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ABSTRACT

Although coding-based public key encryption schemes such as McEliece and Niederreiter cryptosystems have been well
studied, it is not a trivial task to design an efficient coding-based cryptosystem with semantic security against adaptive
chosen ciphertext attacks (IND-CCA2). To tackle this challenging issue, in this paper, we first propose an efficient IND-
CCA2-secure public key encryption scheme based on coding theory. We then use the provable security technique to formally
prove the security of the proposed scheme is tightly related to the syndrome decoding (SD) problem in the random oracle
model. Compared with the previously reported schemes, the proposed scheme is merited with simple construction and fast
encryption speed. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Post-quantum cryptography (PQC), as a popular cryptog-
raphy terminology aiming at providing ‘Post-Quantum’
alternative to the currently existing number theory cryp-
tography [1--3], has obtained great attention in recent
years. In essence, PQC overlaps many existing cryptogra-
phy branches including coding-based cryptography [4,5],
lattice-based cryptography, hash-based cryptography, and
multivariate-quadratic-equations cryptography [6]. How-
ever, driven largely by the possible invention of a large
quantum computer in the near future, PQC becomes a
new buzz word in cryptography communities and these
non-number theory cryptography branches, especially the
coding-based cryptography, have brought renewed atten-
tion.

In coding-based cryptography, there are two well-
known public key encryption schemes, namely McEliece
and Niederreiter cryptosystems [4,5]. McEliece cryptosys-
tem was first proposed in 1978 [4], which represents
the first public key encryption scheme based on linear
error-correcting codes. Compared with the classical RSA
cryptosystem [7], the McEliece cryptosystem has two
advantages: (i) the speeds of both encryption and decryption
algorithms are faster; and (ii) with the increase of the key

size, the security level also grows much faster. Niederreiter
cryptosystem [5] is a dual encryption scheme proposed in
1986, which is not only ten times faster than the McEliece
cryptosytem in terms of encryption speed, but also equiv-
alent to the McEliece cryptosystem in terms of security.
Following these two seminal works, over the past years,
many efforts have been put in coding-based cryptography
[8--14]. For example, Stern has proposed a coding-based
zero knowledge identification scheme in 1993 [14]; Cour-
tois, Finiasz, and Sendrier have presented the first practical
coding-based signature scheme in 2001 [10]. More recently,
how to reduce the public key size and how to secure the
parameter choice in coding-based cryptography are also
deeply explored [15--19].

The semantic security (a.k.a indistinguishability) against
adaptive chosen ciphertext attacks (IND-CCA2) is the
strongest known notion of security for the public key
encryption schemes. However, in coding-based cryptog-
raphy, ‘IND-CCA2’ has not been widely discussed. To
the best of our knowledge, only a few papers have
touched this research issue [20--22]. Because McEliece
cryptosystem has some special architecture, some gen-
eral IND-CCA2 conversions [23,24], though they achieve
IND-CCA2 versions of McEliece cryptosystem, may incur
some redundancy. Therefore, Kobta and Imai have pro-
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posed two specific conversions to reduce the redundancy
[20]. Recently, Nojima et al. [21] have studied the seman-
tic for the McEliece cryptosystem without random oracles.
However, they only achieve the semantic security against
the chosen plaintext attacks and the tight reductions are
also questionable, especially for the Niederreiter cryptosys-
tem. In Reference [22], Dowsley et al. have also discussed
the CCA2 secure public key encryption scheme based on
the McEliece assumption in the standard model, but their
scheme needs some special constructions. Therefore, how
to design an efficient and IND-CCA2 secure coding-based
cryptosystem with/without random oracles is still worth of
investigation.

In this paper, we propose an efficient IND-CCA2 secure
public key encryption scheme based on coding theory. Con-
cretely, we design our scheme based on the syndrome
decoding (SD) problem, and use the provable security tech-
nique to get a tight reduction in the random oracle model
[25]. Compared with Niederreiter cryptosystem, only two
additional hash operations are required in the proposed
scheme. Thus, our scheme achieves fast encryption speed.

The remainder of this paper is organized as follows. In
Section 2, we formalize the definition of public key encryp-
tion and the corresponding security model. In Section 3, we
review the coding theory and the complexity assumption,
the base of our proposed scheme. In Section 4, we present
our efficient public key encryption scheme based on coding
theory, following by its formal security proof and parameter
selection in Section 5 and Section 6, respectively. Finally,
we draw our conclusions in Section 7.

2. DEFINITION AND SECURITY
MODEL

2.1. Notation

Let N = {1, 2, 3, . . .} denote the set of natural numbers,
and k∈N be a security parameter. An event is said to be
negligible if it happens with probability less than the inverse
of any polynomial in k. If n∈N, then 0n denotes the string of
n zeros. If x, y are strings, then |x| denotes the length of x,
[x]n denotes the n least significant bits of x, [x]n denotes the
n most significant bits of x, and x ⊕ y denotes the bit XOR if
|x| = |y|, while if S is a finite set, then |S| is its cardinality,

and s
R←− S indicates the process of selecting s uniformly

and at random in S. If A is a randomized algorithm, then
y ←− A(x1, x2, · · ·) denotes the processing of A on inputs
x1, x2, · · ·, and letting y denote its output.

2.2. Definition

In general, a public key encryption scheme PKE =
(Setup, Kgen, Enc, Dec) consists of four algorithms:

• The randomized setup algorithm Setup takes a security
parameter κ as input, and returns the system public

parameters params in a polynomial time of κ; we write

params
R←− Setup(κ).

• The randomized key generation algorithm Kgen takes
the system public parameters params as input, and
returns a pair (pk, sk) consisting of a public key and a
corresponding private key in a polynomial time of κ,

we write (pk, sk)
R←− Kgen(params).

• The randomized encryption algorithm Enc takes a pub-
lic key pk, a random number r, and a plaintext M as
input, and returns a ciphertext C in a polynomial time
of κ; we write C ←− Enc(pk, r, M).

• The deterministic decryption algorithm Dec takes the
private key sk and a ciphertext C as input, and returns
the corresponding plaintext M or a special symbol ⊥
indicating that the ciphertext was invalid in a poly-
nomial time of κ; we write x ← Dec(sk, C), where
x∈{M, ⊥}.

All algorithms should satisfy the standard consistency
constraint of public key encryption, i.e., for any message
M, Dec(sk, C = Enc(pk, r, M)) = M.

2.3. Security model

We recall the standard notion of security of public key
encryption schemes in terms of indistinguishability [26].
Concretely, we consider the security notion for a public key
encryption scheme is indistinguishable against the adaptive
chosen ciphertext attacks, call it the ‘IND-CCA2’ security
model for brevity.

Definition 1. (IND-CCA2) Let k and t be integers
and ε a real number in [0, 1], and PKE a secure pub-
lic key encryption scheme with the security parameter k.
Let A be an IND-CCA2 adversary, which is allowed to
access the decryption oracle OD (and some random ora-
cles OH1 , OH2 , · · · , in the random oracle model), against
the indistinguishability of PKE. We consider the following
random experiment:

Experiment Expind−cca2
PKE,A (k)

params
R←− Setup(k)

(pk, sk)
R←− Kgen(params)

(M0, M1, state) ←− AOD(,OH1 ,OH2 ,···)(params, pk)

b
R←− {0, 1}, Cb ←− Enc(pk, r, Mb)

b′ ←− AOD(,OH1 ,OH2 ,···)(params, pk, Cb, state)

if b = b′ then return b∗ ← 1 else b∗ ← 0
return b∗
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We define the success probability of A via

Succind−cca2
PKE,A (k) = 2Pr

[
Expind−cca2

PKE,A (k)
]−1

= 2Pr
[
b = b′]−1

PKE is said to be (k, t, ε)-IND-CCA2 secure, if no adver-
sary A running in time t has a success Succind−cca2

PKE,A (k) ≥ ε.

3. CODING THEORY AND
COMPLEXITY ASSUMPTION

Let F2 be the finite field with 2 elements {0, 1}, k∈N be a
security parameter, andCdenote an [n, k]-binary linear code
of length n and dimension k, i.e., a subspace of dimension
k of the vector space Fn

2. Elements of Fn
2 are called words,

and elements of C are called codewords. An [n, k]-binary
linear code is usually given in the form of a (n−k) × n

binary matrix H, lines of which form a basis of the code.
We call the syndrome of a word x = (x1, x2, · · · , xn)∈Fn

2 is
the quantity s = HxT computed by

s = (s1, s2, · · · , sn−k) = HxT

=




h11 h12 .. h1n

h21 h22 .. h2n

...
...

...
...

h(n−k)1 h(n−k)2 .. h(n−k)n


 ·




x1

x2
...

xn




If the quantity s = 0, i.e., HxT = 0, the word x =
(x1, x2, · · · , xn)∈Fn

2 is a codeword. The Hamming weight
of a word x = (x1, x2, · · · , xn)∈Fn

2 is referred to the number
of its non-zero positions, denoted as hw(x); the Hamming
distance between two words x = (x1, x2, · · · , xn)∈Fn

2 and
y = (y1, y2, · · · , yn)∈Fn

2 is the number of positions where
they differ, and denoted as dH (x, y); and the minimal dis-
tance of an [n, k]-binary linear code C is defined by d =
minx,y∈C dH (x, y). Then, the [n, k]-binary linear code C is
called [n, k, d] code. All [n, k, d] codes satisfy the Single-
ton bound which states that d ≤ n−k + 1 [27]. A binary
linear [n, k, d] code is ensured to exist as long as

d−2∑
j=0

(
n−1

j

)
< 2n−k

This is called the Gilbert-Varshamov (GV) bound. Note
that, random binary codes are known to meet the GV bound,
in the sense that the above inequality comes very close to
being an equality [28], and no available family of binary
codes can be decoded in subexponential time up to the GV
bound [27].

Syndrome Decoding Problem [27]: Let t ≤ 	 d−1
2 
, we

know that, for any syndrome s∈Fn−k
2 , there exists at most

one word x∈Fn
2 such that hw(x) ≤ t and HxT = s. A

syndrome s∈Fn−k
2 is said to be t-decodable in the [n, k, d]-

binary linear code C defined by H if there exists such a
word x. The SD problem is stated as follows: given an
(n−k) × n binary matrix H and a syndrome s∈Fn−k

2 , com-

pute a word x∈Fn
2 such that hw(x) ≤ t and HxT = s. Note

that, to ensure the hardness of SD problem, the parameters
should be carefully chosen [27,29,30].

Definition 2. (SD Assumption) Let C be an [n, k, d]-
binary linear code defined by a (n−k) × n binary matrix H
with the minimal distance d, and t ≤ 	 d−1

2 
. An adversary
that takes an input of a syndrome s∈Fn−k

2 , returns a word
s∈Fn−k

2 . We consider the following random experiment on
SD problem.

Experiment ExpSD
A

x∈Fn
2 ← A

(
H, s∈Fn−k

2

)

if hw(x) ≤ t and HxT = s

then b ← 1 else b ← 0
return b

We define the corresponding success probability of A in
solving the SD problem via

SuccSD
A = Pr

[
ExpSD

A = 1
]

Let τ∈N and ε∈[0, 1]. We call SD to be (τ, ε)-secure if
no polynomial algorithm A running in time τ has success
SuccSD

A ≥ ε.
Parameters of Goppa Codes: Goppa codes are subfield

subcodes of particular alternant codes. For given integers
m, t∈N, binary Goppa codes are of length n = 2m and with
the dimension of k = n−mt. Let Fm,t denote the family
of such Goppa codes, then we have |Fm,t | = 2tm

t
. Since

their algebraic structure can be efficiently hidden and pro-
vide a good t-decoding algorithm, Fm,t are good candidates
for constructing efficient cryptographic algorithms. In the
next section, we will use the Goppa codes to designed our
efficient and provably secure public key encryption scheme.

4. PROPOSED PUBLIC KEY
ENCRYPTION SCHEME BASED ON
CODING THEORY

In this section, we present our public key encryption PKE
scheme based on coding theory, which can be regarded
as the CCA2 version of Niederreiter cryptosystem [5] and
mainly consists of four algorithms, namely Setup, Kgen,
Enc, and Dec, as shown in Figure 1.

Setup. Given the security parameter κ, four integers
(m, t, k0, k1)∈N are chosen such that the t-decoding in
a Goppa code of length n = k0 + k1 = 2m, of dimension
k = 2m−mt has complexity at least 2κ [10]. In addition, two
secure cryptographic hash functions H1,H2 are also cho-
sen, where H1 : {0, 1}∗ → {0, 1}k0+k1 and H2 : {0, 1}∗ →
{0, 1}k0+k1 . In the end, the system parameters params =
(m, t, k0, k1,H1,H2) are published.

Kgen. Given the system parameters params =
(m, t, k0, k1,H1,H2), choose a random binary Goppa code
C0 from the Goppa code family Gm,t . Let H0 be a parity
check matrix of C0 and �H0 be a t-decoding algorithm in C0.
In addition, a random non-singular mt × mt binary matrix
U and a random permutation matrix P of size 2m × 2m are
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Figure 1. Proposed public key encryption scheme based on coding theory.

also chosen. Set the private key sk = (�H0 ,U,P) and the
corresponding public key pk as H = UH0P.

Enc. Given a message M∈{0, 1}k1 and the public key
H, choose a random number r∈{0, 1}k0+k1 , and execute the
following steps:

• compute x∈{0, 1}k0+k1 , where x = (0k0 ||M) ⊕ H1(r),
• compute (α, β) such that α = H(x ⊕ β)T ∈Fmt

2 , B =
r ⊕ H2(x),

• set the ciphertext C = (α, β).

Dec. Given a ciphertext C = (α, β) and the private key
(�H0 ,U,P), the following steps are executed:

• compute y′ = PyT = �H0 (U−1α),
• compute y = y′P−1, x = y ⊕ B, and β ⊕ H2(x) = r,
• compute x ⊕ H1(r), if [x ⊕ H1(r)]k0 is 0k0 , parse x ⊕

H1(r) as 0k0 ||M, i.e., M = [x ⊕ H1(r)]k1 ; otherwise
output ⊥ indicating an invalid ciphertext.

Compared with Niederreiter cryptosystem [5], only two
additional hash operations are required. As a result, the
encryption speed of the proposed scheme is as fast as
Niederreiter cryptosystem.

5. SECURITY PROOF

In this section, we prove that the proposed scheme is IND-
CCA2-secure in the random oracle model, where the hash
functions H1 and H2 are modelled as random oracles [25].

Theorem 1. Let A be an adversary against the proposed
PKE scheme in the random oracle model, where the hash
functions H1 and H2 behave as random oracles. Assume
thatA has the success probabilitySuccind−cca2

PKE,A ≥ ε to break
the indistinguishability of the ciphertext C = (α, β) within
the running time τ, after qH1 , qH2 and qD queries to the
random oracles OH1 , OH2 and the decryption oracle OD,
respectively. Then, there exist ε′∈[0, 1] and τ ′∈N as follows

ε′ = SuccSD
A (τ ′) ≥ ε

2 − 2q2
D

+qD ·(qH1 +qH2 )+qH1
2k0+k1

− qD(qD+qH1 )

2k1
, τ ′ ≤ τ + �(.)

(1)

such that the SD problem can be solved with probability
ε′ within time τ ′, where �(.) is the time complexity for the
simulation.

Proof. We define a sequence of games Game0, Game1,
· · · of modified attacks starting from the actual adversary
A [31,32]. All the games operate on the same underly-
ing probability space: the system parameters params =
(m, t, k0, k1,H1,H2) and public key H, the coin tosses of
A. Let (H, s∗∈Fmt

2 ) be a random instance of SD problem, we
will use these incremental games to reduce the SD instance
to the adversary A against the IND-CCA2 security of the
ciphertext C = (α, β) in the proposed PKE scheme.

Game0 : This is the real attack game. In the game, the
adversary A is fed with the system parameters params =
(m, t, k0, k1,H1,H2) and public key H = UH0P. In the
first phase, the adversary A can access to the random ora-
cles OH1 , OH2 and the decryption oracle OD for any input.
At some point, the adversary A chooses a pair of mes-
sages (M0, M1)∈{0, 1}k1 . Then, we randomly choose a bit
b∈{0, 1} and produce the message M� = Mb’s ciphertext
C� = (α�, β�) as the challenge to the adversaryA. The chal-
lenge comes from the public key H and one random number
r�∈{0, 1}k0+k1 , and α� = H(x� ⊕ β�)T , β� = r� ⊕ H2(x�)
with x� = (0l0 ||M�) ⊕ H1(r�). In the second stage, the
adversary A is still allowed to access to the random ora-
cles OH1 , OH2 and the decryption oracle OD for any input,
except the challenge C� toOD. Finally, the adversaryA out-
puts a bit b′∈{0, 1}. In any Gamej , we denote by Guessj

the event b = b′. Then, we have

ε ≤ Succind−cca2
PKE,A = 2Pr[b = b′] − 1

= 2Pr[Guess0] − 1

Pr[Guess0] ≥ ε

2
+ 1

2
(2)

Game1 : In this game, we simulate the random oracles
OH1 , OH2 , and the decryption oracle OD, by maintaining
the lists H1-List, H2-List and D-List to deal with the iden-
tical queries. In addition, we also simulate the way that the
challenge C� is generated as the challenger would do. The
detailed simulation in this game is described in Figure 2.
Because the distribution of (params,H) is unchanged in
the eye of the adversary A, the simulation is perfect, and
we have

Pr[Guess1] = Pr[Guess0] (3)
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Figure 2. Formal simulation of the IND-CCA2 game against the proposed PKE based on coding theory.

Game2 : In this game, we modify the simulation of
the decryption oracle OD by outputting a random message
M∈{0, 1}k1 when the ciphertext C = (α, β) has not been
‘correctly’ encrypted.

The two games Game2 and Game1 are perfectly indis-
tinguishable unless x is already in OH2 . Because h1 is

queried from OH1 and behaves uniformly, we can con-
sider x∈{0, 1}k0+k1 a uniform random variable as well. So,
the probability that x has already been queried to OH2 is
bounded to (qD + qH2 )/2k0+k1 , then,

|Pr[Guess2] − Pr[Guess1]| ≤ qD(qD + qH2 )

2k0+k1
(4)

Game3 : In this game, we modify the simulation of the
decryption oracleOD without resorting to the random oracle
OH1 .

Security Comm. Networks (2010) © 2010 John Wiley & Sons, Ltd.
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The two games Game3 and Game2 are perfectly indis-
tinguishable unless r is already in OH1 . Because h2 is
randomly chosen, we consider r∈{0, 1}k0+k1 as a uniform
random variable, So, the probability that r has been queried
to OH1 is bounded to (qD + qH1 )/2k0+k1 , then,

|Pr[Guess3] − Pr[Guess2]| ≤ qD(qD + qH1 )

2k0+k1
(5)

Game4 : In this game, we modify the rule Dec-noR in
the decryption oracle OD simulation without resorting to
the random oracle OH1 .

The two games Game4 and Game3 are perfectly indis-
tinguishable unless (r, h1) is already in OH1 . Because [h1]k0

is known to the adversary A due to h1 = (0k0 ||M) ⊕ x, we
consider [h1]k1∈{0, 1}k1 as a uniform random variable, then
the probability that r has been queried to OH1 is bounded
to (qD + qH1 )/2k1 , then,

|Pr[Guess4] − Pr[Guess3]| ≤ qD(qD + qH1 )

2k1
(6)

Game5 : In this game, we modify the rule Dec-Init in
the decryption oracle OD simulation.

The two games Game5 and Game4 are perfectly indis-
tinguishable. If (x, h2) is found in H2-List, the answer of
the decryption oracle OD is the same as that in Game1.
If (x, h2) is not found, i.e., x = ⊥, and h2 = ⊥, the answer
of the decryption oracle OD is returning a random message
M∈{0, 1}k1 as that in Game2. Therefore, we have

Pr[Guess5] = Pr[Guess4] (7)

Game6 : In this game, we manufacture the challenge
C� = (α�, β�) by first choosing the random value of r� ahead
of time.

The two games Game6 and Game5 are perfectly indis-
tinguishable unless r� has been asked forH1. We define this
event AskH(6)

1 , then we have

|Pr[Guess6] − Pr[Guess5]| ≤ Pr[AskH(6)
1 ] (8)

In this game, h+
1 is only used in x�, but does not appear in

the computation since H1(r+) is not defined to be h+
1 . Then,

the distribution of C� = (α�, β�) doesn’t depend on b. As a
result, we have

Pr[Guess6] = 1

2
(9)

Game7 : In this game, instead of defining x� from h�
1, we

randomly choose x� firstly and define h�
1 from x�. Because

x� is randomly chosen, we give a random answer for the
question x� to H2.

The two games Game7 and Game6 are perfectly indis-
tinguishable unless x� has been asked forH2. We define this
event AskH(7)

2 , then we have

∣∣Pr[AskH(7)
1 ] − Pr[AskH(6)

1 ]
∣∣ ≤ Pr[AskH(7)

2 ] (10)

In this game, h�
1 = (0k0 ||M�) ⊕ x+ is uniformly dis-

tributed, and independently of the view of the adversary
A, since x+ hasn’t been revealed. Therefore, we have

Pr[AskH(7)
1 ] = qH1

2k0+k1
(11)

Game8 : In this game, instead of defining β� from h�
2,

we randomly choose β� and then we define h+
2 from β�.

Security Comm. Networks (2010) © 2010 John Wiley & Sons, Ltd.
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Table 1. The sizes of plaintext/ciphertext and public key under the typical McEliece/Niederreiter parameters.

(m, t) n = 2m k = n−mt Plaintext size M Ciphertext size C Public key size H

(10, 50) 1024 bits 524 bits k1 < 1024 bits 1524 bits 62.5 kbytes
(11, 32) 2048 bits 1696 bits k1 < 2048 bits 2400 bits 88 kbytes
(12, 41) 4096 bits 3604 bits k1 < 4096 bits 4588 bits 246 kbytes

In this game, the distribution of C� = (α�, β�) is
unchanged. Therefore, we have

Pr[AskH(8)
2 ] = Pr[AskH(7)

2 ] (12)

Game9 : In this game, we embed the SD challenge
(H, s∗∈Fmt

2 ) in the game by setting α� = s∗.

Clearly, the distribution of C� = (α�, β�) is still
unchanged. Therefore, we have

Pr[AskH(9)
2 ] = Pr[AskH(8)

2 ] (13)

In this game, when the event AskH(9)
2 takes place, i.e.,

there exists an x+∈{0, 1}n such that α� = s∗ = H(x+ ⊕
β+)T has been queried to OH2 . Then, such an x∗ = x+ ⊕
β+∈{0, 1}n is just the SD challenge. As a result, we have

Pr[AskH(9)
2 ] ≤ SuccSD

A (τ ′) = ε′ (14)

Summarizing all the above cases, we have

ε′ = SuccSD
A (τ ′) ≥ ε

2 − 2q2
D

+qD ·(qH1 +qH2 )+qH1
2k0+k1

− qD(qD+qH1 )

2k1

(15)

and the running time τ ′ ≤ τ + �(·), where �(·) is the
time complexity for the simulation. This completes the
proof.

6. SELECTION OF PARAMETERS

Parameter selection is imperative for the security of coding-
based cryptography. If the parameters are not properly
chosen, a coding-based system could suffer from threaten-
ing attacks based on either Information Set Decoding (ISD)
or Generalized Birthday Algorithm (GBA) [18,33]. Since
the decryption of the proposed scheme requires knowing
one and only one solution for an SD problem, the GBA-
based attacks can be ruled out [18]. Therefore, to resist
the possible ISD-based attacks, some typical parameters
used in McEliece be chosen for the proposed scheme. Then,
the sizes of the public key, plaintext, and ciphertext can be
calcuated, as shown in Table 1.

From the table, we can see that, though the sizes of the
public keys are relatively large, the construction of the pro-
posed scheme makes the speed of CCA2-secure encryption
almost as fast as that of McEliece/Nederreiter cryptosys-
tems. Furthermore, the recent works by Bender et al. [15]
and Misoczki and Barreto [19] can be used to reduce the
sizes of public key coding-based cryptography, which can
make the coding-based cryptosystems more practical.

7. CONCLUSIONS

In this paper, we have proposed an efficient public key
encryption scheme based on coding theory, and formally
shown its IND-CCA2 security in the random oracle model.
Since the size of the public key H in the proposed scheme
is relatively large, our future work will focus on reducing
the key size [15,19].
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