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ABSTRACT Smart grid is a modern electric power grid designed to improve efficiency and reliability of the

production and distribution of electric power. In a smart grid, smart meters continuously generate electric

power consumption data and send it to the server. These data have two important purposes: (1) The sum of

the data generated by each meter in a certain period of time will be used for billing; (2) The sum of the data

generated by all meters in a specific area at a given time will be used to predict the electric power required

in that area for electric power distribution. These data are considered to be sensitive and should be properly

protected. There have been many studies on the confidentiality and privacy protection of these data. Some

schemes require trusted servers, some schemes require heavy computation, and some schemes need to send

two sets of data, one for billing and the other for electric power distribution. In this article, we propose an

efficient and privacy-preserving communication scheme for the transmission of meter data in a smart grid.

No trusted authorities are required in the scheme. By sending only one set of data, the new communication

scheme can ensure that both sums for billing and sums for electric power distribution can be computed

accurately. The scheme uses only simple operations, such as addition and hashes. It is computationally

lightweight and suitable for devices with limited computing resources.

INDEX TERMS Smart grid, privacy protection, secret sharing, differential privacy.

I. INTRODUCTION

A smart grid is a modernized electric power grid designed

to improve efficiency and reliability of the production

and distribution of electricity. Smart grids usually include

smart meters, smart appliances, renewable energy and other

resources. These components are integrated into an advanced

metering infrastructure for remote meter configuration,

dynamic tariffs, electric power quality monitoring and load

control.

Smart meters that measure electric power consumption

of customers are essential devices in a smart grid. A smart

meter can be considered as an electronic meter with a com-

munication link. Smart meters must constantly send their

measuring data to nearby server. The time to send these

data is usually every 15 minutes, an hour, or a day [1].

The customer’s electricity bill is based on these data. This

information can also be used to predict the electrical energy

required in a particular area to better distribute electricity
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to that area. Therefore, protecting the data generated and

sent by each meter is essential to the security of a smart

grid.

For confidentiality, encryption and authentication can be

used to prevent an adversary from learning or changing the

information sent through public networks. In a smart grid,

in which the electric power usage of customers are constantly

being sent, confidentiality may not be sufficient to protect

the privacy of the customers. There is a crucial concern of

the privacy related to the collection and use of customers’

energy consumption data. Smart meters can be used by oth-

ers either maliciously or inadvertently in an unauthorized

fashion to infer types of activities or occupancy of a home

for specific periods of time. It is also possible that such

information can be sought for legal proceedings as evidence

to prove or disprove certain propositions. To protect the pri-

vacy of the customers, NIST recommends using anonymous

techniques to avoid traces of meter readings [2]. Unless the

servers to which the data are sent and stored are fully trusted,

additional steps must be taken to protect the privacy of the

customers.
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Both confidentiality and privacy protection are very impor-

tant in the information security of a smart grid. They

are different problems and require different technologies

to solve these two problems. In confidentiality, the sender

and the receiver are usually trusted. Encryption can be

used to avoid disclosure of sensitive or confidential infor-

mation to third-party adversaries. For privacy protection,

in addition to the third-party adversaries, some information

sent by the sender should also be kept confidential to the

receiver.

There have been many studies on the encryption and

authentication of data sent by smart meters. For example,

Liu et al. proposed a lightweight authentication scheme [3];

Wu et al. presented an improved version of Liu’s scheme [4];

Mahmood et al. proposed another lightweight authentication

scheme for smart meters [5]. However, privacy protection has

not been integrated in these schemes.

In this article, we propose an efficient and lightweight

privacy-preserving communication scheme for the transmis-

sion of data in a smart grid. The main techniques used in the

design of the communication scheme are secret sharing and

differential privacy.

For security, we must ensure that the data sent by smart

meters are encrypted. Our privacy protection communication

scheme adds carefully calibrated noises to the data measured

by smart meters before sending them to the server. The addi-

tion of the noises to the data plays the role of one-time pad

encryption. Note that the noise in our scheme is a random

number generated from a distribution with mean 0 and care-

fully chosen variance. It is not the noise from the environment

in the communication channel.

For the authentication of the data sent by the meters

to the server, a lightweight authentication method, such as

Liu et al.’s method [3], can be used. In our scheme, the data

to be authenticated is the one-time encrypted data, not the

original meter readings, which need to be kept secret to the

server. The authentication part of the scheme will not be

described in detail in this article.

We assume that the servers are semi-honest. They follow

the protocol, but may want to know the customers’ timely

electric power consumption information. We also assume

that nearby smart meters can communicate with each other.

By sending only one set of data, our communication scheme

ensures that both sums for billing and sums for electric

power distribution can be computed accurately. No trusted

authorities are required in our scheme, and the scheme uses

only simple operations, such as addition and hashes. It is a

lightweight scheme suitable for devices with limited comput-

ing resources.

II. DESCRIPTION OF THE PROBLEM

A smart grid may contain many components. Figure 1 shows

a simplified diagram of the smart grid, which contains only

the components related to our communication scheme. Each

smart meter constantly generates electric power consumption

data and sends to the nearby server. The electricity company

FIGURE 1. Simplified diagram of smart grid, which contains only the
components related to our communication scheme.

uses these data for two purposes: billing and electricity

distribution.

Our goal is to protect the data sent by smart meters, from

the malicious third party for secrecy, and from the electrical

company for customer privacy. For simplicity, assume that

each customer has a smart meter at home. Assumed that

each smart meter transmits electric consumption data to the

server every τ time units. According to the guidelines of

European Regulators Group for Electricity and Gas, the value

of τ is usually 15 minutes, an hour, or a day [1]. This data

represents the amount of electric power consumption during

time interval [t − τ, t].

Table 1 shows the data generated by m = 6 meters in

n = 8 time intervals. In Table 1, di,j is the electric power con-

sumption measured by smart meter i during the time interval

[tj−1, tj]. Our privacy protection communication scheme will

add carefully calibrated noise to the data before sending them

to the servers.

TABLE 1. An example of data generated by smart meters for m = 6
meters and n = 8 time intervals.

In general, the data generated by smart meters are used for

three purposes. (1) billing, (2) electric power distribution, and

(3) value-added services. These three types of uses of the data

differs significantly in terms of their requirement on metering

frequency and accuracy.

The primary use of the data generated by the meters is

consumer billing. Since billing typically happens on monthly

basis, the electric power consumption data needs not be pro-

cessed in real-time, but the correctness of billing requires

accurate measurement data.
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Another important use of data generated by smart meters

is to increase the efficiency and reliability of electric power

distribution of the smart grid. The inclusions of renewable

energy to smart grid makes electric power distribution even

more important. The data generated by smart meters at spe-

cific time are mainly used for the prediction of electric power

required in each area for the next time period. This type of

data usage requires real-time or near real-time processing and

fine-grained time intervals, but may accept lower accuracy.

The measuring data can also be used by customers, oper-

ators, and third-party service providers for providing various

value-added services, such asmanaging and arranging the use

of household appliances to reduce electricity bills.

In this article, we focus on the first two uses of metering

data, namely billing and electric power distribution. Assume

that the power company summarize the data in every n time

intervals. For the description of the privacy protection com-

munication scheme, the table will be shown in m rows and

n columns. The sum of the i-th row is the electric power

used by customer i from time t0 to tn. This sum is also

called temporal aggregation. Each of the sum will be used

by the power company to calculate the electricity bill for the

customer.

The sum of the j-th column is the electric power used by all

customers in this area at time tj. This sum is also called spatial

aggregation. The power company will use this sum to predict

the amount of electricity needed in the area and allocate

enough electricity for the area to meet customer needs.

Suppose the electricity company calculates the electricity

usage for each customer every n time intervals, and customers

receive their electricity bill in every N = kn time intervals for

some integer k . For example, assume that each meter sends

out its electric power consumption data every 15 minutes,

the electricity company calculates the electricity usage for

each customer every day, and the electricity bill will be

computed monthly, then τ = 15, n = 96, k = 30, the number

of data sent to the server will be N = 30 × 96 = 2880 for

each meter in 30 days.

We assume that these data are stored in a server operated

by electricity company. Our goal is to design a robust and

efficient communication scheme to transfer these data from

smart meters to the server to ensure the security of data, and

most importantly, to protect the privacy of customers. There

may be different values of τ , k , or N for different countries,

our communication scheme works correctly, as long as N is

a multiple of n.

III. RELATED WORKS

In this article, we focus on the privacy protection of customer

power consumption data. There are other situations where

the privacy of customers needs to be protected. For exam-

ple, Zhang et al. studied the privacy-preserving communica-

tion and power injection scheme over vehicle networks and

5G smart grid slice [6].

Many techniques have been studied for the protection

of the privacy of customers in smart grids. Rechargeable

batteries can be installed to hide the energy consumption of

customers [7]. This type of technique require the installation

of hardware. In this article, we focus on software technologies

that can be applied to protect customer privacy.

Anonymous technology can also be used to protect cus-

tomers’ privacy in smart grid. Petrlic proposed a privacy

protection scheme using a trusted intermediate gateway as a

pseudonym server for billing applications [8]. This technique

can hide the real identity of customers, but it requires a trusted

pseudonym server.

Homomorphic encryption can do arithmetic operations

directly on ciphertext without decryption. This technique can

be used to protect customer privacy. Jawurek et al. proposed

a secure computation of billing using homomorphic com-

mitment [9]. Metering data are committed and aggregated

first. Only the final sum will be opened to electricity com-

pany, and the correctness of the data can be proved by using

zero-knowledge proof. Kong et al. proposed a group blind

signature scheme in smart grid to accomplish conditional

anonymity [10]. The integrity of electricity consumption data

can be verified by homomorphic encryption. The problem

with this type of scheme is that homomorphic encryption is

usually computationally inefficient, especially for homomor-

phic encryption with addition and multiplication operations.

Lin et al. proposed a smart metering system supporting

both privacy preserving billing and load monitoring with one

set of data [11]. In their system, meter readings are stored

in a semi-trusted storage system. The electricity company

can only query for the sum of meter readings over a time

period. The load monitoring unit can only query the sum of

meter readings from meters in the area at a specific time.

In this scheme, the storage system stores all the original

data generated by smart meters. The correct operation of this

method depends on the trusted storage system. Due to the

intentional or unintentional behavior of the storage system,

or the intrusion of attackers, sensitive data may be leaked to

a malicious party.

Differential privacy was originally designed for statistical

data set to limit the disclosure of private information. It is

also useful in protecting customers’ privacy in smart grid.

Hale et al. applied differential privacy to the metering data

both for billings and electric power distribution [12]. They

showed that, with proper selection of parameters, both the

billing and the electric power distribution aggregations may

have some errors, but these data are still useful. Eibl and

Engel studied the effect of differential privacy on real smart

metering data, and showed that as long as the number of smart

meters is large enough, the data are useful [13].

In summary, many technologies have been used to solve

the confidentiality and privacy protection of customers in the

smart grid. Some schemes require heavy computation, such

as homomorphic encryption. Some schemes require the use of

trusted servers. Some schemes require two sets of data, one

set for spatial sums and the other for temporal sums. Some

schemes can only provide a good approximation of the spatial

sums and the temporal sums.
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In this article, we propose a novel communication scheme

for smart grids to achieve secrecy and, at the same time,

to preserve the privacy of customers. In our scheme, carefully

calibrated noise are added to the data before sending the data

to the server. No measuring data from any smart meter are

directly transmitted and stored in a storage system that the

electricity company can access. Thus, the privacy protection

of customers can be achieve perfectly. Our communication

scheme can always ensure that the sum of eachmeter readings

during a given period of timewill be exact. Therefore, billings

for the customers will always be accurate. Furthermore, in our

scheme, the same set of data can be used for both billing and

electric power distribution.

IV. PRELIMINARIES

In this section, we briefly introduce secret sharing scheme

and differential privacy. The modified versions of the two

schemes will be used in our privacy protection communica-

tion scheme.

A. SECRET SHARING

Let t and n be two positive integers, t ≤ n. A (t, n)-threshold

secret sharing scheme is a method for the n users to share a

secret K . Each user i has a share si about the secret K . The

goal of a secret sharing scheme is that the secret K can be

computed correctly by using the shares of any subset of t

users, while any t − 1 or fewer users cannot compute any

information about the secret K .

Shamir showed that a (t, n)-threshold secret sharing

scheme can be implemented by polynomial interpola-

tion [14]. The secret K , as well as each share, is represented

by a point in a polynomial of degree t − 1. Any t shares can

uniquely determine the polynomial, but any subset of t−1 or

fewer shares cannot.

Our privacy protection communication scheme uses a spe-

cial case of (t, n)-threshold secret sharing scheme, namely the

(n, n)-threshold secret sharing scheme. It can be implemented

much more efficiently without polynomial interpolation.

Let p be an integer greater than the secret K . The first n−1

shares si, i = 1, 2, . . . , n−1, can be randomly and uniformly

selected from the set {0, 1, . . . , p− 1}. Then the last share sn
is computed by

sn = [K − (s1 + s2 + · · · + sn−1)] mod p.

It can be verified that

1) The sum of all shares

(

n
∑

i=1

si

)

mod p is equal to K .

2) Any sum of the proper subset of the shares

{s1, s2, . . . sn}, is a random number.

This implementation of the (n, n)-threshold secret sharing

scheme is perfect, which means that no subset of n − 1 or

fewer users can compute any information about the secret K

even if they have infinite computing power. This implementa-

tion of the (n, n)-threshold secret sharing scheme is also ideal,

because the size of each share si is no more than the size of

the secret K , that is, |si| = |K |. We will modify the above

perfect and ideal secret sharing scheme to provide secrecy

and protect the privacy of the customers.

B. DIFFERENTIAL PRIVACY

Differential privacy was originally design for statistical data

set. It has been shown that an attacker can understand the

confidential content of a statistical data set by creating a series

of target queries. In 2003, Nissim and Dinur demonstrated

that ‘‘it is impossible to publish arbitrary queries on a private

statistical data set without revealing some amount of private

information.’’ This is also called fundamental law of infor-

mation retrieval.

Noise can be added to each query to limit the leakage of

privacy in the data set. In 2006, Dwork et al. presented a

method called ǫ-differential privacy, to formalize the amount

of noise that needed to be added and proposed a generalized

mechanism for adding the noise [15].

The intuition of ǫ-differential privacy is that a person’s

privacy cannot be compromised by releasing statistical infor-

mation if their data are not in the data set. Therefore, with

differential privacy, the goal is to give each individual roughly

the same privacy that would result from having their data

removed.

Dwork and Roth formally defined ǫ-differential privacy

as follows [15]. Let ǫ be a positive real number. Let A be

a randomized algorithm that takes a data set as input and

compute an output representing the actions of the trusted

party holding the data in response to a query. The algorithmA

is said to provide ǫ-differential privacy if, for all data sets D1

and D2 that differ on a single element (i. e., the data of one

person), and all subsets S of all possible responses of A:

Pr[A(D1) ∈ S] ≤ eǫ Pr[A(D2) ∈ S].

In other words, a data set query response algorithm A is

ǫ-differential if for all data setD1 andD2 differing on a single

record, the probability of obtaining response t ∈ S when

the data set is D1 is within (1 + ǫ) times the probability

of obtaining response t ′ ∈ S when the data set is D2. This

also implies that the ratio of the two probabilities lies in

[e−ǫ, eǫ] ≈ [1 − ǫ, 1 + ǫ] when ǫ is small.

In our communication scheme for privacy protection,

the data to be protected are the electric power consumption

data for each smart meter in the grid. This is a sequence of di,j,

j = 1, 2, . . . , n. To ensure that the eavesdropper cannot learn

any useful information about di,j, certain amount of noise

must be added to it before it is transmitted to the server. The

proper amount of noise can be determined by the principle of

differential privacy.

In differential privacy, the amount of noise to be added to

the real data is a trade-off between privacy protection and data

usefulness. The smaller ǫ, the better protection of customer

privacy. On the other hand, the larger the ǫ, the more accurate

the data.

According to the principle of differential privacy,

the amount of noise to be added to the data should be propor-

tional to the sensitivity of the query function. To estimate the
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sensitivity of our query function, let d be a positive integer,

D be a collection of data sets, and f : D → R
d be a

query function. The sensitivity of the function f , denoted 1f ,

is defined by

1f = max ||f (D1) − f (D2)||1,

where the maximum is over all pairs of data sets D1 and D2

in D differing in at most one element, and || · ||1 denotes the
ℓ1-norm. In our scheme, the query function is the row sum or

the column sum of the data di,j. Therefore, the sensitivity of

our query function is max{di,j}.
There are many mechanisms which can provide

ǫ-differential privacy, such as Laplace mechanism, expo-

nential mechanism, and posterior sampling. The Laplace

mechanism adds noise from the Laplace distribution, which

can be expressed by the probability density function

noise(y) ∝ exp(−|y|/λ)

which has mean 0 and standard deviation
√
2λ. It can

be shown that this method satisfies the definition of

ǫ-differential privacy. We use this mechanism in our privacy

protection communication scheme.

Note that our privacy protection communication scheme

is not a direct application of differential privacy. We also

integrate (n, n)-threshold secret sharing scheme to ensure that

both the temporal and the spatial aggregation of the data can

be computed accurately. Only in the case that certain meter

cannot communicate with any other meters, the method of

differential privacy is used to protect the privacy of the data

generated by that meter. Even if all meters cannot communi-

cate with other meters, the temporal sum for billing can still

be accurately computed in our scheme.

V. THE PRIVACY PROTECTION SCHEME

In this section, we propose a communication scheme for

the transmission of data generated by each smart meter that

meets our goal: both temporal aggregation for billing and

spatial aggregation for electric power distribution can be com-

puted accurately by using only one set of data. Furthermore,

the confidentiality and the privacy of customers are properly

protected. We assume that smart meters in a specific area can

communicate with some other smart meters.

A. MODIFICATION OF THE SECRET SHARING SCHEME

The main technique used in the design of the communication

scheme is a modification of the (n, n)-threshold secret sharing

scheme. For eachmeter i, the data that should be protected are

di,j, j = 1, 2, . . . , n. Our communication scheme adds certain

amount of noise to di,j before sending it to the server.

We first show that direct application of the (n, n)-threshold

scheme to our communication scheme may have difficulty.

Suppose that the (n, n)-threshold secret sharing scheme is

modified to share a sequence of numbers instead of only one

key. Let p be an integer greater than
n
∑

j=1

di,j. Each meter i first

selects n − 1 random numbers si,j, j = 1, 2, . . . , n − 1 from

{0, 1, . . . , p − 1}. The last random number sn can then be

computed by

sn = −





n−1
∑

j=1

si,j



 mod p.

Then, the j-th data to be sent to the server for meter i is

wi,j = di,j + si,j, j = 1, 2, . . . , n.

It is easy to verify that




n
∑

j=1

wi,j



 mod p =





n
∑

j=1

di,j +
n

∑

t=1

si,j



 mod p

=
n

∑

j=1

di,j.

The above method allows the electricity company to com-

pute the correct sum of the data sent from each meter in a

fixed time period from t0 to tn without knowing each di,j.

However, in order to correctly compute the sum, the value

of p must be greater than
n
∑

j=1

di,j. If the value of p is too

small, i. e. p <
n
∑

j=1

di,j, then the sum
n
∑

j=1

di,j would not be

correctly computed. To avoid having to estimate the correct

value of p, the (n, n)-threshold secret sharing scheme must be

further adapted so that it can be applied to the communication

of smart meters.

We observed that the random value si,j added to the data

in secret sharing plays the same role as the random noise

added to the data in differential privacy. Therefore, we can

randomly select n−1 noises si,j to be added to di,j. To ensure

that the sum of each row is correct, the last noise si,n must be

computed from the first n− 1 noises:

si,n = −
n−1
∑

j=1

si,j.

According to the principle of differential privacy, the

noise si,j to be added to the data di,j should be randomly

selected from a probability distribution with mean 0, and

variance proportional to the sensitivity of the query function.

In our privacy protection communication scheme the query

function is the sum
n
∑

j=1

di,j. Thus, the sensitivity is

Di = n
max
j=1

{di,j}.

The value of Di for each meter i also require to be deter-

mined ahead of the time. However, a good estimation of Di
is sufficient to make the scheme works correctly. It can be

verified that, even if some of the values of di,j exceeds Di,

the desired sum
n
∑

j=1

di,j can still be computed correctly.

n
∑

j=1

wi,j =
n

∑

j=1

(di,j + si,j) =
n

∑

j=1

di,j +
n

∑

j=1

si,j =
n

∑

j=1

di,j.
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In other words, the sum
n
∑

j=1

di,j can be computed correctly as

long as
n
∑

j=1

si,j = 0. This equation holds due to the application

of the (n, n)-threshold scheme.

Our ultimate goal is to compute both temporal sum and

spatial sum correctly. Unlike differential privacy, usability

is no longer a problem in our scheme because the sum can

always be computed accurately in our scheme. The value

of each si,j, except si,n, can be chosen randomly and uni-

formly in the interval [−Di/2,Di/2]. In fact, choosing si,j
randomly and uniformly in [−Di/2,Di/2] increase the uncer-
tainty (information entropy) of the data sent to the server. For

example, the entropy of di,j given wi,j = di,j + si,j is log(Di),

if si,j is randomly and uniformly chosen from [−Di/2,Di/2].
If si,j is chosen from Laplace distribution with mean 0 and

variance Di, the entropy of di,j is only log(2be), where the

variance 2b2 = Di. The entropy log(2be) = log
(√

2Di e
)

<

log(Di) whenever Di > 2e2.

The security of the above method is the same as one-time

pad. Since the noises si,j, j = 1, 2, . . . , n, are ran-

domly chosen, it is impossible to compute the value of

individual di,j from the cipher text wi,j, unless the values of

these random noises si,j are known.

By using the above method, it is straightforward to encrypt

the data di,j for temporal aggregation for billing. Note that,

for each meter, only the first n − 1 random noises can be

randomly chosen. The last noise must be computed from

the first n − 1 noises. Therefore, if the above method is

applied to the column sum or spatial sum, smart meter needs

to communicate with each other to synchronize their random

noises.

B. DESCRIPTION OF THE PRIVACY PRESERVING SCHEME

In our communication scheme, every smart meter in a spe-

cific area should be able to communicate with some other

smart meters in that area. Smart meters can communicate

by power-line network or any other network. If power-line

network is used, then data are sent and received on a con-

ductor that is also used simultaneously for electric power

transmission. The privacy protection communication scheme

is summarized in Figure 2.

The amount of noise si,j to be added to the data di,j is

synchronized in the communication between meters. In the

time interval [t0, tn], n random noises si,j are required for each

meter i. They can set up their first n−1 random noises by the

method described in step 1 of scheme, and compute the last

one based on the first n− 1 random noises.

To reduce the number of communications, they can also

set up their first random noise, and compute the other n − 2

noises by the following method. Suppose that meter i sends

a request to meter k for setting up a random noise ski,1 = σir

in step 1(c) of the scheme as shown in Figure 2. The random

noises ski,j, j = 2, 3, . . . , n− 1, can be computed by

ski,j = (−1)j−1σih(r, j),

FIGURE 2. Description of the privacy protection communication scheme.

for meter i. Summarily, meter k can compute

sik,j = (−1)j−1σjh(r, j).

In the above equations, h is a secure one-way hash

function. The output of h is the range [−D,D], where

D = max{Di,Dj}.
The actual electricity consumption data of the customers

are not directly stored in the server. Therefore, our com-

munication scheme is secure and privacy-preserving, even if

sensitive data may be leaked to a malicious party due to the

intentional or unintentional behavior of the storage system or

the intrusion of an attacker.

VI. ANALYSIS OF PRIVACY PROTECTION SCHEME

In this section, we show that our communication scheme is

secure and privacy-preserving. We first give a formal security

model of the security and privacy protection communication

scheme.

Let di,j be the electric power consumption data measured

by smart meter i during time period [ti−1, ti]. For the security
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of these di,j’s, we adopt the normal definition that the unau-

thorized parties cannot learn any information about the value

of di,j. No trusted servers are required in our scheme. There-

fore, we assume that the servers are semi-honest and define

privacy-preserving as follows.

definition 1: The communication between smart meters

and servers in a smart grid is privacy-preserving if the

semi-honest servers can only compute the temporal sums
m
∑

j=1

di,j and the spatial sums
n
∑

i=1

di,j, but the servers do not

know the value of each di,j.

We now show that the privacy protection communication

scheme shown in Figure 2 can always accurately compute the

temporal sum for billing.

Theorem 1: The temporal aggregation for billing of each

meter i can be computed accurately by computing
n
∑

j=1

wi,j.

Proof:

n
∑

j=1

wi,j =
n

∑

j=1

di,j +
n

∑

j=1

si,j =
n

∑

j=1

di,j.

This is because the term,
n
∑

j=1

si,j = 0 for the (n, n)-threshold

scheme.

Next, we show that the spatial aggregation for electric

power distribution at time t can also be computed accurately.

Theorem 2: Assume that each meter is communicated with

some other meters in the same area for setting up ran-

dom noises to be added to its data. The spatial aggregation

for electric power distribution can be computed accurately

by
m
∑

i=1

wi,j.

Proof:

m
∑

i=1

wi,j =
m

∑

i=1

di,j +
m

∑

i=1

si,j =
m

∑

i=1

di,j.

In the above equation, the term
m
∑

i=1

si,j = 0, because it

includes both ski,j and sik,j, one is positive and the one is

negative, for every pair of meters i and k in that area.

To show that the privacy of all customers can be protected,

we model the communication pattern of smart meters by a

graph G = (V ,E). The vertex set V is the set of the mmeters

in that area, Let V = {1, 2, . . . ,m}. There is an edge between
i and k if, and only if, meter i and meter k communicate with

each other to establish randomnoises to be added to their data.

The graph G = (V ,E) is called the connection graph for

smart meters in the area.

Let G be the connection graph for some area in a smart

grid, and S be a subset of vertices in G. Let [S, S̄] denote the

set of edges with one endpoint in S and the other endpoint

not in S. Define D(S, j) to be the sum of measuring data sent

from all meters in area S at time j = 1, 2, . . . , n, that is,

D(S, j) =
∑

i∈S
wi,j.

For the proof of the privacy protection property of our

smart grid communication scheme, we first prove the follow-

ing theorem.

Theorem 3: Let G = (V ,E) be the connection graph for

some area in a smart grid, and S be a subset of V . The value

of D(S, j) can be computed accurately by the server, if and

only if [S, S̄] = ∅.
Proof: Consider the spatial sum with respect to S at

time j.
∑

i∈S
wi,j =

∑

i∈S
di,j +

∑

i∈S
si,j.

The last term,
∑

i∈S si,j = 0 if and only if [S, S̄] = ∅.
In other words, if [S, S̄] 6= ∅, then its value is the

sum of random numbers which are totally unknown to the

server. This implies that the server cannot compute the value

of D(S, t).

Based on the above theorem, we have the following corol-

lary, which gives another proof that, as long as each meter is

connected with some other meters in this area, the spatial sum

for electric power distribution can be computed accurately,

Corollary 3.1: The spatial sum for an area can be com-

puted accurately by the server if and and only if no meters in

this area is connected with meters in another areas.

Finally, we show that our privacy protection communica-

tion scheme preserves the privacy of all customers if every

meter can communicate with some other meters in the same

area.

Corollary 3.2: The value of di,j, j = 1, 2, . . . , n, cannot be

computed by the server, if and only if, meter i is connected to

some other meters.

According to Corollary 3.2, to protect the privacy of a

customer, every meter should be connected to some other

meters in the same area to set up random noise to be added

to its data before sending it to the server. In theory, this

is sufficient to protect the measuring data for every meter.

For example, if the connected component contains only two

meters, then the sum of the electric power usages of the

two meters can be computed, but the meter reading for each

meter remains secret. In practice, we may want to avoid small

connected component in the connection graph.

There are many ways to make sure that every meter is

connected in the connection graph. For example, the con-

nection graph can be an l-circulent graph, where l is a

small integer. In this graph, a pair of meters i and k

are connected if i − k ≡ β (mod m) for some β ∈
{α1, α2, . . . , αl}, where α1, α2, . . . , αl are l positive integers,

with gcd(m, α1, α2, . . . , αl) = 1. In particular, when l = 2,

the graph is also called a double-loop network. In this net-

work, eachmeter connects to 4 other vertices i±α1 and i±α2.

The connection graph can also be a random graph. In this

case, every meter i first sets a probability p. Then it tries to

send a request to set up random noise with other meter k

with probability p. The following theorem shows that, with

proper value of p, the graphGwill almost sure be a connected

graph [16].
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Theorem 4 Alon and Spencer: Let ǫ be a positive number,

and p be the probability that meters i and k establish random

noises to be added to their data. If p > ((1 + ε) ln n)/n,

then the connection graph G(V ,E) will almost surely be

connected.

In the case that some meter i cannot set up any random

number with other meters to generate noise to protect its data,

each such meter i can choose a number form the Laplace

distribution with mean 0 and variance Di. Even in this case,

our scheme can still ensure that the temporal sum for billing

is accurate, only the spatial sum may induce some errors.

In the extreme case, every meter cannot communicate with

other meters. This is equivalent to the case p = 0. When

this happened, for only the temporal sum, our communication

scheme degraded to Hale et al.’s scheme [12]. They showed

that the spatial sum is still useful for electric power distri-

bution, as long as the number of meters n in that area is

large. Note that, in our communication scheme, even in this

extreme case, the temporal aggregation for billing can still be

accurately computed.

VII. CONCLUSION AND DISCUSSION

We have presented a communication scheme for smart meters

in a smart grid to send their measuring data to the server in a

secure and privacy-preserving way. In our scheme, only one

set of measuring data is required to be sent to and stored in

the server. The same set of data can be used for computing the

temporal sum which is used for billing, and the spatial sum

which is used for electric power distribution. Smart meters

need to communicate with other meters to generate proper

amounts of noise to be added to the measuring data. When

a meter cannot communicate with other meters, it needs

to generate a random noise from a probability distribution

with mean 0. We have shown that, even if all meters cannot

communicate with each other, the temporal sum for billing

can still be computed accurately. The spatial sum used for

electric power distribution may have some errors, but still

useful for electric power distribution.

The main techniques used in our communication scheme

are secret sharing and differential privacy. Both these tech-

niques require only simple computations. The (n, n)-secret

sharing scheme used in our communication scheme is similar

to one-time pad encryption. Only addition is required to

do encryption, no modular exponentiation or other heavy

computations. Hashes may be required to compute some

random noises to reduce communications between smart

meters. Thus, addition and hashes are the only computa-

tions required by our scheme. Therefore, our scheme is a

lightweight scheme. It is more suitable for devices with low

computing resources.
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