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Abstract: Many certificateless signature schemes using bilinear pairings have been proposed. But 
the relative computation cost of the pairing is approximately twenty times higher than that of the 
scalar multiplication over elliptic curve group. In order to improve the performance we propose a 
certificateless signature scheme without bilinear pairings. With the running time being saved 
greatly, our scheme is more practical than the previous related schemes for practical application. 
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1. Introduction 

Public-key cryptography(PKC) has become one of the essential techniques in providing 
security services in modern communications. In traditional public-key cryptosystems, a pair of 
public/private keys should be computed by each user. Since the public key is a string of random 
bits, a digital certificate of the public key is required to provide public-key authentication. Anyone 
who wants to send messages to others must obtain their authorized certificates that contain the 
public key. However, this requirement brings lots of certificate management problems in practice. 

In order to simplify the public-key authentication, Shamir [1] introduced the concept of 
identity-based (ID-based) cryptosystem problem. In this system, each user needs to register at a 
key generator centre (KGC) with identify of himself before joining the network. Once a user is 
accepted, the KGC will generate a private key for the user and the user’s identity (e.g. user’s name 
or email address) becomes the corresponding public key. In this way, in order to verify a digital 
signature or send an encrypted message, a user only needs to know the “identity” of his 
communication partner and the public key of the KGC. However, this cryptosystem involves a 
KGC, which is responsible for generating a user's private key based on his identity. As a result, 
the KGC can literally decrypt any ciphertext or forge any user's signature on any message. To 
avoid the inherent key escrow problem in ID-based public key cryptosystem, Al-Riyami and 
Paterson [2] introduced a new approach called certificateless public key cryptography (CLPKC). 
The CLPKC is intermediate between traditional PKC and ID-based cryptosystem. In a 
certificateless cryptosystem, a user's private key is not generated by the KGC alone. Instead, it 
consists of partial private key generated by the KGC and some secret value chosen by the user. So, 
the KGC is unable to obtain the user's private key. In such a way that the key escrow problem can 
be solved. Intuitionally, CLPKC has nice features borrowed from both ID-based cryptography and 
traditional PKC. It alleviates the key escrow problem in ID-based cryptography and at the same 
time reduces the cost and simplifies the use of the technology when compared with traditional 
PKC. 

Following the pioneering work due to Al-Riyami and Paterson [2], several certificateless 
signature (CLS) schemes [3-10] have been proposed. All the above CLS schemes may be practical, 
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but they are from bilinear pairings and the pairing is regarded as the most expensive cryptography 
primitive. The relative computation cost of a pairing is approximately twenty times higher than 
that of the scalar multiplication over elliptic curve group [11]. Therefore, CLS schemes without 
bilinear pairings would be more appealing in terms of efficiency. 

In this paper, we present a CLS scheme without pairings. The scheme rests on the elliptic 
curve discrete logarithm problem (ECDLP).With the pairing-free realization, the scheme’s 
overhead is lower than that of previous schemes [3-10] in computation. 

2. Preliminaries 

Let the symbol / pE F  denote an elliptic curve E  over a prime finite field pF , defined 

by an equation  

baxxy ++= 32
， pFba ∈,              (1) 

and with the discriminant  

3 24 27 0a bΔ = + ≠ .                      (2) 

The points on / pE F  together with an extra point O  called the point at infinity form a 

group  

{( , ) : , , ( , ) 0} { }pG x y x y F E x y O= ∈ = ∪ .  (3) 

Let the order of G  be n . G is a cyclic additive group under the point addition “+” 

defined as follows: Let ,P Q G∈ , l  be the line containing P  and Q  (tangent line to 

/ pE F  if P  = Q ), and R , the third point of intersection of l  with / pE F . Let l′  be the 

line connecting R  and O . Then P  “+” Q  is the point such that l′  intersects / pE F  at 

R  and O  and P “+” Q. Scalar multiplication over E/Fp can be computed as follows:  

(  )tP P P P t times= + + +…              (4). 

The following problem defined over G  is assumed to be intractable within polynomial 
time. 

Eliptic curve discrete logarithm problem(ECDLP): For *
R nx Z∈ and P  the generator of 

G , given Q x P= ⋅  compute x . 



3. Our scheme 

3.1.Scheme Description 

A CLS scheme consists of seven algorithms[2]: Setup, Partial-Private-Key-Extract, 
Set-Secret-Value, Set-Private-Key, Set-Public-Key, Sign and Verify. Our scheme also consists of 
seven algorithms. These algorithms are described as follows. 

Setup: This algorithm takes a security parameter k as in put, and returns system parameters 
and a master key. Given k , KGC does the following.  

1) KGC chooses a k -bit prime p  and determines the tuple { , / , , }p pF E F G P  as 

defined in Section 2. 

2) KGC chooses the master private key *
nx Z∈  and computes the master public key 

pubP xP= . 

3) KGC chooses two cryptographic secure hash functions * *
1 :{0,1} nH Z→  and 

* *
2 :{0,1} nH Z→ . 

4) KGC publishes 1 2{ , / , , , , , }p p pubparams F E F G P P H H=  as system parameters and 

secretly keeps the master key s . 

Set-Secret-Value: The user with identity ID  picks randomly *
ID nx Z∈ , computes 

ID IDP x P= ⋅  and sets IDx  as his secret value. 

Partial-Private-Key-Extract: This algorithm takes master key, a user’s identifier, IDP , 

system parameters as input, and returns the user’s ID-based private key. With this algorithm, for 
each user with identifier ID , KGC works as follows. 

1) KGC chooses at random *
ID nr Z∈ , computes ID IDR r P= ⋅  and 

1( , , )ID ID IDh H ID R P= . 

2) KGC computes modID ID IDs r h x n= +  and issues { , }ID IDs R  to the users through 

secret channel. 

The user’s s partial private key is the tuple IDs  and he can validate her private key by 

checking whether the equation ID ID ID pubs P R h P⋅ = + ⋅  holds. The private key is valid if the 

equation holds and vice versa. 



Set-Private-Key: The user with identity ID  takes the pair ( , )ID ID IDsk x s=  as its private 

key. 

Set-Public-Key: The user with identity ID  takes { , }ID ID IDpk P R=  as its public key. 

Sign: This algorithm takes system parameters, user's private key ( , )ID ID IDsk x s= , and a 

message m  as inputs, returns a signature of the message m . The user does as follows. 

1) Choose at random *
nl Z∈  to compute R l P= ⋅ . 

2) Compute 2 ( , , , )ID IDh H m R P R= . 

3) Verify whether the equation gcd( , ) 1l h n+ =  holds. If the equation does not hold, 

return to step 1). 

4) Compute 1( ) ( ) modID IDs l h x s n−= + + . 

5) The resulting signature is ( ,R s ). 

Verify: To verify the signature ( , ,IDR R s ) for message m  and identity ID , the verifier 

first computes 1( , , )ID ID IDh H ID R P= , 2 ( , , , , )ID IDh H m R ID P R=  and then checks whether 

( ) ID ID ID pubs R h P P R h P⋅ + ⋅ = + +                   (5) 

Accept if it is equal. Otherwise reject. 

Since R l P= ⋅ , modID ID IDs r h x n= +  and 1( ) ( ) modID IDs l h x s n−= + + , we have  

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
ID ID

ID ID ID ID

ID ID ID ID ID pub

s R h P l h x s l P h P

l h x s l h P x s P
x P s P P R h P

−

−

⋅ + ⋅ = + + ⋅ ⋅ + ⋅

= + + ⋅ + ⋅ = + ⋅
= ⋅ + ⋅ = + + ⋅

      (6) 

Then the correctness of our scheme is proved. 

3.2.Security Analysis 

In CLS, as defined in [2], there are two types of adversaries with different capabilities, we 
assume Type 1 Adversary,  A 1 acts as a dishonest user while Type 2 Adversary, A 2 acts as a 
malicious KGC: 

Type 1 Adversary: Adversary A 1 does not have access to the master key, but A 1 can 
replace the public keys of any entity with a value of his choice, since there is no certificate 
involved in CLS. 

Type 2 Adversary: Adversary A 2 has access to the master key, but cannot replace any user's 
public key. 



Let A 1 and A 2 be a Type1Adversaryanda Type2Adversary, respectively. We consider two 
games Game 1 and Game 2 where A 1 and A 2 interact with its challenger in these two games, 
respectively. 

Game 1: This is the game where A 1 interacts with its challenger C: 

The challenger C takes a security parameter k  and generate master key and params , 

then sends params to A 1. A 1 acts as the following oracle queries: 

( )Create ID : This allows A to ask C to set up a new participant with identity ID . On 

receiving such a query, C generates the public/private key pair. 

( )Public Key ID− : A can request the public key of a participant whose identity is ID . In 

response, C outputs the public key IDpk . 

Partial - Private - Key Extract(ID)− : A can request the partial private key of a 

participant whose identity is ID . In response, C outputs the partial private key IDs . 

Secret - Key Extract(ID)− : A can request the private key of a participant whose identity 

is ID . In response, C  outputs the private key IDs . 

( , )IDPublic Key Replacement ID pk′− − : For a participant whose identity is iID , A can 

choose a new public key IDpk′  and then set IDpk′  as the new public key of this participant. C 

will record these replacements which will be used later. 

( , )Sign ID m : When a signing query for an identity ID on some message m  is coming, C 

uses the private key IDsk corresponding to the identity ID  to compute the signature S  and 

sends it to A 1. If the public key IDpk  has been replaced by A 1, then C cannot find IDsk  and 

thus the signing oracle's answer may be incorrect. In such case, we assume that A 1 additionally 

submits the secret value r′  corresponding to the replaced public key IDsk  to the signing oracle. 

Finally, A 1 outputs a signature S  on a message m  corresponding to a public key *ID
pk  

for an identity *ID  which is the challenged identity. A 1 wins the game if the following 

conditions hold: 

 *( , , , , ) 1
ID

Verify params ID m pk S =  

 （
*,ID m ) has never been submitted to the oracle Sign . 



 *ID  has never been submitted to  Partial - Private - Key Extract−  query and 

Secret - Key Extract−  query. 

An adversary A 1 is said to be an ( , , , ,c s ht q q qε )-forger if it has advantage at least ε  in 

the above game, runs in time at most t , and make at most cq , sq  and hq  Create , Sign  

and random oracle queries, respectively. A scheme is said to be ( , , , ,c s ht q q qε )-secure against A 

1 in the sense of unforgeable against chosen message attack if no ( , , , ,c s ht q q qε )-forger exists. 

Game 2: This is a game in which A 2 interacts with its challenger C. 
Setup: C runs Setup to generate a master key and params . C gives both params and the 

master key to A 2. C answers ( )Create ID , ( )Public Key ID− , 

Secret - Key Extract(ID)− , Partial - Private - Key Extract(ID)−  and 

( , )Sign ID m from A 2 like he does in Game 1. 

Finally, A 2 outputs a signature S  on a message m  corresponding to a public key *ID
pk  

for an identity *ID  which is the challenged identity ID . A 2 wins the game if the following 

conditions hold: 

 *
*( , , , , ) 1

ID
Verify params ID m pk S =  

 （
*,ID m ) has never been submitted to the oracle Sign . 

 *ID  has never been submitted to Secret - Key Extract−  query. 

An Type 2 adversary A 2 is said to be an ( , , , ,c s ht q q qε )-forger if it has advantage at least 

ε  in the above game, runs in time at most t , and make at most cq , sq  and hq  Create , 

Sign  and random oracle queries, respectively. A scheme is said to be ( , , , ,c s ht q q qε )-secure 

against A 2 in the sense of unforgeable against chosen message attack if no 

( , , , ,c s ht q q qε )-forger exists. 

We prove the security of our scheme in the random oracle model which treats 1H  and 2H  

as two random oracles [9] using the signature security model defined in [2]. As for the security , 
the following theorems are provided. 



Theorem 1. The proposed scheme is ( , , , ,c s ht q q qε )-secure against the adversary A 1 in the 

random oracle model, assuming that the ( , tε ′ ′ )-ECDL assumption holds in G , where 

( )c ht t O q q S′ = + + , 
) 1 1(1 )(1 )( )h c

h

q q
n q q

ε ε′ = − −  and cq , sq , hq are the number of 

Create ,  Sign  and hashing queries respectively the adversary is allowed to make and S  is 

the time for an scale multiplication operation. 
Proof: Suppose that there is a type 1 Adversar A 1 for an adaptively chosen message attack 

against our scheme. Then, we show how to use the ability of A 1 to construct an algorithm F 
solving the ECDLP. 

Suppose F is challenged with a ECDLP instance ( ,P Q ) and is tasked to compute *
nx Z∈  

satisfying Q x P= ⋅ . To do so, F picks an identity *ID  at random as the challenged ID  in 

this game, and gives 1 2{ , / , , , , , }p p pubF E F G P P Q H H=  to A 1 as the public parameters. 

Then F answers A 1’s queries as follows. 

( )Create ID  : F maintains a hash list CL  of tuple ( , , , , ,ID ID ID ID IDID R P s x h ). If ID  is 

on CL , then F  response with  ( , , , , ,ID ID ID ID IDID R P s x h ). Otherwise, F simulates the oracle 

as follows. It chooses *, , na b c Z∈  at random, sets ID pubR a P b P= ⋅ + ⋅ , IDP c P= ⋅ , 

IDs b= , IDx c= , 1( , , ) modID ID IDh H ID R P a n= ← − , response with 

( , , , , ,ID ID ID ID IDID R P s x h ), inserts ( , , ,ID ID IDID R P h )  into 
1HL . Note that ( , ,ID ID IDR s h ) 

generated in this way satisfies the equation ID ID ID pubs P R h P⋅ = + ⋅  in the partial private key 

extraction algorithm. It is a valid secret key.  

1H query− : F maintains a hash list 
1HL of tuple ( , , ,ID ID IDID R P h ) as explained below. 

The list is initially empty. When A 1 makes a hash oracle query on ID , if the query ID  has 

already appeared on 
1HL , then the previously defined value is returned. Otherwise, F queries 

( )iCreate ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and response with IDh . 

Partial - Private - Key Extract(ID)− : If *ID ID= , F  stop the simulation. Otherwise, 

F looks up the table CL . If ID  is on CL , then F  response with  IDs . Otherwise, F queries 



( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ). If *ID ID= , F  stops the simulation. 

Otherwise, F  response with IDs . 

( )Public Key ID− : F looks up the table CL . If ID  is on CL , then F  response with  

{ , }ID ID IDpk R P= . Otherwise, F queries ( )Create ID  with ID , gets  

( , , , , ,ID ID ID ID IDID R P s x h )  and response with { , }ID ID IDpk R P= . 

Secret - Key Extract(ID)− : If *ID ID= , F  stop the simulation. Otherwise, F looks up 

the table CL . If ID  is on CL , then F  response with  IDx . Otherwise, F queries 

( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and response with IDx . 

( , )IDPublic Key Replacement ID pk′− − : F maintains a hash list RL  of tuple 

( , , , , )ID ID ID IDID r R x P , which is initialized empty. When A 1 queries on input ( , IDID pk′ ), 

where ID IDR r P′ ′= ⋅ , ID IDP x P′ ′= ⋅  and ( , )ID ID IDpk R P′ ′ ′=  , F sets ,ID IDR R′=  ID IDP P′= , 

IDs =⊥  and ID IDx x′= . At last, F adds ( , , , , )ID ID ID IDID r R x P′ ′ ′ ′  to RL . 

2H query− : F maintains a hash list 
2HL  of tuple ( , , , , , )ID IDm R ID P R h . When A 1 

makes H2 queries for identity ID  on the message ( , , , ,ID IDm R ID P R ), F chooses a random 

value *
nh Z∈ , sets 2 ( , , , , )ID IDh H m R ID P R=  and adds ( , , , , , )ID IDm R ID P R h  to 

2HL , 

and sends h  to A 1. 

( , )Sign ID m : When a signing query on ( ,ID m ) is coming, F looks up the list RL . If ID  

is on RL , F  generates random numbers *, , na b c Z∈ , sets s a= , 1
ID pubR a h P−= , 

1
2 ( , , , ) ( )ID ID ID IDh H m R P R a r x−= ← + , insert ( , , , , )ID IDm R P R h  to 

2HL  and outputs 

( , )R s  as the signature. Otherwise, F acts like the description of the scheme, since F knows the 

private key of the user with identity ID . 

Finally, A 1 stops and outputs a signature (1){ , }S R s=  on the message m  with respect to 

the public key IDpk  for the identity ID , which satisfies the following equation 



( , , , , ) 1IDVerify params ID m pk S = . If *ID ID≠ , F outputs “failure” and aborts. Otherwise, 

F recovers the tuple ( , , ,ID ID IDID R P h ) from 
1HL , the tuple ( , ,ID IDID s pk′ ) from pkL  and the 

tuple (1)( , , , , , )ID IDm R ID P R h  from 
2HL . 

From the forgery lemma[12], if we have a replay of F with the same random tape but 

different choice of 2H  will output another two valid signatures (2){ , }R s  and (3){ , }R s . Then 

we have  

( ) ( )( ) , 1, 2,3i i
ID ID ID pubs R h P P R h P i⋅ + ⋅ = + + = ,           (7) 

By , , ,ID IDl x r x , we now denote discrete logarithms of R , IDP , IDR  and pubP  

respectively, i.e., R lP= , ID IDP x P= , ID IDR r P= , pubP xP=  and. 

( ) ( )( ) , 1, 2,3i i
ID ID IDs l h P x r h x i⋅ + ⋅ = + + =                 (8) 

In these equations, only , ,IDl r x  are unknown to F. F solves for these values from the above 

three linear independent equations, and outputs x  as the solution of the discrete logarithm 
problem. 

Reduction Cost Analysis: The simulation of the Create oracle fails if the random oracle 

assignment 1( , , )ID IDH ID R P  causes inconsistency. It happens with probability at most 

hq
n

.Hence, the simulation is successful cq  times with probability at least 

(1 ) 1cqh h cq q q
n n

− ≥ − . Due to the ideal randomness of the random oracle, there exists a query 

2 ( , , , , )ID IDH m R ID P R  with probability at least 
11
n

− . B  guesses it correctly as the point of 

rewind, with probability at least 
1

hq
. Thus, the overall successful probability is 

1 1(1 )(1 )( )h c

h

q q
n n q

ε− − . 

The time complexity of F is dominated by the exponentiations performed in the Create and 

Sign queries, which is equal to ( )c ht O q q S+ + . 

Theorem 2. The proposed scheme is ( , , , ,c s ht q q qε )-secure against the adversary A 2 in the 

random oracle model, assuming that the ( , tε ′ ′ )-ECDL assumption holds in G , where 



( )c ht t O q q S′ = + + , 
) 1 1(1 )(1 )( )h c

h

q q
n q q

ε ε′ = − −  and cq , sq , hq are the number of 

Create ,  Sign  and hashing queries respectively the adversary is allowed to make and S  is 

the time for an scale multiplication operation. 
Proof: Suppose that there is a type 2 Adversar A 2 for an adaptively chosen message attack 

against our scheme. Then, we show how to use the ability of A 2 to construct an algorithm F 
solving the ECDLP. 

Suppose F is challenged with a ECDLP instance ( ,P Q ) and is tasked to compute *
ny Z∈  

satisfying Q y P= ⋅ . To do so, F randomly picks a value *
nx Z∈  as the system master key, 

sets pubP x P= ⋅ , picks an an identity *ID  at random as the challenged ID  in this game, and 

gives the public parameters 1 2{ , / , , , , , }p p pubF E F G P P H H  and the system master key x  to  

A 2. Then  F answers A 2s queries as follows. 

( )Create ID : F maintains a hash list CL  of tuple ( , , , , ,ID ID ID ID IDID R P s x h ). If iID  is on 

CL , then F  response with  ( , , , , ,ID ID ID ID IDID R P s x h ). Otherwise, F simulates the oracle as 

follows. If *ID ID= , F chooses *, na b Z∈  at random, sets IDR aP= , IDP Q= , 

1( , , )ID ID IDh H ID R P b= ← , IDs a← , IDx ←⊥ . If *ID ID≠ , F chooses *, , na b c Z∈  at 

random, sets IDR a P= ⋅ , IDP b P= ⋅ , 1( , , )ID ID IDh H ID R P c= ← , ID IDs a x h= + ⋅ , 

IDx b= . At last F response with ( , , , , ,ID ID ID ID IDID R P s x h ), inserts ( , , ,ID ID IDID R P h )  into 

1HL .  

1H query− : F maintains a hash list 
1HL of tuple ( , , ,ID ID IDID R P h ) as explained below. 

The list is initially empty. When A 1 makes a hash oracle query on ID , if the query ID  has 

already appeared on 
1HL , then the previously defined value is returned. Otherwise, F queries 

( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and response with IDh . 

Partial - Private - Key Extract(ID)− : F looks up the table CL . If ID  is on CL , then F  

response with  IDs . Otherwise, F queries ( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and 

response with IDs . 



( )Public Key ID− : F looks up the table CL . If ID  is on CL , then F  response with  

{ , }ID ID IDpk R P= . Otherwise, F queries ( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and 

response with { , }ID ID IDpk R P= . 

Secret - Key Extract(ID)− : If *
iID ID= , F  stop the simulation. Otherwise, F looks up 

the table CL . If ID  is on CL , then F  response with  IDx . Otherwise, F queries 

( )Create ID , gets  ( , , , , ,ID ID ID ID IDID R P s x h ) and response with IDx . 

2H query− : F maintains a hash list 
2HL  of tuple ( , , , , , )ID IDm R ID P R h . When A 2 

akes H2 queries for identity ID  on the message ( , , , ,ID IDm R ID P R ), F chooses a random value 

*
nh Z∈ , sets 2 ( , , , , )j ID IDh H m R ID P R=  and adds ( , , , , , )ID IDm R ID P R h  to 

2HL , and 

sends h  to A 2 

( , )Sign ID m : When a signing query on ( ,ID m ) is coming , F acts like the description of 

the scheme if *ID ID≠ , since F knows the private key of the user with identity ID . If 

*ID ID= , F chooses random numbers *, na b Z∈ , sets is a= , 1( )ID IDR a R P−= + , 

1
2 ( , , , , )ID ID IDh H m R ID P R s h x−= ← ,  and response with ( ,R s ) as the signature. It easy to 

verify the signature is legal since ( ) ID ID ID pubs R h P P R h P⋅ + ⋅ = + + . 

Finally, A 2 stops and outputs a signature (1){ , }S R s=  on the message m  with respect to 

the public key IDpk  for the identity ID , which satisfies the following equation 

( , , , , ) 1IDVerify params ID m pk S = . If *ID ID≠ , F outputs “failure” and aborts. Otherwise, 

F recovers the tuple ( , , ,ID ID IDID R P h ) from 
1HL and the tuple (1)( , , , , , )ID IDm R ID P R h  from 

2HL . 

From the forgery lemma[12], if we have a replay of F with the same random tape but 

different choice of 2H  will output another valid signatures (2){ , }R s . Then we have  

( ) ( )( ) , 1, 2i i
ID ID ID pubs R h P P R h P i⋅ + ⋅ = + + = ,           (7) 



By , , ,IDl y r x , we now denote discrete logarithms of R ,
iIDP , 

iIDR  and pubP  respectively, 

i.e., R lP= , IDQ P yP= = , ID IDR r P= , pubP xP=  and. 

( ) ( )( ) , 1, 2i i
ID IDs l h P y r h x i⋅ + ⋅ = + + =                 (8) 

In these equations, only ,l y  are unknown to F. F solves for these values from the above 

three linear independent equations, and outputs y  as the solution of the discrete logarithm 
problem. 

Reduction Cost Analysis: The simulation of the Create oracle fails if the random oracle 

assignment 1( , , )ID IDH ID R P  causes inconsistency. It happens with probability at most 

hq
n

.Hence, the simulation is successful cq  times with probability at least 

(1 ) 1cqh h cq q q
n n

− ≥ − . Due to the ideal randomness of the random oracle, there exists a query 

2 ( , , , , )ID IDH m R ID P R  with probability at least 
11
n

− . B  guesses it correctly as the point of 

rewind, with probability at least 
1

hq
. Thus, the overall successful probability is 

1 1(1 )(1 )( )h c

h

q q
n n q

ε− − . 

The time complexity of F is dominated by the exponentiations performed in the Create and 

Sign queries, which is equal to ( )c ht O q q S+ + . 

4. Comparison with previous scheme 

In this section, we will compare the efficiency of our new scheme with three latest CLS 
schemes, i.e. Huang et al.’s scheme [8], Tso et al.’s scheme [9] and Du et al.’s scheme [10]. In the 
computation efficiency comparison, we obtain the running time for cryptographic operations using 
MIRACAL [13], a standard cryptographic library.  

The hardware platform is a PIV 3-GHZ processor with 512-MB memory and a Windows XP 
operation system. For the pairing-based scheme, to achieve the 1024-bit RSA level security, we 

use the Tate pairing defined over the supersingular elliptic curve 2 3/ :pE F y x x= +  with 

embedding degree 2 , where q  is a 160-bit Solinas prime 159 172 2 1q = + +  and p  a 

512-bit prime satisfying 1 12p qr+ = . For the ECC-based schemes, to achieve the same security 

level, we employed the parameter secp160r1[14], recommended by the Certicom Corporation, 



where 160 312 2 1p = − − . The running times are listed in Table 1, where sca.mul. stands for 

scalar multiplication. 
Table 1. Cryptographic Operation Time(in milliseconds) 

Modular 
exponentiation 

Pairing Pairing-based 
sca.mul 

ECC-based 
sca.mul. 

Map-to-point 
hash 

5.31 20.04 6.38 2.21 3.04 
To evaluate the computation efficiency of different schemes, we use the simple method from 

[15]. For example, the sign algorithm of our scheme requires one ECC-based scale multiplication; 
thus, the computation time of the sign algorithm is 2.21 × 1 = 2.21 ms; the verify algorithm has to 
carry out three ECC-based scalar multiplications, and the resulting running time is 2.21 × 3 = 6.63 
ms. As another example, in Huang et al.’s scheme[8], the sign algorithm should carry out a 
pairing-based scalar multiplications and a map-to-point hash computation; thus, the computation 
time for a client is 6.38  +3.04= 9.42 ms; the verify algorithm has to carry out three pairing, a 
map-to-point hash computation , then the resulting running time is 20.04 × 3 + 3.04 = 63.16 ms. 
Table 2 shows the results of the performance comparison. 

Table 2. Performance comparison of different schemes 
Running time  

Sign Verify 
Huang et al.’s 

scheme [8] 
9.42 ms 63.16 ms 

Tso et al.’s 
scheme [9] 

5.31 ms 48.39 ms 

Du et al.’s 
scheme [10] 

6.38 ms 26.40 ms 

Our scheme 2.21 ms 6.63 ms 
According to Table 2, the running time of the sign algorithm of our scheme is 23.46% of 

Huang et al.’s schemes, 41.62% of Tso et al.’s scheme and 34.64% of Du et al.’s scheme, the 
running time of the verify algorithm of our scheme is 10.50% of Huang et al.’s schemes, 13.70% 
of Tso et al.’s scheme and 25.12% of Du et al.’s scheme. Thus our scheme is more useful and 
efficient than the previous schemes[3-10]. 

5. Conclusion 

In this paper, we have proposed an efficient certificateless signature scheme without bilinear 
pairings. We also prove the security of the scheme under random oracle. Compared with previous 
scheme, the new scheme reduces both the running time. Therefore, our scheme is more practical 
than the previous related schemes for practical application. 
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