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AN EFFICIENT AND ROBUST ADAPTIVE ESTIMATOR
OF LOCATION:!

By RUDOLF BERAN
University of California, Berkeley

A nonparametric minimum Hellinger distance estimator of location is
introduced and shown to be asymptotically efficient at every symmetric
density with finite Fisher information. Under small, possibly asymmetric,
perturbations in such a density, the estimator is asymptotically robust in
a technical sense which extends Hajek’s concept of ‘‘regularity.” A nu-
merical example illustrates the computational feasibility of the estimator
and its resistance to an arbitrary single outlier.

1. Introduction. Random variables X, X, - - -, X, are observed. Asa model
for the data, it is postulated that the {X,} are independent identically distributed
with density belonging to the location family { f(x — 9): —0 <0< oo}, fsym-
metric about zero and absolutely continuous with I(f) = § [ f'(x)]*/f(x) dx < oo.
Apart from the requirements of symmetry and finite /(f), f is unspecified. An
estimator 4, of 6 is sought that possesses two desirable properties:

(1 9,, is asymptotically efficient under the model. Technically,

(0, — 0) = n~(f) i —f'(X: — O)AX; — 0) + 0,(1)
under every symmetric density f(x — ) belonging to the model.
(2) 4, is robust under small departures from the model. The distribution of
6, does not change much if the distribution of each X, is deformed from an
initial symmetric shape into an arbitrary nearby shape.

Historically, the notion of a robust location estimator has been defined in
several different ways, one of which amounts to property (1) above (see Huber
(1972) for a review of robustness definitions). However, since property (1) says
nothing about the behavior of 8, under even slightly asymmetric distributions,
we view (1) as an asymptotic efficiency property under the model of symmetry
rather than as a robustness property. Our preferred robustness concept, property
(2), is a local stability in distribution requirement first formalized by Hampel
(1971). The aim here is to guard against substantially wrong inferences based
upon d_ if the assumed model is not quite correct. The mathematical formula-
tion of robustness used in this paper is a strengthened version of Hajek’s (1970)
concept of regularity.
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Estimators of § which satisfy requirement (1) have been the goal of several
investigations since Stein (1956) suggested the possibility of constructing such
fully efficient adaptive estimators. Papers concerned with this specific problem
include van Eeden (1970), Weiss and Wolfowitz (1970), Takeuchi (1971),
Fabian (1973), Beran (1974), Johns (1974), Sacks (1975), and Stone (1975). The
analogous two-sample location shift problem, which does not require symmetry
of the data distribution, has been treated by Bhattacharya (1967), Weiss and
Wolfowitz (1970), Beran (1974), Samanta (1974), and the two-sample scale
change problem has been studied by Wolfowitz (1974).

The first group of papers cited vary considerably in their assumptions and, to
a lesser extent, in their results. Most of the constructions use additional assump-
tions on the density beyond those needed to state the efficiency results. Two of
the papers (Beran (1974), Stone (1975)) have shown that there exist location
estimators which possess property (1) without any further regularity assump-
tions on f. Moreover, Stone proved for his estimator the desirable additional
property that n#(f, — 6) —, 0 under every symmetric distribution that does not
have finite Fisher information.

Little is known theoretically about the robustness or distributions of one-
sample adaptive location estimators under asymmetric distributions. A priori,
it seems likely that the efficiency property (1) need not entail the robustness
property (2). Huber (1974) has commented on the possible nonconvergence of
the Jaeckel (1971b) adaptive estimator under certain asymmetric distributions.
However, this difficulty can be avoided with many of the adaptive estimators
cited above.

Any good location estimator, whether adaptive or not, can be expressed as
a sample-size dependent functional of the empirical cdf, this being a sufficient
statistic. Such an estimator’s rate of convergence to its asymptotics will depend
upon the nature of the corresponding functional sequence and upon the nature
of the actual distribution; however, this dependence has not been analyzed to
date. Monte Carlo results, such as those given by Stone (1975), suggest that
the distribution of a well-designed adaptive location estimator could converge
fairly quickly to its limiting form over an interesting subset of the set of all
symmetric densities.

This paper presents a new, intuitively appealing, adaptive estimator 9n which
possesses property (1) without further assumptions on the density. Moreover,
asymptotic calculations indicate that 8, is robust under small perturbations of
the density. The results of these calculations include the asymptotic distribu-
tions of 4, under fixed, possibly asymmetric, densities as well as the asymptotic
distributions of 4, under sequences of fairly arbitrary densities contiguous to a
given symmetric shape. A numerical example at the end of the paper illustrates
the computational feasibility of the estimator and its resistance to an arbitrary
single outlier.
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Let §,(x) denote a suitable estimator of the density of X, (a precise definition
of g, will be given in Section 2). The location estimator 8, is defined as that
value (or values) which minimizes over all real ¢ the Hellinger distance between
g.(x)and §,(—x + 2¢). Note that §,(—x + 2¢) is simply the reflection of §,(x)
about the point 7 on the real line and that the square of the Hellinger distance
in question is § [§,}(—x + 2¢) — §,}x)] dx. Equivalently, 4, maximizes over
all real ¢ the inner product § g (—x + 21)g,¥(x) dx.

The significance of the Hellinger metric in the definition of #, may be ap-
preciated by considering the location estimator ¢, * defined analogously in terms
of the Kolmogorov metric: 6,* minimizes sup, |l — G,((—x + 26)7) — G (x)|
over all real r, where G, is the empirical cdf. The limiting distribution of
n}(6,* — 6) under a symmetric density, established in implicit form by Rao,
Schuster and Littel (1975), is complicated and differs from that of n¥(d, — 6);
unliked,, 8,* is not asymptotically efficient under symmetric densities with finite
Fisher information.

There is an interesting link between the adaptive estimator 6, and the class
of parametric estimators considered in Beran (1977b). Let {g,: fe B C R¥}
denote a parametric family of densities, the functional form of g, being known.
The minimum Hellinger distance estimator 3, of § is defined as that value (or
values) of s which minimizes § [g,}(x) — §,%(x)]* dx over all se B, §,(x) being a
density estimator. This parametric procedure admits formal extensions to models
having a countable infinity of unknown real parameters. For instance, let the
parameter space B consist of all pairs 8 = (6, f), where — o0 < 0 < oo and f
is a density symmetric about zero. Define the family {g,: 8 € B} through the
requirement g,(x) = f(x — #) when 8 = (0, f). It is easily checked that the
choices of real # and symmetric density f which minimize the Hellinger distance
between g, and §, are, respect'ively, the adaptive estimator 9% and the symmetric
density which is proportional to [§,}x + ¢,) + §.}(—x + ¢,)].

Estimators analogous to #, can be defined for location and scale change in
nonparametric two-sample location-scale models and for regression parameters
in nonparametric linear models. The asymptotic efficiency and robustness of
these estimators remains to be checked.

2. The estimator and consistency. The density estimator used in this paper
to construct the adaptive location estimator 8, is a smoothly truncated version
of a standard window estimator. To be specific, let 5(x) be a function satisfying
the following assumption:

Al. b(x) has range [0, 1], is symmetric about zero with 5(0) = I, vanishes
outside [ — 1, 1], and is twice absolutely continuous with 4”(x) bounded on the
real line.

An example of such a function is provided by 5(x) = (I — x*)’ for x| < 1 and
b(x) = 0 otherwise. Let {a,: n = 1} be a sequence of positive constants and
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define 6,(x) by

b(x)=1 if |x]<a,
(2.1) = b(x — a,) if a,<x<a,+1
= b(x + a,) if —a,—-1Zx< —a,
=0 otherwise.

Let w(x) be a function which has the following properties:

A2. w(x) is a nonvanishing density, symmetric about zero, absolutely con-
tinuous, and the ratio w/(x)/w(x) is bounded over the real line.

For instance, w(x) might be the double-exponential or Cauchy densities. Let
{c,: n = 1} be a sequence of positive constants and define §,(x) by
(2:2) 5,(x) = [(ne,)™ Do wle,(x — X))t

We will suppose throughout that the {X,: 1 < i < n} are independent iden-
tically distributed random variables with density g. Let {2, denote a preliminary
location estimator that has the following properties:

A3. For every density, g, there exists a location functional g such that
n¥(g, — p(g)) = O,(1) when the {X,} are distributed according to g. Moreover
#(g) is the center of symmetry whenever g is symmetric.

Location estimators that satisfy this assumption can be found readily. Some
examples are discussed in Section 4 following assumption AS.

Finally, define the density estimator §,(x) by

(2.3) Gu(x) = 4,h,%(x),
where .

A, = {h(x)dx.

For later use, it is convenient to define the analogous functions

(2:5) () = [€,7 § w(e, ™ (x — »))a(y) dy]
and
(2-6) h(x) = s, (x)bu(x — 1(9)) -

The location estimator §, is taken to be that value (or values) of
real ¢ which maximizes { §,}(—x 4 2)§,}(x) dx or, equivalently, maximizes
{ A (—x + 26)h,(x)dx. It remains to verify that this definition is possible. Let
& denote the set of all nonnegative square integrable functions which are con-
tinuous a.e. and have nonzero L,-norm. Let denote the L,-norm. Define
a functional T by the requirement that for every k ¢ &

(2.7) § k(—x + 2T(k))k(x) dx = max, { k(—x + 20)k(x) dx .

The sense of this definition is clarified by the following result,
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LEMMA 1. For k ¢ ‘&, the set of real values T(k) which satisfy (2.7) is nonempty
and compact. If k is symmetric, T(k) is uniquely the center of symmetry.

PrROOF. Set r(f) = § k(—x + 2t)k(x)dx. For every sequence {t,: 7, € R, t, — 1}
(2.8) (r(1,) — H(O) < [|kl]? § [k(—x + 22,) — k(—x + 20 dx.

By Vitali’s theorem and the continuity a.e. of k, the right side of (2.8) converges
to zero. Hence r is continuous and achieves a maximum on every compact
subset of the real line. Moreover, lim,_,., 7(f) = 0 and r(f) = 0 is not possible
for any k € &. Hence, r(f) achieves a maximum over all real ¢ and the maxi-
mizing value or values lie within a compact subset of the real line. By continuity
of r, the values of T(k) form a closed set and, therefore, a compact set.

The second assertion of the lemma is immediate.

It is not known what functions k, other than symmetric k, determine the value
of T(k) uniquely. An example of an asymmetric k which has unique 7'(k) occurs
when k is the square root of a chi-squared density with two or more degrees of
freedom.

Since §, = T(I?n) and 4, is continuous under assumptions Al, A2, the defini-
tion of 4, is not vacuous but may not be unique. This possible nonuniqueness
does not cause much difficulty when the distribution is symmetric, but it is
awkward, theoretically, for asymmetric distributions. The uniqueness problem
could be resolved by replacing 8, with the related iterated estimator (as will be
done computationally in Section 5). However, this solution has two drawbacks:
it loses the intuitive appeal of the present estimator and it leads to messier as-
ymptotics under asymmetric densities. We will persist, therefore, with 9n.

The next result shows that the functional T possesses a form of continuity on
itsdomain Z". Let T*(k) denote the set whose elements are the values of T(k).
Let d(x, y) denote Euclidean distance between real x and y and, for every k ¢ &~
and every ¢ > 0, let

(2.9) T*(k,e) = {xe R: d(x, y) < ¢ for some ye T*(k)}.

LEMMA 2. For every sequence {k, € &’} converging to k € & in the L,-metric and
for every e > O, there exists n, such that T(k,) € T(k, ¢) for every n = n,. In par-
ticular, if T(k) is uniquely defined, every value of T(k,) converges to T(k) asn — oco.

ProoF. Set r, (1) = § k,(—x + 20)k,(x) dx and define r(r) as in the proof of
Lemma 1. By the L,-convergence of {k,},

(2.10) lim, ., sup, |r,(1) — r(1)] = 0,

which implies that max, r,(r) — max, r(f) —0 or, equivalently, r,[T(k,)] — r[T(k)]
for every value of T(k,) and T(k) respectively. Since (2.10) also implies that
r[T(k,)] — r[T(k,)] — 0, we conclude that

(2.11) tim, ., /[T(k,)] = r[T(k)] .

If the first lemma assertion is false, there exists a sequence {f#,: @, is a value
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of T(k,)} and an ¢ > 0 such that {6} fails to remain in T*(k, <) for all sufficiently
large n. The sequence {#,} does, however, remain within some compact set
K < R; if it did not, there would exist a subsequence {f,} < {6,} such that
0, — + o0, in which event r(0,) — 0. This would contradict (2.11), since
r[T(k)] > 0.

Since X is compact and T*(k, ¢) is open, there exists another subsequence
{0,}  {0.} such that 6, — 6 ¢ K and 0 ¢ T*(k, ¢) for some ¢ > 0. By continuity
of r and (2.11),

(2.12) lim, .. /0,) = r(6) < r[T(k)] = lim,__ r(6,).

This contradiction establishes the first lemma assertion; the second assertion is
immediate.
The following theorem describes a consistency property of the estimator 4.

THEOREM 1. Suppose assumptions A1, A2, A3 are fulfilled, the density g is con-
tinuous, and

n—oo T

(2.13) lim, ¢, =0, lim, ., a, = oo, lim,_, ntc, = co .

Then for every ¢ > 0, ’

(2.14) lim,_., P,[T*(h,) C T*(g}, ¢)] = 1.

In particular, if T(gt) is uniquely defined, then every value of @ —, T(g*) under g
as n-— co.

Proor. Let G, be the empirical cdf of the {X,}, let G be the cdf of g, and let

B,(x) = n¥G,(x) — G(x)). Since
(2.15) 18 x) = 5.2 (x)[b.(x — f,) < n~ie, " sup, [B(1)] § [w/(2)] dz
and

(2.16)  [b.%(x — f,) — b, (x — p(9))I5.}(x)
< 2@, — w(g)| sup, |b,(9)] § w(2)a(x — ¢,2) dz ,
there exist versions of the {ﬁ%}, defined on a suitable probability space, such that
sup, |A,}(x) — h,(x)) -0 w.p. 1 as n— co. A construction of such versions:
Let v: R —[0, 1] be a continuous, strictly monotone function and let d(1) =
(A, - YD) — (h, - v7(7))* on [0, 1]. The processes {d,(1)} converge weakly in
C[0, 1] to the zero process because by (2.15) and (2.16), sup, |4,()] — 0 in
probability. Thus, there exist versions of the {d (1)}, say {d,*(#)}, for which
sup, [d,*(f)) — 0 w.p. 1 (Skorokhod (1956), Theorem 3.1.1, page 281). The
desired version of 4, is defined as the positive square root of d,* - v(x) + h,%(x).
Evidently,

217)  hXx) — g(x) = bx — (0)) § [9(x — €,2) — g(x)w(z) dz
— [ — b,3x — (0)]o(x)

tends to zero for every x as n— oco. Hence, for the above versions,
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P,[lim, ., A,(x) = gi(x) for every x] = 1. Since ||4,]| < 1 = ||g||, Vitali’s the-

orem implies that lim,_,, ||A, — gt|| = O w.p. 1 for these versions.
From this and Lemma 2,
(2.18) lim sup, P,[{T*(h,) C T*(g*, ¢))°]

< P,[lim sup, {T*(h,)  T*(g*, &)}l = 0

for every ¢ > 0. The theorem follows.

It is clear from the proof that Theorem 1| holds under weaker assumptions
than Al, A2, A3. Since these assumptions are harmless from a practical point
of view and since their full strength will be used to establish the asymptotic
normality of d,, the present formulation of Theorem 1 is convenient.

3. Asymptotic normality. Two related theorems are proved in this section:
the first establishes asymptotic normality of the adaptive estimator 4, under
densities which are not necessarily symmetric; the second theorem specializes
the first result to symmetric densities (under improved assumptions) and thereby
verifies that 8, has the efficiency property (1) discussed in the introduction.

The notation of Section 2 is retained, with two additions: let s(x) = g#(x) and
let

wle,(—x — y + 2T(hn))]} .
. wle, 7 (x — y)]
The following assumption on the density g will be used:

A4, g is absolutely continuous with finite Fisher information [/(g) =

§ [9'(x)F/9(x) dx.

This assumption entails absolute continuity of s(x), with s'(x) = ¢'(x)/(2¢g}(x)) a.e.

(3 1) wﬂz(g) = Suplx—/t(g)\ganﬂ Supy {

THEOREM 2. Suppose assumptions Al, A2, A3, A4 are fulfilled, T(g) is uniquely
defined,

(3.2) lim, ¢, =0, lim, . a, = o, lim,_, (nc,)"%a,> =0,
and

(3.3) lim,_,, (nc,*)"'a,*w,*(g) = 0.

Then the limiting distribution of n¥(f, — T(h,)) under g is N(0, a*(g)) where
(3.4) o(g) = [2§ $'(—x + 2T(g))s'(x) dx]* § ['(x) dx .

Although both 6, = T(ﬁ”) and T(h,) may have several values, both converge
to the uniquely defined 7'(g) because of Theorem 1. By 6, — T(h,) we mean any
one of the possible differences. Assumption (3.3) is probably unnecessary, but
our proof uses it at one point. It can be replaced by less awkward assump-
tions for specific choices of smoothing window w. For instance, if w(x) =
2-'exp(—|x|), then

qup, | M™% =y + AT _ oo v
(.3 sup, (Ml dor 22 H LI < exprac,(x) 4 7RI
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Since lim,_,, T(4,) = T(g) is finite, as is x(g), (3.3) can be replaced by a simpler
requirement which does not depend upon g:
(3.6) lim,_, (nc,*)"'a,?exp(3c, 'a,) = 0.

If g is symmetric about ¢, then x(g) = 6 by assumption A3 and 4, is symmetric
about ¢ for every n; hence T'(h,) = 6 uniquely. By specializing Theorem 2 and
modifying the proof slightly to avoid (3.3), we obtain the following result, which
corresponds to property (1) in the introduction.

THEOREM 3. Suppose g is symmetric about 6, assumptions Al, A2, A3, A4 are
fulfilled, and (3.2) holds. Then
(3.7) ni@, — 0) = n=tY(g) r, —g'(X)/9(X]) + o,(1)
and the limiting distribution of n*(@L — 0) under g is therefore N(O, I7'(g))-

The proofs for Theorems 2 and 3 are elementary, but require a large number

of careful approximations. The following three lemmas will be needed. It is
assumed without further mention that the {X,} are i.i.d. with density g.

LEMMA 3. Suppose assumptions Al, A2, A3 are fulfilled and lim,_ ¢, = 0,
lim a, = co. Then

(3-8) § [hn(x) — hy(x)P dx = O,[(nc,)a,]
§ [£)(x) = B/(0)F dx = O,[(ne,?)"a,]
ProoF. Let f,(x) = §,(x) and f,(x) = s5,(x). By calculation
E[5,(x) — s,(0)T = [T (OE[fux) — fu(0F
(3.9) < (ne,)7f,7(x) § wie, T (x — y)lo(y) dy
< (ne,)™" sup, w(2) -

Hence

(3.10) § [5u(x) — s, ()]0, 5(x — p(9)) dx = O,(nc,)a,] .

Moreover

(3.11)  §8X0)[balx — fa) — bu(x — p(9))) dx = (2, — p(9))* sup, [6'(X)]

= 0,(n").
The first bound in (3.8) follows from (3.10) and (3.11), using the definitions
(2.4), (2.6) of 4, and &,.
By Minkowski’s inequality,
§ [/(x) — AT dx < 4§ [8,/(0)P[ba(x — ) — bu(x — ()] dx

+ 41 [8/(x) — 5,/ ()PB(x — () dx

(3.12) + 4 182008, (x — fi) — b/ (x — (@) dx
+ 4 [8,(x) — S,(DF(BS(x — p(g)] dx

=T say.

i=1+1in >
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Evidently, T, = O,(n"") and, using (3.9), T,, = O,[(nc,)'a,]. Since
(3.13) |/ ONfux) S €7 sup, [w'(z)|/w(2) ,

the term 7', = O,[(nc,)"']. Moreover,
SOEEON
(3.14) = 257 = £/(0)]
— G TSGR — 5,(6)* + Su(x) — 5,(0)]
and
(3-15) LU MELL () = £/ < (ne,d)7 sup, [w/(2)fw(2)
and
(3.16) LT OEBWX) — s,(0F £ LV OE[fux) — fu(0F
< (nc,)"'sup, w(z) .
Applying (3.9), (3.13), (3.15) and (3.16) to (3.14) yields T,, = O,[(nc,?)a,].
The second bound on (3.8) now follows from (3.12).

LEMMA 4. Suppose assumption A4 is fulfilled. Then

(3.17) lim, , {[s'(x + 1) — s'(x)]Pdx = 0.
Suppose also that lim, _c, = 0, lim,_,a, = co. Then
(3.18) lim, , § {4/ (x) — s(x)]*dx =0

and for every real sequence {1,} converging to zero as n — oo,
(319) llmn roo S [[n——l(hn(x + [n) - hn(x)) - h’n,('x)lz dx = 0.

Proo¥F. Since §' ¢ L,, there exists for every ¢ > 0 a differentiable function
¢.e L, such that ¢/ e L, and ||s’ — ¢,|| < e, where ||-]| denotes the L,-norm.
Thus, for every ¢ > 0,

(3:20)  [§ gux + 1)5'(x) dx — § 4,(x)5'(x) dx]
< IS [9x + 1) — G OF dxlt < 1111/,

by Cauchy-Schwarz, the fundamental theorem of calculus, and Fubini’s
theorem. Moreover,

(3.21) § ()5 (x) dx — §[$'(x)] dx| < ¢]|5]
I§ dlx + 0)s'(x) dx — § 5'(x + 1)5'(x) dx| < e|s’]]

for every real 1. Inequalities (3.20) and (3.21) imply that

(3.22) lim, , § 5'(x + 0)s'(x)dx = {[s"(x)] dx,

from which (3.17) follows.
By Cauchy-Schwarz,

(3:23) [fF = £ul) §w(2)g7'(x — e, 9)[g'(x — ¢, 2)] dz
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and therefore
(3.24) Vs (0 dx < § [s(x)] dx .
For every ¢ > 0,
(3.25) 1§ 8/ (X)u(x) dx — § s'(x)he(x) dx| < [l — sl 11¢]]
which tends to zero as n — oo since g is continuous.  Moreover, using (3.24),
(3.26) [§ ' (x)elx) dx — § [$'(x)]* dx] < «f|s']|
1§ 52/ () () dx — § 5,/ (x)s"(x) dx| < e}
for every n. Inequalities (3.25) and (3.26) imply

(3.27) lim,  §s,/(x)s'(x)dx = § [s'(x)]?dx .
From this and (3.24), it follows that
(3.28) lim,_, §[s,/(x) — s'(x)]’dx = 0.

To establish (3.18), observe that
§ [ (x) = s'(0)P dx = 4§ [5,/(x) — ()b (x — p(9)) dx
(3.29) + 4 V[T — bu(x — ()] dx
+ 4 [su(x) — S(OF[6.'(x — ()] dx
+ 4 § ()b (x — p(g)F dx .
Use (3.28) for the first integral on the right, dominated convergence for the
second one, L,-convergence of s, to s for the third term, and the vanishing of
b,'(x) when x lies outside [a,, a, + 1] or [—a, — 1, —a,] for the final integral.
By Cauchy-Schwarz,
§ {27 (Ba(x + 1) — Ry(x)) — R(0)] dx
V87 S6n (B(x + u) — h,/(x)) du]* dx
< 1,7 o § [A)(x + ) — h,/(x)] dx du

(3.30)

which tends to zero as n — oo, giving (3.19).

LemMA 5. Suppose assumptions Al, A2, A3, A4 are fulfilled, T(g) is uniquely
defined, and (3.2) holds. Then, under g,

(3.31) n*(én — T(h,)) = [—§ s'(—x + 2T(g))s'(x) dx]'nt
‘ X S hn,(—x + 2T(hn))[ﬁn(x) - h%(x)] dx + op(l) .

Proor. For every n, h,(x) is absolutely continuous with § [£,’(x)]* dx < co.
By a standard argument,

(3.32) lim, o § [ (hy(x + u) — hy(x)) — b/ (x)]" dx =0
for every n, which implies
(3.33)  lim,_ 4§ [A(—x + 2t + u) — h(—x + 20)]h,(x) dx
=V A)(—x + 20k, (x)dx = § A, (—x + 20)h,’(x) dx .
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Since the estimator §, maximizes { ﬁn(—x + 2t)l§”(x) dx over all real ¢, it fol-
lows that §A,(—x + 26,)4,/(x)dx = 0 for every n. Since T(h,) maximizes
§ A (—x 4 20)h,(x) dx over all real ¢, a similar argument shows that § A,(—x +
2T(h,))h,'(x) dx = O for every n.

For notational convenience, write ¢, in place of T(4,). By Lemma 2,
lim,_ 6, = T(g*) since lim,__, ||#, — ¢*|| = 0. It follows from Theorem 1 that

o0 n

¢, —0,—,0under gasn— co. This fact and (3.19) of Lemma 4 justify the
expansion
(3.34)  h(—x+20,) = h(—x 4 20,) + 2(0, — 0,)h,/(—x + 26,)
where |[v,|| —, 0 as n — oco. Thus, for r,(x) = A,(x) — h,(x),

0= § A/ (x)h(—x + 28,)dx
(3.35) = [ [A,/(%) + r/()[A(—x + 28,) + r,(—x + 26,)] dx

= § [/(%) 4 27,/ () ]h(—x + 28,) dx + § r,/(X)r.(—x + 26,) dx,

the last step using the property 4
(3.36) § r () (—x + 28, dx = §r(—x + 20,)h,"(x) dx

which follows from the analogoues of (3.33) for 4, and r,.
Moreover, from (3.34) and the fact § #,(—x + 20,)4,/(x) dx = 0,

§ [2,(%) + 2r,(X)]h(—x + 26,) dx
(3.37) = 2§ h/(—x + 20,)r.(x) dx
4+ 2(8, — 0§ B/(—x + 26,)h,'(x) dx + R}

where
(3.38) R, = V[A,(x)v.(x) 4+ 2r,/(X)v,(x) + 2r,/(x)h,’'(—x + 20,)] dx .

Equations (3.35) and (3.37) yield an expression for n}(d, — 6,) which reduces
to (3.31) by virtue of Lemmas 3 and 4 and (3.2) and the fact that nt { #,/(—x 4
260 )[%,(x) — h,(x)] dx = O,(1); this last property is established in the course of

the following proof.

ProOOF OF THEOREM 2. The result is established in two stages. First, expan-
sion (3.31) for ni(@, — T(h,))is reduced to the simpler approximation (3.46). Sec-
ondly, the right side of (3.46) is shown to have the desired limiting distribution.

By definition,

nt B (—x 4 20,)[h(x) — k. (x)] dx
(3.39) = nt § B, (—x + 20,)[§,(x) — 5.(%)]b.(x — 1(9)) dx
+ 1t § b (—x + 20,)8,(0)[bu(x — f,) — bu(x — p(g))] dx .

The second integral on the right side of (3.39) can be expressed as the sum of
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two terms:
(3.40) Sy = —n(f, — p(9)) | b (—x 4 20,)5,(x)b,"(x — (9)) dx
Sy = n¥(f, — (9))" § h/(—x + 20,)8,(x)€,(x) dx
where &,(x) = (#, — #(9))7? Sfj?g) §t g 0,/'(x — u)dudt. Inview of the assump-

pig) ¥ n

tions and (3.18) of Lemma 4, S,, = O,(n~*). On the other hand,
§ 4 (=x + 20,)8,(x)b./(x — 1(g)) dx
(3.41) = { /(=X 4 20,)[8.,(x) — s(x)]b,/(x — 1(9)) dx
+ § A (—=x + 20,)s(x)b,/(x — p(g)) dx
where s(x) = g¥(x). By asimple argument, ||$, — s5|]| —,0asn — co. Moreover,
b,’(x) vanishes for x outside [a,, @, + 1]Jor[—a, — 1, —a,]. Hence S,, = 0,(1).
The first integral on the right side of (3.39) can be written as the sum of two
terms
(342)  Viw= b P h/(—x + 20,)(25,(0) [ fulx) — fu®)]bu(x — 1(9)) dx
Vie = —nb § 1/(—x + 20,)(25,(x))7[$u(x) — su(X)Jbu(x — 1(9)) dx
where f,(x) = §,}(x) and f,(x) = s5,%(x). Since, for |x — p(g)| < a, + 1,
[/(—=x + 26,)|5.7X(x)
(3.43) = [27 /(=% + 20)| (=% + 20.)][s(—x + 26,)5,7X(x)]
< (2¢,)7wa(g) sup, W'(2)l/w(2)
by (3.1) and the analogue of (3.13) for f,(x), it follows with the aid of (3.9) that
Voe = 0,[(n*c,?)'a,w,(g)] and therefore, by (3.3), that V;, = 0,(1).
The term ¥V, can be decomposed further into the sum of two terms
(3.44) Wy, = nt§s/(—x 4 20,)(25,(0) [ ful2) — ful2)]bia() dx
W = 274§ [fu(%) = fu(2)]fun(x) dx
where g,,(x) = b,(x — g)b.(—x + 20, — p(g)) and $,,(x) = b,(x — 1(9)) X
b, (—x + 26, — p(9))s,(—x + 20,)s,7(x). Now
E(2W3,) = ¢, Var [§ gy, (x)wle, " (x — X)] dx]
< ¢,E[§ ga(x)wle,(x — X)) dxT
< | Pra(x)fa(x) dx
< §[8J/(x — #(@)Iful(x) dx ,
the second last step using the Cauchy-Schwarz inequality. Since b,'(x) is

bounded and vanishes for x not in [a,,a, + 1] or [—a, — 1, —a,] and since
lim,_, § | fu(x) — g(x)| dx = 0, W,, = o,(1). The results of the last three para-

graphs combined with Lemma 5 yield
(3.46) k(B — 6,) = [—§ S(—x + 2T(9))(x) dx)]" Wy + 0,(1).
By a calculation analogous to (3.45),
(3.47) Var 2W,,) < { [5./(—x + 20,)] dx
S JIs)Pdx,

(3.45)
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the last step using (3.24). Let# = T(gt)andlet U, = n~* 3,7, s'(— X, 4 26)s7(X)).
Evidently E(U,) = 0 and

(3.48) Yar(U,) = § [¢'(x)]P dx .
To complete the proof of Theorem 2, it suffices to show that
(3.49) lim,_, Cov (2W,,, U,) = { [s'(x)] dx .

Indeed, (3.47), (3.48) and (3.49) imply that lim, . E[2W,, — U, ]’ = 0, from
which the theorem follows in view of (3.46).
Now

Cov 2W,,, U,) = {[{ s,/ (—x + 20,)6,.(x)s,~}(x)c, W], (x — y)] dx]

(3.50) X $(—y + 20)s(y) dy
= S S,,/(—X +‘20%)¢M(X)Sn'1()() S C%_IW[C,,L_I(X - .y)]
X §'(—y + 20)s(y)dydx,

the interchange in order of integration being justified by the Tonelli and Fubini

theorems (cf. (3.52) below for a method of checking the existence of the required
absolute integral). For notational convenience, put

(3.51) d,(x) = 5,7 Y(x) { c,”w[c,"(x — »)]s'(—y + 20)s(y) dv

and define 4, , analogously by replacing s’ in (3.51) with the function ¢, used
in the proof of Lemma 4.
By Cauchy-Schwarz and the definition of s,,

(3.52) dl(x)dx = §§ e, 7wle, T (x — ) (—y + 20)) dy dx
= [I511*-
Since also ||4, .|| < ||¢.]| and lim,_d, (x) = ¢ (—~x + 260) under the theorem
assumptions, it follows by Vitali’s theorem that
(3.53) lim, ., § $(—x + 20,)d, (x) dx = ||§|I".

An argument analogous to (3.52) establishes the inequality ||d,, — 4,|| <
l|¢. — §’|]] < & hence

(3.54) I§ p(—x + 20,)d, (x)dx — § s'(—x + 20,)d,(x) dx] < 2¢|ls|| .
This inequality and (3.53) imply that
(3.59) lim, ., § s'(—x + 26,)d,(x)dx = ||5'|]®,

since ¢ can be chosen arbitrarily small. Finally, (3.28), (3.50), (3.52) and (3.55)
yield the desired limit (3.49). :

Proor or THeEOREM 3. The proof is by specialization of the proof for Theorem
2 with one exception: the treatment of the term V,, defined in (3.42) can be
simplified and improved. Since gis symmetric, 4, equals the center of symmetry,
s,(—x + 20,) = s,(x), and therefore sup, |s,'(—x + 26,)|s,7'(x) = O(c,™") by
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(3.13). Using this bound in place of (3.43) yields V,, = O,[(n}c,*)"a,], which
is 0,(1) under the assumption (3.2).

4. Asymptotic robustness. This section establishes for 9n a mathematical
property which corresponds, in large samples, to robustness in distribution as
described by requirement (2) of the introduction. The basic idea is to examine
the limiting behavior of é, under fairly arbitrary sequences of densities con-
tiguous to the sequence {[]7_, g(x;); » = 1}, where g is symmetric with finite
Fisher information /(g). It turns out that even under such local perturbations
of the density, robust and nonrobust estimators exhibit distinguishable behavior;
moreover the adaptive estimator &, falls into the robust category. Jaeckel (1971a)
has examined the asymptotic biases induced in M-estimators of location by
certain local sequences of asymmetric perturbations of a given symmetric dis-
tribution. Apart from the similarity in starting point, his work is unrelated to
the argument in this section.

For every density g on the real line, let -“ (g, ) denote the set of all sequences
of absolutely continuous densities {g*’} such that

(4.1) lim, o § [2H((g™ () — (9(x))}) — B(x)Jdx = 0
for some  in L, and
(4.2) lim,_., I(9g"™) = I(g) .

Note that since g and {g'™} are densities, (4.1) cannot hold unless 3 is orthogonal
in L, to gt. The logical independence of (4.1) and (4.2) is evident: a density g
satisfying A4 may be truncated abruptly in such a way that the truncated density
remains close to g in the Hellinger metric, yet has much larger Fisher informa-
tion than g.

For every density pair (¢, g), there exist a, € [0, /2] and 6" € L, such that

”5(”)” =1, { gtand
(4.3) [9"(x)]t = cos (a,)g(x) + sin (a,)0™(x) .
The function [g™]¢ is absolutely continuous if both g* and 6™ are absolutely
continuous. Conditions (4.1) and (4.2) are equivalent to the requirements
lim,_ nta, = ||8||, lim,_., || — ||8]|*8]| = 0, and lim,__, a,? { [6"(x)]*dx = 0.
Thus, a density sequence in (g, B) represents fairly general smooth contami-
nation of g in approximate direction ||||-'8. Robustness of §, will be established
under such perturbations of symmetric g. The practical consequences of (4.2)
as a limitation to the robustness of §, are not clear.

The perturbation sequences defined by (4.1) and (4.2) are not suitable for
studying the effect of round-off errors in the data upon the distribution of the
estimator. This limitation could be overcome by redefining the estimator so as
to include a possible round-off operation. We will not do so because 4, is already
complicated. Moreover, the continuity of 9;&, or of its iterated version, provides
some assurance that small round-off errors in the data will not affect the estimate
seriously. '
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For random variables {X,: | </ < n} which are i.i.d. with joint density
*_, 9(x,) and for {g"™} e .7 (g, ), let L, denote the log-likelihood ratio

(4-4) L, = log[I[i-, 9™ (X)/9(X)] w.p. 1.

For every density g, every 8 | g%, and every sequence {g"™} e .~ (g, 8), L, can
be approximated stochastically by

(4.5) L, = 2n7t 230, B(X)97H(X)) — 2||BII" + o,(1)

(see Le Cam (1969) for a similar expansion in a parametric setting). Thus the
limiting distribution of L, under g is N(—2||8]]*, 4]|5|]"), which implies that the
sequence of distributions {J]7_, g”'(x;)} is contiguous fo the sequence {]]7_, g(x;)}
for every {9} e >4 (g, B) and every 8 | gt

To ensure robustness of the estimator 6,, it is necessary that the preliminary
location estimator f, (used in constructing the density estimator §,) be robust
as well. Technically, the following smoothness assumption on the centering
functional y of assumption A3 suffices:

AS5. For every density g satisfying A4, every § | g%, and every sequence
{97} e g, ), n(p(9"™) — 1(9)) = O(1).

There exist many estimators which satisfy both A3 and A5. For example,
suppose that ¢ is a bounded function defined on the real line which is strictly
monotone increasing, odd, and has continuous bounded derivative ¢’ (e.g.,
¢(x) = arctan (x)). Define the M-estimator f, as the unique solution to the
equation Y7, ¢(X; — #,) = 0 and, for every density g, define the functional p
through the equation § ¢(x — p(g))g(x)dx = 0. Then A5 is satisfied because

lim, ., n(p(g™) — 11(9)) = § 9,(x)B(x) dx ,
where
(4.6) a,(x) = [§ §'(r — p(9)9(1) dt] 24 (x — 12(9))9*(x)
(Beran (1977a)); A3 is satisfied because the limiting distribution of n}(g, — p(g))
under g is M0, 47! § ¢ *(x) dx) (Huber (1964)).

By analogy with the notation of Sections 2 and 3, which is retained, let
s®(x) = [gW] 5"(x) = ¢, {wle, T (x = Y)]g™(y) 4y, and  A™(x) =
Su™(X)ba(x — p(g™))-

THEOREM 4. Suppose g is symmetric about 8, assumptions Al, A2, A3, A4, AS
are fulfilled, and (3.2) holds. Then the limiting distribution of n¥(@, — T(h,™))

under {T]2_, 9™(x,)} is N(O, I-X(g)) for every sequence {g"*'} € .57 (g, f) and every f
orthogonal to gt. '

A standard contiguity argument based upon (3.7) and (4.5) shows that the
limiting distribution of n¥(d, — 6) under {g} is N(—41-(g) § s'(x)3(x) dx, I~Y(g)).
Thus, the distinctive feature in Theorem 4 is the possibility of using T(%,™) as
the centering parameter in the asymptotics; this possibility is equivalent to the
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property
(4.7) lim,_ n¥(T(h,™) — 0) = —4I7g) | 5'(x)8(x) dx .

The proof of (4.7), and therefore Theorem 4, is given at the end of this
section.

Let g be a fixed symmetrie density with finite Fisher information. Since é,
is centered in the same way in both Theorems 2 and 4, Theorem 4 indicates,
roughly speaking, that the convergence to the limiting distributions in Theorem
2 occurs uniformly over all sufficiently local (in Hellinger metric and Fisher
information) perturbations of g in approximate direction ||8||='8; moreover, the
limit laws under these local perturbations are all approximately N(0, I7)(g))-
Both assertions hold for every 3 | g}. From these facts and continuity at g of
the centering parameter (see (4.7)), it is reasonable to conclude that sufficiently
small, fairly arbitrary perturbations of g do not affect the exact distribution of
0, greatly, at least for sufficiently large sample sizes. This conclusion is an
asymptotic version of the qualitative robustness property (2) described in the
introduction.

Technically, the argument for asymptotic robustness of 4, at every symmetric
density with finite Fisher information rests upon the following fact: when 6, is
centered as in Theorem 2, its limiting distribution under the circumstances of
Theorem 4 does not depend upon § or the particular perturbation sequence in
(g, B). Note that this property is much stronger but mathematically analogous
to Hajek’s (1970) concept of a regular estimator in a parametric model. From
our viewpoint, therefore, the classical phenomenon of superefficiency in estima-
tion is just one special form of nonrobustness.

An example of a nonrobust estimator illustrates further the relevance to ro-
bustness of the technical property just discussed. Let 77, denote the sample mean
of the {X;}, let _# be the set of all densities on the real line with finite mean
and variance, and let m, v denote the mean and variance functionals on, 2 If
the {X;} arei.i.d. with density g in _«, the limiting distribution of r¥(, — m(g))
is N(0, v(g)). We examine the behavior of /1, under small perturbations within
. «# of the data density.

Let g be a fixed density in .. satisfying A4 and define a sequence of densities
{9} converging to g as follows: in (4.3), take «a, = n~* and {3} orthogonal
to gt such that ||6"|| = 1,

0 < { x[a™(x)dx < oo for every =n,
lim, ., n=t { x[0"(x)]Pdx = oo,

700

lim sup,, ||6""]] < oo and 6’ converges in L, to some function 8 of unit norm.
There are many possible constructions of such a sequence {5}.

The sequence of densities {g‘’} so defined lies in .~ and satisfies both (4.1)
and (4.2) for the function § just described. By contiguity, using (4.5), the
limiting distribution of n}(sz, — m(g)) under {g’} is N(2 § xB(x)g¥(x) dx, v(g))-
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However,

lim,_., nt(m(g"™) — m(g))
(4.8) = lim,_,, nt § x[sin (2a,)3'™(x)g¥(x) + sin® (a,)(d*(x))*] dx

which implies that ni(r2, — m(g'™)) —, —oo under {g"™}. This striking result
reflects the fact that the distribution of the sample mean 7, under g'*’ becomes
severely skewed for large n, with the bulk of the probability mass to the left of
m(g™) and a long tail to the right. Thus, even very small perturbations within
. # of any fixed data density g in _# can affect the distribution of the sample
mean dramatically. In this sense, the sample mean is robust nowhere.

As noted earlier, Theorems 2 and 4 indicate, roug‘hly, that the convergence
in law of the centered estimator 4, is locally uniform at every density g which
is symmetric about some ¢ and satisfies A4, a circumstance which enables us to
use the asymptotic distributions near g as reasonable approximations to the exact
distributions. Since the limiting distribution of n*(én — 0) under any sequence
{g™) e (g, B) is N(—4I7Y(g) | s'(x)B(x) dx, I"}(g)), the main approximate effect
of a small perturbation of g in direction |[8||~8 is to shift the distribution of
ni(@, — 0) by the amount —4/-Y(g) { s'(x)5(x) dx. Quantitative robustness of 4,
at symmetric g can be assessed by comparing this shift with the corresponding
shifts induced in the distributions of competitive, robust, center-of-symmetry
estimators.

A natural class &2 of competitive location estimators #,* is defined by the
following requirements:

(i) 8,* is location-invariant and
(0% — Un(9)) = 17 Lin 0,(Xi)s7H(X) + 0,(1)
under every density satisfying A4;

(ii) p,eL,and p, | s;

(iii) U, is a location-invariant functional whose value at every symmetric g
is the center of symmetry;

(iv) lim,_. n¥(U,(9™) — 0) = 2 § p,(x)B(x) dx for every sequence {g™}e
~+#{g, B), every symmetric g satisfying A4, every 8 | s.

The class .2 contains many estimators, including the M-estimators discussed
earlier in this section following the introduction of assumption AS5. Note that
the location invariance of 4,* and U, entails the property 2 { p (x)s'(x)dx = —1.
(Consider the effect of contiguous location-shift alternatives upon the asymptotic
distribution of 6,*.)

By Theorem 2 and (4.7), the adaptive estimator 8, nearly belongs to the class
2, with
(4.9) 0i(0) = [—2§ (1 + 2T(g))5'(r) d]'s'(—x + 2T(g))

whenever T(g) is uniquely defined; this last proviso is what keeps 8, outside . .~.
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For symmetric g, o, defined in (4.9) reduces to p,(x) = —2I-Y(g)s'(x). Analogues
to Theorems 2 and 4 hold for 6,* € =2 and @, * is, accordingly, asymptotically
robust in the same qualitative sense as ¢,. The main approximate effect of a
small perturbation of symmetric g in direction ||8]|~'8 is to shift the centered

distribution of 6,* by the amount 2 { p, (x)5(x) dx.
Let B(p, ) = |{ p(x)0(x) dx|. Subject to the constraints p, de L, p | s,

{ o(x)s'(xydx = —1,0 | s,]|d]] = 1, it can be shown that
(4.10) max, min, B(p, d) = B(p,, 6,) = min, max, B(p, 9),

the saddle-point being p,(x) = —417%(g)s'(x) and d,(x) = —2I-%(g)s’(x) (see The-
orem 5 in Beran (1977a)). This result is directly applicable to the comparison
of asymptotic biases induced in robust location estimatdrs by asymmetric con-

tamination of a symmetric data density.

Since [|8|* = lim,_, n||(9")* — g*||* under (4.1), the quantity ||8|| reflects the
level of contamination of g represented by any sequence {9} e 57 (g, 8). The
saddle-point property (4.10) shows that, relative to estimators in =7, the adaptive
estimator 6, is minimax asymptotically biased by small perturbations of sym-
metric g in arbitrary directions but of fixed level ||||. In this local sense, 8, is
quantitatively most robust at every symmetric g satisfying A4. Upon reflection,
it is intuitively plausible that an estimator with this property should also be
asymptotically efficient at every symmetric g with finite Fisher information.

ProOF OF THEOREM 4. As noted after the statement of the theorem, it suffices
to establish (4.7). The argument parallels the proof of Theorems 2 and 3 in
structure, with some differences in detail which will be considered below. There
is an expansion for n*(T(k,™) — @) analogous to the one for ni(@, — 6) and there
are counterparts to Lemmas 3 and 5 with £, in place of h, and T(h,™)in place
of §,. These counterpart lemmas are based upon
(4.11) § [5.7(%) — su(x)] dx = O(n7")

lim, ., § [s,™"(x) — s,/(x) =0,
which implies, with the aid of A5,
(4.12) § [27(x) — k()] dx = O(n™?)
lim,_,, § [2,(x) — &,/ () dx = 0.
The first bound in (4.11) is proved by Minkowski’s inequality, which gives
1.5‘%(”)(/\.‘) - Sn(x)]
(4.13) = [{§ [s™(x — e.2)w(2) dz}t — {§ [s(x — ¢, 2)'w(z) dz}|
< {1 [ = €,2) — s(x — c,2)[w(z) dz}?
Therefore, interchanging the order of integration and using (4.1),

(@14)  §[5(x) — s,(F dx < § [s7(x) — s dx = O(n™Y).
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To establish the second part of (4.11), it is enough to show that

(4.15) lim, ., { [s,""(x) — s'(x))dx = 0
because combining this with (3.28) gives the desired result. As in (3.24),
(4.16) lim éupn § [s,™"(x)]? dx < limsup, § [s"™'(x)]* dx

= [ [f(x))dx,

the last step using (4.2). On the other hand, lim,_,, |5, — 5|| = 0 because of
(4.11) and the fact lim,_, ||s, — s|/| = 0. Thus, an argument parallelling (3.25)
to (3.27) gives

(4.17) lim, ., §s,™'(x)s'(x)dx = { [s'(x)] dx .

Finally, (4.16) and (4.17) imply (4.15).
As described at the start of the proof, (4.11) yields, in analogy to Lemma 5,
the result

(4.18)  n¥(T(h,™) — 6)
= —[§ YT dx] 7't § A ()[R, ™(x) — hy(x)] dx + o,(1).

The reduction of (4.18) to (4.7) parallels the proof of Theorem 3 with AS being
used in place of A3. The essential step is to show that

(4.19)  lim,_o, 1} §5,/()(2s, ™) — fu(x)] dx = § s'(x)B(x) dx ,
where f,™(x) = [5,"(x)]’, and that
(4.20) lim, . nt § 5./(x)s, (x)[5,""(x) — s5,(x)]Pdx = 0.
The limit (4.20) follows from (4.11) and the bound sup, [s,/(x)|/s.(x) = O(c,™).
The left side of (4.19) can be written as the sum of two terms, putting 8,(x) =
ni(s™(x) — s(x)) for brevity:
(4.21) Y. = §5/(x)s, (%) § B{x — c,2)8(x — c,z)w(z) dz dx

Yo = (20)71 1 5,/(x)5,7(x) § B,2(x — c,2)w(z) dz dx

Evidently, Y,, = O[(nic,)].
Since lim, ., ||8, — B|| = 0, it follows by Cauchy-Schwarz, using (3.24), that

(4.22) Y. = §5/(x)5,7%(x) § B(x — ¢, 2)8(x — c,z)w(z)dzdx + o(1).

Since f € L,, there exists for every ¢ > 0 a differentiable function ¢, e L, such
that ¢’ L, and || — ¢.|| < e. Thus

(4.23)  |Yy — §5./(x)s, 7 (%) § (x — ¢, 2)s(x — ¢, z)w(z)dzdx| < ¢||s'|| 4+ o(1}.
By dominated convergence, for every ¢ > 0,

(4.24) lim, ., §w(z) {[d(x —c,2) — ¢ (x)fdxdz=0.

Equations (4.23) and (4.24) imply, for every ¢ > 0,

(4.25) Y — § 5/ (08.) x| < el + o(1)
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because ¢.(x)s,7'(x) § s(x — ¢,z)w(z) dz converges in L, to ¢,(x), by Vitali’s
theorem. Hence lim, ., Y,, = § s'(x)8(x) dx, which gives (4.19).

5. Numerical example. The estimator §, is defined as that value (or values)
of real t which maximizes § ﬁ%(—x + 23)ﬁn(x) dx for h, described in Section 2.
If # denotes a reasonable initial guess at 5%, Newton’s method yields the itera-
tive algorithm '

(5_1) Gim+v — fom _ [2§ ﬁn/(x)};n/(_x + 20”‘(m)) dx]
X § B/ ()h(—x + 20™)ydx, m=>0,

where the integrals are to be evaluated numerically.

To check the computational feasibility and finite §ample behavior of #,, a
simple numerical experiment was performed. A pseudo-random sample of size
40 was drawn by computer from a N(0, 1) distribution. In the first stage of the
experiment, a calibration trial, the estimate ﬁn was calculated for various values
of ¢,. For practical reasons, some small modifications were made in applying
the iterative scheme (5.1). Specifically:

(i) The smoothing window used was w(x) = (1§)(1 — x*)*for |x| < 1. This
window does not satisfy A2 because |w'(x)|/w(x) is unbounded; however a nu-
merically insignificant modification to the tails of w would remedy this.

(ii) #,(x) was replaced by

h,(x) = {(nc,8) Tr,y wl(c.6) " (x — X},
where é is a scale estimate. If § is a scale invariant-location estimate, the
introduction of ¢ makes #,™ scale invariant for every m = 1.

(iii) The choices § = median {X,}and ¢ = (.674)"' median {| X, — 6|} were
made. Both are robust at the normal distribution and, under normality, are
root-n consistent estimates of the distribution mean and standard deviation
respectively.

(iv) Each integral in (5.1) was approximated by the trapezoidal rule, using
a grid of 100 points spaced equally over the support of the integrands. Note
that the chosen window w makes both integrands continuous functions, a pre-
requisite for accurate numerical integration.

(v) Iteration of the algorithm was continued until convergence to six sig-
nificant figures had been achieved (this was the number of figures provided by
the PDP 11/45 computer used).

For every case examined during the experiment, no more than three iterations
were required to achieve the convergence criterion (v). The third iterate was
taken as the value of §,. Ineach case, the negative sign of { A,'(x)h,'( ——x-}—267n) dx
showed that a local maximum had been attained; it is not known whether the
respective global maxima were achieved. The mean and median of the sample
were .158 and .0926 respectively. With ¢, = 3.2, the values of §, was .158,
the same as the sample mean. As c, increased from 3 to 4, the corresponding
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values of 4, increased monotonically from .156 to .162. Not enough estimate
values were computed to establish a pattern for choices of ¢, outside [3, 4];
however, the monotone dependence on ¢, persists further.

The second stage of the experlment examined the response of 0 to a single
outlier moving towards infinity. Specifically, the observation nearest zero in
the data set, X,, = —.0192038, was replaced by a series of increasing positive
values, the other 39 observations being left unchanged. For each contaminated
sample so generated, the estimate 6’ was recomputed with ¢, = 3.2, the value
of ¢, which, on the original data, best aligns 6‘ with the sample mean. This
choice of ¢, simplifies comparisons between the two estimates as X, is varied.
While the asymptotic equivalence under normality of 0 and the sample mean
(see Theorem 3) suggests that this value of ¢, may be reasonable for other normal
samples of size 40, the theoretical question of how to choose ¢, well remains
open. Table 1 records the results for contaminated samples.

TABLE 1
Effect on bu of varying Xz when ¢, = 3.2; Gy remains unchanged for Xsz = 7
Xz —.0192038 1 2 3 4 5 6 7
Sample mean .158 .184  .209 .234 .259 .284 .309 .334
Adaptive estimate O (Cn = 3.2) .158 .185 .210 .235 .225 .191 .166 .164

For values of X,, consistent with the assumption that the entire sample is
drawn from a N(0, 1) distribution, the estimate 9n follows the sample mean very
closely. But for X,, > 4 in Table 1, the adaptive estimator recognizes X,, as a
p0551ble outlier and begins to discount it smoothly. For X,, = 7 the value of
f, remains unchanged because the estimate is now computed entirely from the
other 39 observations; this follows from our choice of w and ¢,. The behavior
of 4, in this example accords with what we might expect from an efficient and
robust estimator.

REFERENCES

BERAN, R. (1974). Asymptotically efficient adaptive rank estimates in location models. Ann.
Statist. 2 63-74.

BERAN, R. (19772). Robust location estimates. Ann. Statist. 5 431-444.

BEeRrAN, R. (1977b). Minimum Hellinger distance estimates for parametric models. Ann. Statist.
5 445-463.

BHATTACHARYA, P. K. (1967). Efficient estimation of a shift parameter from grouped data. Ann.
Math. Statist. 38 1770-1787.

FaBiaNn, U. (1973). Asymptotically efficient stochastic approximation: the RM case. Ann. Stattst
1 486-495.

Hasek, J. (1970). A characterization of limiting distributions of regular estimates. Z. Wahr-
scheinlichkeitstheorie und Verw. Gebiete 14 323--330.

Hamper, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42
1887-1896.

Hoce, R. V. (1974). Adaptive robust procedures; a partial review and some suggestions for
future applications and theory. J. Amer. Statist. Assoc. 69 909-925.



AN ADAPTIVE ESTIMATOR OF LOCATION 313

Huskr, P. J. (1964). Robust estimation of a location parameter. Ann. Marh. Statist. 3573-101.

Huskgr, P. J. (1972). Robust statistics: a review. Ann. Math. Statist. 43 1041-1067.

Huskgr, P. J. (1974). Comment on ‘‘Adaptive robust procedures --.>* by R. H. Hogg. J. Amer.
Statist. Assoc. 69 926-927.

JAECKEL, L. A. (1971a). Robustestimates of locatlon symmetry and asymmetric contamination.
Ann. Math. Statist. 42 1020-1034.

JAECKEL, L. A. (1971b). Some flexible estimates of location. Ann. Math. Statist. 42 1540-1552.

Jonns, M. V., Jr. (1974). Nonparametric estimation of location. J. Amer. Statist. Assoc. 69
453-460.

Le CaM, L. (1969). Théorie Asymptottque dela Dectswn Statistique. Les Presses de I'Université de
Montréal.

RaAo, P. V., ScHUSTER, E. F. and LiTTEL, R. C.v(‘1975). Estimation of shift and center of sym-
metry based on Kolmogorov-Smirnov statistics. Ann. Statist. 3 862-873.

Sacks, J. (1975). An asymptotically efficient sequence of estimators of a location parameter.

Ann. Statist. 3 285-298. *

SAMANTA, M. (1974). Efficient nonparametric estimation of a shift parameter. Sankhya Ser. A
36 273-292.

SKOROKHOD, A. V. (1956). Limit theorems for stochastic processes. Theor. Prdbability Appl. 1
261-290.

SteIN, C. J. (1956). Efficient nonparametric testing and estimation. Proc. Third Berkeley Symp.
Math. Statist. Prob. 1 187-196.

Stong, C. J. (1975). Adaptive maximum likelihood estimators of a location parameter. Ann.
Statist. 3 267-284.

Takeucwr, K. (1971). A uniformly asymptotically efficient estimator of a location parameter.
J. Amer. Statist. Assoc. 66 292-301.

vaNn EEDEN, C. (1970). Efficiency-robust estimation of location. Ann. Math. Statist. 41 172-181.

WEiss, L. and WoLrowiTz, J. (1970). Asymptotically efficient non-parametric estimators of
location and scale parameters. Z Wahrscheinlichkeitstheorie und Verw. Gebiete 16 134~
150.

WoLrowiTz, J. (1974). Asymptotically efficient non-parametric estimators of location and scale
parameters II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 117-128.

DEPARTMENT OF STATISTICS
~ UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



