. On the other
hand, [9] proposed an optimized SPM that reduces half of the
iterative clock cycle. However, since its Gaussian sampling
is signed data, some modules in encryption and decryption
cannot be shared.

In this paper, we proposed a highly efficient SPM based
R-LWE architecture by exploiting the features of polynomial
multiplication. In addition, the bit width of Gaussian sampled
data is adjusted appropriately, so that the polynomial mul-
tiplication module can be reused. In this method, only one
module of polynomial multiplication is needed for the full
R-LWE cryptosystem, which ensures reduced consumption of
resources.

The paper is organized as follows: Section II reviews
the background for R-LWE public key scheme. Section III
presents the design of schoolbook polynomial multiplier and
describes the entire structure of R-LWE. Section IV presents
the hardware implementation results of the proposed designs,
and comparison with other works. Section V concludes this
paper.

II. BACKGROUND

The hardware implementation of R-LWE mainly includes
a discrete Gaussian sampler and a polynomial multiplier. The
entire process of encryption and decryption is shown in Alg.
1. In the algorithm, all operations are based on polynomials
on the ring Zq[x]/(xn + 1), where n is a power-of-two
integer representing lattice dimension while q is prime modular
[10]. U is a uniform distribution, and Dσ is a Gaussian
distribution with µ = 0 and a variance of σ. ‘×’ and ‘+’
represent polynomial multiplication and polynomial addition,
respectively.

We use the Cumulative Distribution Table (CDT) based
scheme for discrete Gaussian sampling. CDT sampling is
easier to be implemented in hardware than other sampling
methods, it promises low resource consumption and high-
throughput [11]. In addition, CDT sampling has been proven to
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Algorithm 1 The Encryption and Decryption of R-LWE
Input: Public key: a ← U and p; Secret key: r2 ← Dσ;

Plaintext: m ← {0, 1}.
Output: Ciphertext: c1, c2; Decrypted plaintext: m′.
1: Sampling to generate e1, e2, e3 ← Dσ;
2: Encoding plaintext m̄ = encode(m);
3: Ciphertext is calculated c1 = a × e1 + e2, c2 = p ×

e1 + e3 + m̄;
4: Decrypting c = c1 × r2 + c2;
5: Decoding plaintext m′ = decode(c);
6: return c1, c2, m′.

be resistant to side-channel attack (SCA), scalable in nature
[12], and adaptable to deter fault-attacks [13]. The product
c(x) of two integer polynomial a(x) and b(x) can be computed
by SPM algorithm, as expressed by (1) [3]:

a(x) · b(x) =

n−1∑
i=0

n−1∑
j=0

aibjx
i+j

 mod (xn + 1)

=
n−1∑
i=0

n−1∑
j=0

(−1)b(i+j)/ncaibjx
(i+j) mod n

(1)

The sign bit of the coefficient in polynomial c(x) is deter-
mined by (−1)b(i+j)/nc as follows :

sign bit =

{
0 i+ j < n
1 n ≤ i+ j ≤ 2n− 2

(2)

The method of shift-addition-multiplication-subtraction-
subtraction (SAMS2) [14] is taken up to accelerate the
implementation of modular reduction operation in hardware.
A well-optimization structure for SPM is proposed in [9].
For discrete Gaussian noise distribution, sampling with
signed numbers is proposed for the first time, which reduces
resources consumption. The formula of signed modular
multiplication is expressed by (3):

a× (−e) mod q = q − [ a× e mod q ] (3)

Where, a represents an unsigned number, e is a signed
Gaussian noise and q is the prime modulus. Thus a 13-bit
Gaussian sampled number can be written as a 6-bit signed
number for q = 7681 and the original 13 × 13 bit modular
multiplication becomes 13× 5 bit modular multiplication and
one subtraction. Furthermore, as a result of this reduction, a
single digital signal processing slice (i.e. DSP48) in Xilinx
7 series FPGA is configured to accommodate 2 simultaneous
multiplications [9], which in turn reduces the time complexity
of SPM by half (from n2 to n2/2).

III. PROPOSED OPTIMIZED STRUCTURE OF R-LWE

In this section, we present our efficient SPM design and later
the hardware sharing structure for overall implementation of
R-LWE hardware. In this work, a medium security level R-
LWE parameter set (n = 256, q = 7681, s = 11.31) is selected
[15].
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Fig. 1. Proposed memory access scheme.

A. An Efficient Design of SPM

Polynomial multiplication is the most critical part of over-
all implementation, determining the performance of R-LWE
hardware design. It is a slow operation, since calculating one

Algorithm 2 High Efficiency SPM for R-LWE via Splitting
Input:

a(x), b(x) (polynomial in Zq[x]/(xn + 1));
q prime modular;

Output:
c(x) (polynomial in Zq[x]/(xn + 1));

1: for i = 0 : 4 : n− 4 do
2: for j = 0 : n− 1 do
3: coeff a0← a[j];
4: coeff a1← a[(j + 2) mod n];
5: coeff b0← b[(i− j) mod n];
6: coeff b1← b[(i− j + 1) mod n];
7: me b← {coeff b0[4 : 0], 13′b0, coeff b1[4 : 0]};
8: temp ab1← coeff a0×me b;
9: temp ab2← coeff a1×me b;

10: temp1← temp ab1[17 : 0] mod q;
11: temp2← temp ab1[35 : 18] mod q;
12: temp3← temp ab2[17 : 0] mod q;
13: temp4← temp ab2[35 : 18] mod q;
14: sign1← (i < j) ? 1 : 0;
15: sign2← (i+ 1 < j) ? 1 : 0;
16: sign3← (i+ 2 < (j + 2) mod n) ? 1 : 0;
17: sign4← (i+ 3 < (j + 2) mod n) ? 1 : 0;
18: if sign1⊕ coeff b0[5] == 1 then
19: temp1← q − temp1;
20: end if
21: if sign2⊕ coeff b1[5] == 1 then
22: temp2← q − temp2;
23: end if
24: if sign3⊕ coeff b0[5] == 1 then
25: temp3← q − temp3;
26: end if
27: if sign4⊕ coeff b1[5] == 1 then
28: temp4← q − temp4;
29: end if
30: c[i]← temp1 + c[i];
31: c[i+ 1]← temp2 + c[i+ 1];
32: c[i+ 2]← temp3 + c[i+ 2];
33: c[i+ 3]← temp4 + c[i+ 3];
34: end for
35: end for
36: return c(x).
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polynomial multiplication with dimensions of n requires to
compute n2 times modular multiplications and (n−1)2 times
modular additions/ subtractions. Our strategy is to improve the
parallelism in the design of SPM to reduce its time complexity
and thereby improving its performance. As shown in Alg.
1, two operations of polynomial multiplication are needed in
encryption, while one in decryption.

Public key, secret key and errors require 2 Block RAMs
(BRAMs) for storage. Based on the operational features of the
SPM, a scheme of efficient memory accessing is proposed.
For simplicity, toy setting with n = 4 is considered as an
example to illustrate the polynomial multiplication. In order
to intuitively display the operation of c(x) = a(x)×b(x), it is
represented in the form of a matrix as shown in Fig. 1. In the
first clock cycle, the corresponding coefficients of a(x) and
b(x) as highlighted by red box are accessed from the memory
and after their retrieval, the strategy of full utilization of FPGA
DSP Blocks in [9] is used to compute 4 partial products of
c(x) at once. Then, in second clock cycle the next coefficients
of a(x) and b(x) as highlighted by blue shade are accessed
to generate the next 4 partial products of c(x), and so on.
Hence, the iteration period of the polynomial multiplication is
reduced from 16 to 4 for n = 4.

Based on the proposed memory access method in Fig. 1, a
scheme of parallel SPM is proposed, which mainly includes
6 steps to determine a(x)× b(x), detailed outline in Alg. 2:

1) Reading coefficients a[j], a[(j + 2) mod n] from
RAM A that stores a(x) and coefficients b[(i −
j) mod n], b[(i − j + 1) mod n] from RAM B that
stores b(x) in one clock cycle (line 3 − 6).

2) Merging data bit of b[(i − j) mod n] and b[(i − j +
1) mod n] into a single 23-bit number (line 7).

3) Performing a modular multiplication operation of 23-bit
× 13-bit (line 8−9).

4) Separating the 18-bit data after the 36-bit product (line
10−13).

5) Determining the sign of separated data to carry out in-
place reduction as well as subtraction from modulus q
based on (3) (line 14−28). The value of sign1 to sign4
represents the condition for in-place reduction (line
14−17) whereas MSB of coeff b0[5] & coeff b1[5]
provides the coefficients sign of polynomial b(x). Both
are XORed, if equal to “1” then temp1 ... temp4 are
to be subtracted from the modulus q (line 18−28).

6) Final accumulation of generated result (line 30−33).

B. Structure of Polynomial Multiplier (PM)

A high-performance and parallel structure of polynomial
multiplier is proposed based on Alg. 2, is shown in Fig. 2.
The polynomial multiplier has polynomials a(x) and b(x)
as multiplicand and multiplier. Their values are accessed
every clock cycle. After data bit of coeff b0 and coeff b1
are merged, operation of multiplication is performed. The
proposed structure requires only 2 DSPs, while a single DSP
block is supporting a 25 × 18 bit multiplication in Xilinx
Kintex-7 FPGA. Resultant product is split into two halves
and reduced via Barret Reduction (BR) module. The data
is split into a total of four numbers, temp1 . . . temp4. The
most significant bit (MSB) of both coefficients coeff b0 and
coeff b1 are input to the control unit before the multiplication
operation, and sign of the final reduced data is determined
by control unit. Finally, the generated 4 data are used as
inputs to 4 modules of accumulation (Acc.) respectively. After
completing all iterations, the 4 coefficients of polynomial c(x)
are output, which are coeff c0, coeff c1, coeff c2 and
coeff c3.

C. Reuse of Polynomial Multiplication and Addition in both
R-LWE Encryption/ Decryption.

Further to enhance the design efficiency, we exploit a smart
and novel resource-sharing possibility for a combined R-LWE
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Fig. 2. The proposed structure of the efficient polynomial multiplier (PM).
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cryptoprocessor design. It stems from a simple observation that
encryption and decryption operations have the same operation
rules, both of which are d(x) = a(x) × b(x) + e(x), as can
be seen in Alg. 1 (line 3-4). Hence decryption module can
reuse the polynomial multiplication as well as the polynomial
addition in encryption module. However, error items e2 and
e3 are 6-bit signed samples from a narrow discrete Gaussian
distribution, hence to enable the reuse of polynomial addition
hardware, the bit width of e2 and e3 is changed from 6 bits
to 13 bits as presented by Alg. 3. If e(x) is negative (i.e.
e[5] = 1), the data bits (last 5 bits) of this number should be
subtracted from the modulus q (line 4). Otherwise, MSB bits
of e(x) is padded by “0” to make it 13 bits (line 6).

Algorithm 3 Adjusting Bit Width (ABW) of Error Terms
Input: e[N ] (each element is a 6-bit signed integer)

q prime modular
Output: f [N ] (each element is a 13-bit unsigned integer)
1: for i = 0 : N − 1 do
2: reg temp← e[i];
3: if reg temp. get bit(0) == 1 then
4: f [i]← q − reg temp;
5: else
6: f [i]← reg temp× (1 << 8) + reg temp;
7: end if
8: end for
9: return f [N ].

The proposed polynomial multiplier and adder can be uti-
lized by the R-LWE cryptosystem, including key generation,
encryption and decryption. The block diagram of the combined
hardware-sharing structure is shown in Fig. 3, comprising
of the discrete Gaussian sampler, Encryption and Decryption
modules. As can be seen from this proposed structure, the
polynomial multiplier is utilized by all the three operation
of key-generation, encryption and decryption. The execution

sequence is controlled by the control unit. Implementation of
the Adjusting Bit Width (ABW) unit follows Alg. 3.

This thrifty reuse of schoolbook polynomial multiplier and
the polynomial adder (PA) results in the reduction of area
consumption of hardware resources, which has not been un-
dertaken in the reported implementations.

IV. HARDWARE IMPLEMENTATION RESULTS

The proposed structures are synthesized and implemented
on a Kintex-7 (KC705) FPGA using Xilinx Vivado 2018.3.
Table I lists the detailed resource consumption, performance
results (frequency, execution time and throughput) and hard-
ware efficiency of FPGA based designs in terms of Throughput
per Slice (TPS) from the post place and route (post-PAR)
results. TPS is a trade off between throughput and the utilized
hardware resources to achieve that throughput, thus higher
value of TPS represents a good balanced design. To calculate
the TPS for each implementation, a Slice equivalency is
taken in account for dedicated/embedded resources of FPGA
such as BRAM and DSP [9]. For a fair comparison of our
proposed R-LWE design, we selected SPM based hardware
implementations only. To facilitate the comparison, first the
encryption and decryption architectures of proposed R-LWE
design incorporating efficient polynomial multiplier is pro-
vided separately and then in the combined one.

The R-LWE design proposed in [8] is a lightweight design,
but takes more clock cycles hence results in very low through-
put as well as TPS. The design is based on parameters set
of (256, 4092/4093, 8.35) that not only provided low security
but also the structure of modular multiplication consumed less
area resources. Moreover it utilized Bernoulli approach for
rejection sampling that is more vulnerable to SCA. The design
presented in [16], is not only based on better parameters set
(256, 7681, 11.31) to achieve medium security but also utilized
the CDT Gaussian sampling which is more resistant to timing
attacks. Whereas, an optimized R-LWE design in [9] made
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TABLE I
FPGA BASED RESULTS COMPARISON (POST-PAR) WITH OTHER DESIGNS

Implementation Device Type LUT/FF/Slice DSP* BRAM** Freq. Cycle Time Throughput TPS
MHz (µs) (Kbps) (Kbps/Slice)

[8]
(Schoolbook) Spartan-6 Enc 360/290/114 1 2 128 136986 1070 239.21 0.73

Dec 162/136/51 1 1 179 66304 370 691.12 3.30

[9]
(Schoolbook) Kintex-7 Enc 898/815/303 1 3 304.69 69654 229 1119.84 1.95

Dec 635/190/194 1 1 303.40 34436 114 2255.49 6.40

[16]
(Schoolbook) Kintex-7 Enc 1098/407/337 1 0 288 131604 457 560.9 1.27

Dec 609/318/182 1 0 288 65802 228 1120.45 3.94

This Work Kintex-7 Enc 1254/1046/402 2 2 280 35478 128 2020.4 2.81

Dec 722/558/249 2 0 292 17732 61 4215.65 9.22

This Work Kintex-7 Enc/Dec 1381/1179/479 2 2 275 35478/17732 129/64 1984.32/3970.22 2.56/4.99

*1 DSP equivalent to 102.4 Slices, **1 8K BRAM equivalent to 56 Slices [9]

use of signed bit sampling and full utilization of FPGA DSP
Blocks and achieved the highest throughput of 1,119.84 Kbps
and 2,255.49 Kbps for encryption and decryption, respectively.

According to the features of the SPM, we devised strategic
memory accessing from the BRAM and used 2 DSPs with
100% utilization which enable us to perform 4 multiplication
operations in one clock cycle. Hence, reduce the overall
latency of the design by 4 and achieved highest throughput
values. Compared with the encryption and decryption modules
of [9], our proposed separate designs have 1.8× throughput
and 1.4× better hardware efficiency (i.e. TPS) at a cost of
just 25.35% increased hardware.

Further, adjusting the bit width for the error terms helps us
to improve the area consumption by re-using the hardware of
SPM and PA for both the encryption and decryption processes
of R-LWE. Our proposed combine architecture resulted in
reduced area consumption for the overall cryptosystem i.e.
utilized 796 Equivalent Slices (479+2×102.4+2×56). In com-
parison to the combined area resources of both encryption and
decryption designs in [9], we saved 14% area and still have
better throughput figures i.e. 1.7× of the state-of-art fastest
available SPM based R-LWE design [9].

V. CONCLUSION

This work proposes an efficient and parallel SPM structure
for the most critical operation of polynomial multiplication
in R-LWE. We exploit the operational features of polynomial
multiplication to implement a parallel design, which reduced
iteration clock cycle by factor of 4 and results in 1.8×
speedup and 1.4× TPS. Furthermore, an idea of re-using the
most critical parts of the R-LWE encryption and decryption
hardware is presented in this work. The combined R-LWE
encryption/decryption architecture have 14% reduced area
with 1.7× throughput.
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[3] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware,” in Proc. International
Conference on Cryptology and Information Security in Latin America,
2012, pp. 139–158.

[4] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact Ring-LWE cryptoprocessor,” in Proc. International Workshop
on Cryptographic Hardware and Embedded Systems, 2014, pp. 371–391.

[5] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in Proc. IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), 2013, pp. 81–86.

[6] C. P. Renterı́a-Mejı́a and J. Velasco-Medina, “High-throughput Ring-
LWE cryptoprocessors,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 25, pp. 2332–2345, 2017.

[7] T. N. Tan and H. Lee, “Efficient-scheduling parallel multiplier-based
Ring-LWE cryptoprocessors,” Electronics, vol. 8, no. 4, p. 413, 2019.
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