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Iris segmentation is a critical step in the entire iris recognition procedure. Most of the state-of-the-art iris segmentation algorithms
are based on edge information. However, a large number of noisy edge points detected by a normal edge-based detector in an
image with specular reflection or other obstacles will mislead the pupillary boundary and limbus boundary localization. In this
paper, we present a combination method of learning-based and edge-based algorithms for iris segmentation. A well-designed
Faster R-CNN with only six layers is built to locate and classify the eye. With the bounding box found by Faster R-CNN, the
pupillary region is located using a Gaussian mixture model. ,en, the circular boundary of the pupillary region is fit according to
five key boundary points. A boundary point selection algorithm is used to find the boundary points of the limbus, and the circular
boundary of the limbus is constructed using these boundary points. Experimental results showed that the proposed iris seg-
mentation method achieved 95.49% accuracy on the challenging CASIA-Iris-,ousand database.

1. Introduction

In the 21st century, people use electronics (personal com-
puters, laptops, smartphones, smart watches, etc.) to browse
through web-based social platforms, store personal images
or videos, chat with other people through text or video, and
so on. ,e amount of personal information stored in
electronics is increasing by the day. ,us, biometric au-
thentication is required to prevent unauthorized users from
stealing such information from personal electronics. Bio-
metric authentication is also used in the access control
systems to identify illegal persons and block them from
entering private buildings [1].

Among all the biometric modalities, iris recognition is
the one with the highest performance, in terms of false
acceptance rate (FAR) and false rejection rate (FRR) [2, 3].
Iris as a biometric identification method has a large amount
of the complex texture information available for identifi-
cation. ,is paper focuses on an iris recognition system that
uses the iris texture for biometric identification.

A common iris recognition system consists of six ele-
mentary steps: iris image acquisition, image preprocessing,

iris boundary segmentation, iris image normalization, fea-
ture extraction, and feature matching [4, 5]. ,e iris
boundary segmentation step is a critical step in the entire iris
recognition system. In an iris image, most of the iris textures
are concentrated in the iris region close to the pupillary
boundary. If the boundary of the pupillary region is not
accurately located, a large number of iris textures will be
missed in the feature extraction step. In most cases, the
limbus boundary is obscured by eyelashes, eyelids, and
specular reflections, and thus, a number of noisy features will
be extracted in the feature extraction step, if the limbus
boundary is not accurately located in the iris segmentation
step. ,ese features will deteriorate the performance of the
entire iris recognition system [5].

In this paper, we present a novel algorithm for iris
boundary segmentation. ,e proposed algorithm breaks
down the iris segmentation step into two actions: locating
the eye and segmenting the iris region. Judging whether or
not the target exists in the image and locating the target are
two major challenges in the object detection technology.
Firstly, a well-designed Faster R-CNN network model [6] is
used to detect and locate eyes in the proposed algorithm.
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Once the potential bounding boxes of the eye are obtained, a
pretrained Gaussian mixture model (GMM) [7, 8] is used to
fit the pupillary region. Secondly, an improved limbus
boundary localization algorithm [9] is applied to find the
limbus boundary points. ,irdly, the iris region is located by
identifying the pupillary and limbus boundaries. Fourthly,
we evaluate the accuracy of our algorithm with a newly
proposed evaluation method in Section 4.3. Finally, we
conclude our research by discussing result and the possi-
bility of implementing the method to a mobile device.

2. Literature Review

2.1. Background of Object Detection. Object detection is a
task of finding different objects in an image and classifying
them. In 2014, Girshick et al. [10] showed dramatically high
performance on the PASCAL VOC object detection chal-
lenge [11] using regions with the CNN feature model (R-
CNN). ,eir method achieved a mean average precision
(mAP) of 54% as compared to the 33% mAP of the HOG-
based deformable part model (DPM) [12]. Although R-CNN
works well, it runs really slow because each image has
around 2,000 region proposals that need to be propagated
through the CNN, and it has three different models that
require training: the CNN to extract image features; the
classifier, which is a support vector machine (SVM) to
predict class; and the linear regression model to obtain a
tighter bounding box similar to the true dimensions of an
object.

To obtain the same dimensions of feature vectors for
prediction, the traditional CNN [13] can only run with fixed-
size (e.g., 224 × 224) input images. SPP-net [14] uses the new
pooling strategy, spatial pyramid pooling, to eliminate the
above requirement. It computes the feature maps from the
entire image only once, and then, it uses the pooled features
in the subregions to generate fixed-length representations.
In 2015, Girshick, the first author of R-CNN, applied the
ideas of SPP-net to develop an enhanced version of R-CNN
called Fast R-CNN [15]. A region of interest (RoI) pooling
layer is set in the CNN to share the forward pass for an image
across its subregions. In Fast R-CNN, the CNN is jointly
trained with the classifier and the bounding box regressor in
a single model.

In the R-CNN, SPP-net, and Fast R-CNN models, the
potential region proposals used to detect the locations of
objects are created using selective search [16], which is a
fairly slow process. Such a slow region proposal method
becomes the bottleneck of the overall process. Zitnick and
Dollar [17] used edge information to generate the object
bounding box proposals. Szegedy et al. [18, 19] developed a
learning-based proposal method called multiscale con-
volutional MultiBox (MSC-MultiBox). Redmon et al. [20]
presented another solution that predicts the bounding boxes
and the class probabilities directly from the full images in
one evaluation.

In 2016, Ren et al. [6] proposed to automatically generate
the region proposals using a region proposal network (RPN)
that shared the convolutional weights with the CNN. Such
method is named as Faster R-CNN. Faster R-CNN consists

of two modules. ,e first module is a deep fully convolu-
tional neural network (FCNN) that proposes regions of
interest for object detection. ,e second module is a Fast
R-CNN that uses the proposed regions in the first module to
detect objects. ,erefore, in Faster R-CNN, only one CNN
had to be trained, and the results were used to carry out the
region proposals and the classification. A simple summary of
the aforementioned object detection methods is shown in
Table 1.

,e reason we choose Faster R-CNN is because its model
size is small compared to other deep learning models for
object detection, which make it fast enough to be possible to
do real-time iris recognition on a mobile device (for ex-
ample, smartphones or smart glasses).

2.2. Background of Iris Segmentation. ,e two typical al-
gorithms for iris segmentation were proposed by Daugman
and Wildes using integrodifferential operators [4] and
Hough transforms [21], respectively. ,ese methods are
based on the idea of finding edge points in an iris image and
then fitting them by using circular or elliptical models. For
example, Tan et al. [22] presented a combination method of
region clustering, semantic refinements, and well-designed
integrodifferential operators. Betancourt and Silvente [23]
obtained circular boundaries using QMA-OWA operators
[24]. Ghodrati et al. [25] used a set of morphological op-
erators, canny edge detector [26], and Hough transforms.
Wang and Xiao [27] constructed a difference operator of
radial directions. Some other groups used algorithms that
rely on region growing instead of edge-based algorithms.
,ey gradually merged the blocks with high correlation in an
image to obtain the iris region. Liu et al. [28] used a K-means
cluster for pupillary detection. Yan et al. [29] applied the
watershed transform [30] and region merging on the
structured eye images. Abate et al. [31] combined the wa-
tershed transform, region merging, and color quantization.
,e edge-based and region-growing algorithms estimated
the iris region well, but they are not suitable for application
to images with various light environments.

,e active contour model [32] is another widely used
solution for implementing iris segmentation. Jarjes et al. [33]
used an angular integral projection function (AIPF) [34] and
an active contour model. Bastos et al. [35] combined the
pulling and pushing algorithm [36] and the active contour
model. Boddeti et al. [37] built the seminal work on active
contours without edges [38]. Krichen [39] used the Viterbi
algorithm [40] to find a contour that maximizes the gradient
value along a connect contour. ,ese algorithms program
dynamically and combine the solutions of multiple sub-
problems. ,erefore, they require considerably long pro-
cessing time in many iterations for achieving better
accuracy.

Deep learning is a powerful machine learning tool that
has recently exhibited outstanding performance in many
fields. Many learning-based methods have been applied to
iris segmentation. Tang and Weng [41] used an intensity
operator to find the iris’ inner border and border recognition
with an SVM classifier for the iris outer border. Li et al. [42]
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built edge detectors based on a set of features including
intensity, gradient, texture, and structure information to
characterize the edge points and learned six class-specific
boundary detectors with AdaBoost [43] for the localization
of pupillary and limbic boundaries. Benboudjema et al. [44]
presented an implementation of triplet Markov fields (TMF)
[45] for segmentation. Happold [46] trained a fast-
structured random forest [47] for learning generalized
edge detectors. Learning-based algorithms have more
complex computations than the other algorithms, and thus,
a device requires sufficient computational storage space
during training for implementing these algorithms.

More diverse iris segmentation algorithms are included
in [48, 49]. Each method has its advantages and disad-
vantages. In this paper, we propose a combinationmethod of
edge-based and learning-based algorithms. ,e methodol-
ogy is described in Section 3.

3. Proposed Method

,e algorithm proposed in this paper consists of three key
steps: eye detection, pupillary boundary estimation, and
limbus boundary estimation. We used a Faster R-CNN
model to detect the location of an eye in an image. ,en, the
pupillary and limbus boundaries were found using GMM,
maximization of the intensity gradient along the radial
emitting path (MIGREP), and boundary point selection
algorithms. ,us, the iris region was accurately located.

3.1. Eye Detection. ,e first step to segment the iris region is
to find (detect and locate) the eye in an image. As the task of
detecting only two classes, eye or background, in an image is
simple, the architecture of CNN in Faster R–CNN does not
require very deep convolutional layers. In this study, the
original CNN, Zeiler and Fergus (ZF) model [50] or
Simonyan and Zisserman model (VGG-16) [51], presented in
[6] was replaced with a newly designed network. As depicted
in Figure 1, the network contained only six layers. ,e first
convolution layer filtered the grayscale input image with 64
kernels of size 5 × 5 × 1 with a stride of one pixel. It was
followed by a rectified linear unit (ReLU) [52] layer and a local
response normalization (CN) [13] layer, which ran over five
adjacent kernel maps at the same spatial position. A max-
pooling layer with a two-pixel gap between the centers of
neighborhood pooling units of size 2 × 2 followed the nor-
malization layer. ,e second, third, and fourth convolution
layers had 64 kernels of size 3 × 3 × 64. A batch normalization
(BN) [53] layer and a ReLU layer were applied after the
second, third, and fourth layers. ,e reason we use batch
normalization and ReLU is because it reaches the same error

rate faster compared to other activation functions such as
Tanh function, which means we can train the neural network
faster and acquire more neural network models with different
parameters. Also, the speed of the model will be faster than
other traditionally used activation functions. Interested
readers can find more detailed explanation in [13].

,e RoI pooling layer extracted a 1024-dimensional
feature vector from the output feature maps of the final
convolutional layer. ,e fully connected layer had 128
neurons, and its output that after passing through an ReLU
layer was fed to a softmax layer to generate a distribution
between the two class labels.

3.2. GaussianMixtureModel. After generating the potential
eye regions with Faster R-CNN, only one bounding box with
the maximum score of the eye class and an appropriate
aspect ratio was selected to fit the pupillary region. Origi-
nally, we planned to use another Faster R-CNN model
trained specifically for detecting the pupillary region.
However, the result is not as accurate as the model for eye
region, and the execution time of two Faster R-CNNmodels
is not fast enough for a real-time iris recognition system.
Hence, we decided to use the Gaussian mixture model as our
pupillary detection method.

,e GMMwas built using the expectation maximization
(EM) algorithm [7] based on a set of features including the
normalized coordinates of pixels, pixel values filtered by a
local median of kernel size 5 × 5, and pixel values filtered
using Gabor filters (see Figure 2). A GMM was parame-
terized by mixture component weights, component means,
and covariance matrices. For a GMM with K components,
the kth component had the mean μk and the covariance
matrix ∑k. ,e posterior probability distribution of GMM
can be expressed using the following equations:

p(θ |x) �∑K
i�1

wiN μi, ∑
i

∣∣∣∣x , (1)

N μi, ∑
i

∣∣∣∣x  �
1��������

(2π)K ∑i∣∣∣∣ ∣∣∣∣√
· exp − 1

2
x− μi( )T∑−1

i
x− μi( )( ),

(2)

∑K
i�1

wi � 1, (3)

where θ is the parameter set w, μ, ∑{ }. ,e mixture
component weight was defined aswi, and its total number of

Table 1: Accuracy of the iris segmentation algorithm.

R-CNN Fast R-CNN
RPN + Fast R-CNN (Faster R-

CNN)

Contributions
Improved performance of PASCAL

VOC
Applied SPP-net to R-

CNN
Added RPN to Fast R-CNN

Speed on a Tesla K40 GPU [6] <<0.5 fps 0.5 fps 5–17 fps
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K components was normalized to one. μi and ∑i are mean
and covariance matrix of the component i, with a total
number of K. In the training stage, the model was trained
using the EM algorithm, which is a type of maximum
likelihood estimation techniques. ,e EM algorithm for

GMM consists of two steps. ,e first step, known as the
expectation step or E step, is to calculate the expectation of
the component Ck for each datum xi ∈ X, given the model
parameters wk, μk, and ∑k. ,e second step is known as the
maximization step or M step, which is needed to maximize

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 2: Eight types of Gabor filters used to extract features.
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Figure 1: Architecture of proposed CNN.
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the expectations calculated in the E step with respect to the
model parameters and to update the values wk, μk, and ∑k.
,e entire iterative process repeats steps 1 and 2 until the
algorithm converges on themaximum likelihood estimation.
As the number of components K is not a known priori
parameter in this task, the method [8] is used to adjust theK
value automatically during the training stage.

3.3. Pupillary Boundary Estimation. A well-trained GMM
can fit the pupillary region inside the region proposal. In
general, the result shows a unique candidate pupillary region
in each image. However, in some situations, the GMM fits
multiple regions consisting of the pupillary region, eye-
lashes, eyelids, specular reflections, and noisy points. We
used a three-step process with three image processing
methods (grouping, filling, and morphology opening) to
discard the noisy regions and were left with only one
candidate pupillary region. As shown in Figure 3, each row
presents one test eye image. ,e left column presents the
region proposals produced from Faster R-CNN.,emedian
column presents the candidate pupillary regions predicted
by the GMM. Further, the right column presents the final
smooth region after applying the image processing methods.

,e GMM calculated the probability scores with the eye
and the background classes of each pixel in the image.
According to this score, several candidate points in the pu-
pillary region could be obtained to smoothen the candidate
pupillary region and remove the noisy region. ,e first step
involves grouping regions on the candidate pixels predicted
from the GMM using an eight-connected neighborhood al-
gorithm. ,en, each subregion was checked for whether it
contained more than 250 pixels, and the longer axis of its area
was less than 1.15 times the shorter axis.,e largest subregion
that met the above requirements was considered the pupillary
region. If all the regions were outside the specification, the
largest region was selected as the pupillary region. Filling the
empty space inside the region was the second step. Finally, a
morphological opening operator based on a structuring
square element of size four was applied to smoothen the
region. In the mathematical morphology, the opening op-
erator eroded objects that were smaller than the structuring
element and dilated the shape of the remaining region. When
empty spaces occurred on the edge of the region, as shown in
the bottom row in Figure 3, the filling step prevented the
region passing through the opening operator from generating
new cracks. More importantly, the opening operator not only
smoothened the pupillary region but also eliminated the noisy
points, as shown in the top row in Figure 3.

When the pupillary region was drawn up, the co-
ordinates of its center point were easily obtained. To pre-
cisely recover the pupillary boundary, a pixel scan of the
column and the row was performed at the center point to
select the lower, left, and right end points. Because the top
end point might be obscured by the upper eyelid, the top
point found by the pixel scan was probably different from
the actual pupillary boundary point. Instead, two points
selected from a new scan performed at the location with the
same distance to the center point, and the upper end point

was collected. We obtained five key boundary points
through the pixel scan methods. ,e full procedure is shown
in Figure 4. After obtaining the five boundary points, each
point was denoted according to its coordinates as (xi, yi). It
completely collected five pairs of coordinates of pupillary
boundary points. ,e parameters of an approximate circle
are computed using Equation (4). Moreover, the circle with
the computed circle parameters could be accurately located
on the pupillary boundary, as shown in Figure 5.

x, y, r{ } � argmin
x,y,r

∑N
i�1

xi − x( )2 + yi −y( )2 − ri − r( )2.
(4)

3.4. Limbus Boundary Estimation. ,e limbus boundary was
estimated after the pupillary region, and its boundary was
located.,e enhanced version of MIGREP [9] was applied for
estimating the coarse limbus boundary. Its required work was
to design a few radially emitting paths that went outward from
the pupillary center. Hence, the parameters of two distances
had to be defined in advance. One, called s1, was the distance
between the starting points of the emitting paths and the
pupillary center. ,e other was defined as s2 and represented
the distance from the pupillary center to the end points of the
emitting paths. In [9], these two parameters were predefined
and cannot adapt to various input images during runtime. In
this work, (s1, s2) were dynamically adjusted according to
the size of the bounding box found by Faster R-CNN. We
compared the distances from the edge of the pupillary region
to the left and the right sides of the bounding box and selected
the shortest one as the basic length, as shown in Figure 6.
,en, s1 and s2 were assigned the values of the pupillary
radius and further incremented by 0.4 and 1.2 times the basic
length, respectively. As the bounding box was located by the
learning-based algorithm, the basic length associated with it
was robust and adjusted automatically during runtime for
each image. ,us, most of the emitting paths were supposed
to start from somewhere inside the iris region and stop
somewhere in the sclera region.

By keeping record of the pixel intensity values along the
emitting path, the position that exhibited the maximal var-
iation of pixel intensity was located. ,is position had to
correspond with the intersection between the emitting path
and the limbus boundary. ,us, multiple boundary points
were successfully estimated when multiple emitting paths
were used. Depending on the parameter θ and the shape of the
eyelids and the eyelashes, the position showing the maximal
value of the intensity gradient was probably not located on the
limbus boundary. To solve this problem, we had to consider a
set of candidate points where the local maximum gradient
occurred, rather than considering only a single point where
the global maximum gradient occurred. As depicted in
Figure 7, the gradient value of the red point could be higher
than that of the blue one, which denoted incorrect
boundary point estimation. ,erefore, we had to consider a
set of candidate points consisting of red and blue points
and then, select the point with the highest likelihood from
the set.
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A more sophisticated boundary point selection algo-
rithm was used for this problem. Figure 8 illustrates the idea.
First, 11 emitting paths were drawn with the parameter
θ ∈ [180°, 210°]. For paths with such angles, it was highly

likely that the maximal gradient occurred on the limbus
boundary, as shown in Figure 8(a). ,us, the median value
rm of the distances from these points to the pupillary center
was recorded as a reference value. Second, a new emitting

+

(a) (b)

=

=

(c)

Figure 4: Procedure for finding the pupillary boundary points.

(a) (b) (c) (d)

Figure 5: Results of pupillary boundary estimation.

Figure 3: ,e process of pupillary region prediction.
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path (with θ ∈ [130°, 170°]) was drawn, for which an in-
correct boundary point might have the maximal gradient, as
shown in Figures 8(b)–8(d). In such a case, the corre-
sponding distance values r from the pupillary center to all
the points where the local maximal gradient g occurred were
respectively recorded. ,e point that had the larger local
maximal gradient value and whose distance value was within
ε � 2 of the reference value was selected. Taking Figure 8(b)
as an example, assuming that the reference value is rm in this
runtime, the blue point on the new path will be selected on
the basis of Equation (5), instead of the red point.

k � argmax
i

gi | rm − ri
∣∣∣∣ ∣∣∣∣< ε( ). (5)

,ird, after the best candidate point was selected, the
reference value rm was updated with rk, which served as the
new approximate value of the radius for the boundary points
close to it. By repeating the above mechanism for the
boundary point selection and the distance updating on the
next emitting path with a new θ value ranging from
[130°, 240°] to [−60°, 50°], we gradually adjusted the coarse
limbus boundary points to more precise locations, as shown
in Figure 8(e). Sometimes, the reflection point of light oc-
curred on the limbus boundary andmight cause the iteration
of the mechanism to go into a bad evolution. ,erefore, the
distance updating might not apply to the pixels whose pixel
values were larger than those of the normal pixels that had

95% probability in the normal distribution established using
the pixel values of the complete image.

4. Experimental Results and Discussion

4.1. Database. ,e database used to train Faster R-CNN and
GMM was the CASIA-Iris-,ousand database [54]. ,is
database contains 1,000 subjects with a total of 20,000 iris
images, which were collected using the IKEMB-100 camera.
As a large number of subjects wore glasses during image
capturing, many images have glass frames and specular re-
flection. ,ese types of obstructions were obstacles to the iris
segmentation.

4.2. Detection Model Training. Faster R-CNN and GMM
used the full CASIA-Iris-,ousand database for the training
and the test. ,e training set had 6,000 right-eye and 6,000
left-eye images, and the test set had 4,000 right-eye and 4,000
left-eye images. Each image had the region information of the
iris that was manually labeled, as shown in Figure 9. To build
the proposed algorithm in a mobile device or an embedded
system, the model had to occupy less storage space and has
lower computational complexity. ,e model was trained
using the training images, previously reduced to the specified
size. However, in the test stage, the test images were resized in
runtime to pass through the model. ,e results of the de-
tection were mapped onto the original test images to ensure
that there were sufficient iris textures inside the bounding
boxes for use in the other iris recognition steps.

To share the convolutional weights between CNN and
RPN in Faster R-CNN, the model had to be trained in four
steps. ,e first step consisted of training a region proposal
network. For the convolutional feature map of size W × H
outputted from the fourth convolution layer of the proposed
model, RPN found theW ×H × k potential regions. Using of
the last convolution layer as feature map has been applied
and proven very effectively by other object detecting con-
volution neural network such as R–CNN and Faster R–
CNN. Interested readers can find more details of why using
the last layer for feature by reading [6, 10, 15].

However, only 2,000 regions with the higher intersection
over union (IoU) value were assigned to positive samples for
training the CNN. In the second step, a separate detection
network by Fast R–CNN was trained using the region
proposals generated from the RPN built in Step 1. At this
stage, the two networks did not yet share the convolutional
weights. In the third step, the detection network was used to
initialize RPN training. It frozed the weights of the shared
convolution layers and fine-tuned the layers that belonged
only to the RPN during training. ,e final step was to fine-
tune (with the same operation) the layers that only belonged
to the CNN. Hence, the networks shared the same convo-
lution layers and merged into a single network.

For the purpose of finding the best architecture of the
RPN and CNN model, we trained multiple models with
different fine-tuned parameter sets using the right-eye im-
ages of the CASIA-Iris-,ousand database, as shown in
Tables 2 and 3. ,e new architecture of the CNN model was

+

L1

L2

Figure 6: ,e definition of L1 and L2, which are derived based on
the localization results from Faster R-CNN. ,e shortest distance
between L1 and L2 will be set as the basic length.

+

r′

r′′

Figure 7: Illustration of boundary point selection problem.
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(a) (b) (c)

Figure 9: Manually labeled region information of the iris. (a) ,e manually labeled iris region. (b) ,e bounding box computed from the
circle parameters of the limbus boundary is the region label for training Faster R-CNN. (c) ,e information of the pupillary region used for
training GMM.

(a) (b)

(c) (d)

(e) (f )

Figure 8: Illustration of boundary point selection algorithm. (a) 11 emitting paths are drawn with the parameter θ ∈ [180°, 210°] (for the
other side θ ∈ [−30°, 0°]), and the points corresponding to the maximal gradient are recorded. ,e reference value rm is determined by
taking the median of the distances from these points to the pupillary center. (b–e) Repeatedly drawing new emitting paths and applying the
boundary point selection algorithm result in the correct location of many boundary points. (f ) Final limbus boundary is recovered by fitting
a circle on all candidate points based on Equation (4).
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designed on the basis of VGG-16. As the detection task in
this study was simple, we reduced the number of convo-
lution layers of VGG-16. Precision and recall were used to
measure the performance of the detector. Precision is the
fraction of retrieved objects relevant to the detection, and
recall is the fraction of relevant objects successfully retrieved.
Here, we set an overlap threshold of IoU � 0.8 to select
effective detection, which was a strict condition.

,e initial version of the new network architectures was
labeled Model A and Model B, which had only six and five
convolutional layers, respectively. ,e experimental results
showed that the performance of Model B was considerably
worse than that of Model A, even when the number of
neurons in the fully connected layer was increased. Next, we
attempted to replace the first three layers of the network with
a convolutional layer of a larger kernel size, which resulted in
Models C and D. ,e use of multiple kernel sizes in a
network helped the network to obtain more diverse features
in an image. ,e difference between these two models was
the different pooling strategies used, namely, max pooling
for Model C and average pooling for Model D. Irrespective
of the pooling strategy, their performance was almost 100%
precision and recall. Although the models performed well,
they used a large number of computed parameters in the
networks and thus required a long processing time of

approximately 0.3 s to complete the detection. ,erefore, we
reduced the size of the training set by 2×, 4×, and 8× to
generate Models E, I, and J, respectively. ,e smaller was the
size of the images used for training, the less was the time
required for the model training and testing and the lower
was the detection accuracy. According to the experimental
results, the performance of Model J was the worst of all the
models trained using images of different sizes. ,is might be
attributed to the fact that the images used for training had
very few features for the detection when they were shrunk
considerably. We finally used the architecture of Model I to
implement the algorithm proposed in this paper. Models F,
G, and H were the parameter-adjusted results of Model I.
Among them, Model I exhibited better performance and
sufficiently low time consumption for the detection.

,e GMM was trained using the images with the in-
formation of the pupillary region. We used the GMM to fit
the potential pupillary region inside the bounding box found
by Faster R–CNN. Each pixel in an image was represented by
a nine-dimensional feature vector used for the training and
the testing. ,e features consisted of the normalized co-
ordinates of pixels, pixel values filtered by a local median of
kernel size 5 × 5, and pixel values filtered using Gabor filters.
,e Gabor filters of size 5 × 13 were parameterized as
follows: σ � 2, θ � [45°, 360°], λ � 5, ψ � 1.5, and c � 2.5. In

Table 2: Experimental results of finding the best architecture of CNN. Note that the “conv_1” and “conv_2” layers shown in the table
correspond to the sequences Conv-ReLU-CN and Conv-BN-ReLU, respectively. Further, all the convolution layers run with stride one.

Test time Input image size Layers RoI pooling grid size Fully connected layer

A 0.191 s 480 × 640
(3 × 3 × 64) × 3 conv_2

120 × 120 128⟶ 2(2 × 2) max pool
(3 × 3 × 64) × 3 conv_2

B 0.197 s 480 × 640
(3 × 3 × 64) × 2 conv_2

120 × 120 256⟶ 2(2 × 2) max pool
(3 × 3 × 64) × 3 conv_2

C 0.286 s 480 × 640
(7 × 7 × 128) × 1 conv_1

120 × 120 128⟶ 2(2 × 2) max pool
(3 × 3 × 128) × 3 conv_2

D 0.295 s 480 × 640
(7 × 7 × 128) × 1 conv_1

120 × 120 128⟶ 2(2 × 2) average pool
(3 × 3 × 128) × 3 conv_2

E 0.286 s 240 × 320
(7 × 7 × 128) × 1 conv_1

64 × 64 128⟶ 2(2 × 2) max pool
(3 × 3 × 128) × 3 conv_2

F 0.042 s 120 × 160
(3 × 3 × 128) × 1 conv_1

32 × 32 128⟶ 2(2 × 2) max pool
(3 × 3 × 128) × 3 conv_2

G 0.036 s 120 × 160
(5 × 5 × 128) × 1 conv_1

32 × 32 128⟶ 2(2 × 2) max pool
(3 × 3 × 128) × 3 conv_2

H 0.037 s 120 × 160
(5 × 5 × 64) × 1 conv_1

32 × 32 128⟶ 2(2 × 2) max pool
(3 × 3 × 64) × 3 conv_2

I 0.037 s 120 × 160
(5 × 5 × 64) × 1 conv_1

32 × 32 128⟶ 2(2 × 2) max pool
(3 × 3 × 64) × 3 conv_2

J 0.033 s 60 × 80
(5 × 5 × 64) × 1 conv_1

16 × 16 128⟶ 2(2 × 2) max pool
(3 × 3 × 64) × 3 conv_2
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the training stage, the pixels inside the pupillary region were
taken as the positive samples. A normal distribution built
from the pixel values of the entire region was used to remove
the positive samples located in the region of the reflection
points. ,e same number of samples as in the positive
sample was selected from the pixels out of the pupillary
region to form a negative sample. We also attempted to use
SVM instead of GMM to predict the potential pupillary
region. However, it did not perform as well as GMM, as it
took more than three days for training, which was con-
siderably much longer than GMM which only takes 5min.
Furthermore, its accuracy of region prediction was poor, as
shown in Figure 10.

We implemented our algorithm with MATLAB R2018a
and run it on a personal computer with 3.4-GHz CPUs and
GTX 1080 GPU. ,e average time cost per eye of iris seg-
mentation was approximately 0.06 s, which indicated that
the proposed algorithm is a fast iris segmentation algorithm.

4.3. Performance Evaluation for Iris Segmentation.
Traditionally, most researchers have evaluated the results of
iris segmentation with subjective methods, for example, by
reading the iris segmentation results on the plotted image and
manually giving the judgment [9, 27, 29, 33, 35, 36, 39, 41]. To
quantitatively estimate the performance of pupillary
boundary localization and limbus boundary localization, we
propose a new method based on the integration of the radial
difference. For each image, we used the region information of
the manually labeled iris region to generate two separate

binary maps containing the pupillary region and the iris
region, respectively. We assumed a segmentation S that was
parameterized by the coordinates of the circle’s center and its
radius, denoted as a triple set (xc, yc, r). ,en, we created a
dilated version S+d and an eroded version S−d of S, which was
parameterized as (xc, yc, r + d) and (xc, yc, r−d), re-
spectively. As such, every point of S had its corresponding
points on S+d and S−d . By collecting N pairs of corresponding
points on S+d and S−d , denoted as (p+i , p

−
i ), we evaluated the

performance of S by using the q value computed using
Equation (6). Figure 11 illustrates the procedure for the
performance evaluation.

q �
∑Ni�1 p−i −p+i( )

N
, i ∈ [1, N]. (6)

We compared our algorithm with [9], which was proved
to be very robust and efficient for iris images captured on
wearable devices. ,e proposed performance evaluation
method was used with parameters d � 10(15) and
N � 36(36) for evaluating the performance of the pupillary
(limbus) boundary localization.With such a d value, it ensured
that the results of the proposed segmentation algorithm had at
least a 0.5 IoU value with the ground truth. By selecting the
aforementioned parameters, we make the proposed algorithm
to be fast enough for a real-time iris recognition system (above
15 frames per second) while maintaining the accuracy of iris
segmentation. It set q � 0.9 as the threshold to select effective
segmentation and computed the accuracy of segmentation
with this threshold. Figure 12 illustrates the histogram of the q

Table 3: Experimental results of finding the best architecture of RPN.

Overlap range MinBox sizes Box pyramid scale NumBox pyramid levels Precision Recall

A
0, 0.3;
0.7, 1
[ ] 125, 125[ ] 1.1 9 0.9810 0.9793

B
0, 0.3;
0.7, 1
[ ] 125, 125[ ] 1.1 9 0.9489 0.9568

C
0, 0.3;
0.7, 1
[ ] 125, 125[ ] 1.1 9 0.9922 0.9918

D
0, 0.3;
0.7, 1
[ ] 125, 125[ ] 1.1 9 0.9900 0.9888

E
0, 0.3;
0.7, 1
[ ] 64, 64[ ] 1.1 9 0.9825 0.9825

F
0, 0.3;

0.65, 1
[ ] 32, 32;

48, 32
[ ] 1.2 5 0.9737 0.9800

G
0, 0.3;

0.65, 1
[ ] 32, 32;

48, 32
[ ] 1.2 5 0.9762 0.9778

H
0, 0.3;

0.65, 1
[ ] 32, 32;

48, 32
[ ] 1.2 5 0.9604 0.9640

I
0, 0.3;

0.65, 1
[ ] 32, 32;

32, 48
[ ] 1.2 5 0.9778 0.9805

J
0, 0.3;
0.6, 1
[ ]

16, 16;
24, 16;
16, 24;
24, 24

  1.1 9 0.9400 0.9398

“Overlap Range” is the bounding box overlap ratios for selecting negative and positive samples. “MinBox Sizes” is the minimum anchor box sizes used to build
the anchor box pyramid. “Box Pyramid Scale” is the anchor box pyramid scale factor used to successively upscale anchor box sizes. “NumBox Pyramid Levels”
is the number of levels in an anchor box pyramid.
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values for evaluating the segmentation performance on the full
CASIA-Iris-,ousand database.,e accuracy of segmentation
is shown in Table 4. As depicted in Table 4, the proposed
algorithm showed a dramatic increase from 47.84% to 95.49%.
,is could be attributed to the fact that themethod used for the
localization of the eye was changed to a learning-based algo-
rithm. As such, the parameters used to find the boundary
points of the pupillary region and the iris were robustly ad-
justed automatically during runtime for different input images.

4.4. Difference between the Proposed Method and Other
Published Methods. ,ere are many iris segmentation
methods based on deeply learned neural networks. In this
section, we discuss the difference between two state-of-the-art
methods, IrisDenseNet [55] and the model proposed by He
et al. in [56].

IrisDenseNet uses a 13-layered VGG-16 network [51] as
its core to detect actual iris area (excluding area such as
eyelid and eyelashes). However, it only performs seg-
mentation for the iris area without a proper method to

normalize it. As we can see in [2–4], the iris normalization
is a key stage for high-performance iris recognition. If this
stage is missing, there is no guarantee that the final ac-
curacy of their iris recognition system still remains the
desired precision. Also, due to its deep layers, the com-
putation complexity of training and using it is extremely
costing compared to our proposed method.

Model proposed in [56] also employs VGG-16 network
but with some changes. Its execution time for one image is
0.112 second on a 2.6 GHz CPU and GTX970MGPUwhich,
again, is not fast enough for a real-time iris recognition
system on the embedded system. Our proposed method, on
the contrary, can perform iris localization within 0.06 sec-
onds, which is 1.87x faster.

5. Conclusion

In this paper, we presented a robust and fast iris segmentation
algorithm based on Faster R-CNN.We reconstructed the CNN
architecture of Faster R-CNN. ,is new model with only six
layers could generate precisely located region proposals of the

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 10: Performance comparison between SVM and GMM. ,e second column presents the region fit by SVM and the third column
shows that fit by GMM.
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eye in the images. We then extracted the feature vectors with
specific dimensions to train a GMM for fitting the potential
pupillary regions. ,en, the pupillary boundary was recovered
through five key boundary points found by pixel scans of the
rows and columns. An enhanced version of MIGREP and the
boundary point selection algorithm were used to find some
boundary points of the limbus region, and the limbus
boundary was located by using these boundary points. To

evaluate the performance of iris segmentation, we developed
an evaluation method based on the integration of the radial
difference. Experimental results showed the effectiveness and
efficiency of the proposed iris segmentation method on the
CASIA-Iris-,ousand database. ,e segmentation accuracy
of the proposed method was 95.49%, which was higher than
the accuracy of 47.84% achieved in the previous work, and the
time cost of the proposed iris segmentation procedure was
only approximately 0.06 s. ,e results on the challenging
CASIA-Iris-,ousand database showed that the proposed
method is a fast and accurate iris segmentation algorithm.

,e main advantage of the proposed algorithm over
most of the state-of-the-art iris segmentation algorithms
based on neural networks such as IrisDenseNet [55] and the
model proposed by He et al. [56] is that it has a smaller

(a) (b) (c)

Figure 11: Performance evaluation of segmentation. ,e first image illustrates an example of a binary map. S (green circle), S+d (blue-dotted
circle), and S−d (red-dotted circle) are drawn on the binary map in the second image. ,e q value is the mean of the integration of the
difference between the yellow point pairs in the third image used to evaluate the segmentation performance.
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Figure 12: Histogram of q values for evaluating the segmentation performance.

Table 4: Accuracy of the iris segmentation algorithm.

Proposed [9]

Pupillary boundary 96.77% 51.60%
Iris boundary 98.32% 70.17%
Both boundaries 95.49% 47.84%
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model size which make it faster to segment iris images,
which is crucial for a real-time iris recognition system or
even implement it on a mobile device.

For the future work, we want to further improve the
speed of the algorithm by creating heterogeneous models
that combining the power of CNN and the speed of tra-
ditional computer vision methods. Another direction is to
try to use the semantic segmentation method and combine it
with the proposed algorithm. ,e semantic segmentation
algorithm has a high sensitivity of predicting the reflection
points in the iris region, which can improve the overall
accuracy of the algorithm. After the algorithm is improved,
we will attempt to build the algorithm on the mobile devices,
by using more concise deep learningmodels, such as XNOR-
NET [57]. ,e ultimate goal is to implement a fast and
accurate portable iris recognition system.
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